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Dear editor,
5G will be ultra-dense networks and heavily sliced
to support the substantial increase of mobile de-
vices involving high-rate applications. However,
the massive number of base stations (BSs) de-
ployed will inevitably lead to inter-cell interfer-
ence [1]. A promising approach for reducing inter-
cell interference is multiple BSs cooperative trans-
mission, also known as coordinated multi-point
(CoMP) transmission [2].

However, the implementation of BSs coopera-
tion faces a fundamental challenge, i.e., power allo-
cation [3]. An optimal BS’s power allocation strat-
egy helps to manage the interference between ad-
jacent cells. Recently, the BS-selection techniques
can significantly decrease the processing com-
plexity, whereas achieving high capacity gain [4].
Noted that it is desirable to minimize the number
of the selected BSs through BS-selection. How-
ever, the previous studies for BS-selection have few
considered that the path-loss led to the degrada-
tion of quality-of-service (QoS) [5].

Moreover, multiple base stations cooperative
communication (MBSCC) system has more free-
dom degrees than the traditional cellular commu-
nication system, it is quite difficult to solve the
non-convex power allocation. Direct optimization
of this problem is computationally intractable [5].
Swarm intelligence approaches such as genetic al-

gorithm (GA) and particle swarm optimization
(PSO) have been regarded as promising tools for
solving non-convex optimization problems.

Model and problem formulation. In practical
cellular networks, the BSs’ locations must be care-
fully chosen and optimized by taking into account
building heights, user density, and terrain features.
The Poisson model has been widely adopted in
cellular networks to characterize the BSs’ loca-
tions [2].

We consider a dense cellular system in the down-
link with M single-antenna BSs and N single-
antenna mobile stations (MSs) (M < N). The
perfect channel state information (CSI) at the BSs
is taken into consideration, all BSs in the cooper-
ative cells are connected to a central unit (CU)
through backhaul links to share the necessary in-
formation for cooperation [4]. Let Gi,n be the
channel power gain from the i-th BS to the n-
th MS. The signal-to-interference-plus-noise-ratio
(SINR) at the n-th MS is given by

γn =

∑

i∈Cn
Gi,npi,n

∑

j∈Sn

∑N

k=1,k 6=n Gj,npj,k + σ2
, (1)

where pi,n is the transmit power from the i-th BS
to the n-th MS, Cn is the set of all cooperative
BSs communicating with the n-th MS, Sn is a set
of the BSs (except for Cn) that causes interference
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to the n-th MS, σ2 is the variance of additive white
Gaussian noise.

On the other hand, in order to assure users’
SINR fairness, we may transform the power al-
location problem of multi-base station cooperative
communication system to the SINR equalization
problem among users to satisfy

γ1 = γ2 = · · · = γN = γ0. (2)

Now, we investigate the power allocation strat-
egy to assure users’ SINR fairness. The strategy
can be performed in two steps: (1) select cooper-
ative BSs that can communicate with MSs, and
(2) the transmission power of the selected BSs are
optimally allocated to assure users’ SINR fairness.

The BS-selection criterion is determined relying
on the large-scale path-loss of the coverage area.
The principle BS with minimum path-loss can be
described by

BSmaster
Cn,n

= min{PLm,n}, (3)

where BSmaster
Cn,n

is the principle BS, PLm,n is the
path-loss from the m-th BS to n-th MS.

In the following, we define the path-loss thresh-
old as ∆. Here, the cooperative BSs are the
best neighbors of the principle BS in terms of
path-loss. Therefore, cooperative BSs or non-
cooperative BSs criterion is given by

{

m ∈ Crelay
n ,

∣

∣PLmaster
Cn,n

− PLm,n

∣

∣ 6 ∆,

m ∈ Sn,
∣

∣PLmaster
Cn,n

− PLm,n

∣

∣ > ∆,
(4)

where PLmaster
Cn,n

is the path-loss from the principle
BSs to the n-th MS.

Power allocation for the principle BSs as well as
for the cooperative BSs can then be performed over
each BS. As in the noncooperative case, power is
first allocated globally considering both the global
optimization problem and sum power constraint,
leading to the SINR at the n-th MS as

γn=
Gmaster

Cn,n
pmaster
Cn,n

+
∑

i′∈C
relay
n

G
relayi′

Cn,n
p
relayi′

Cn,n
∑

j∈Sn

∑N

k=1,k 6=n Gj,npj,k + σ2
, (5)

where Gmaster
Cn,n

and pmaster
Cn,n

are the channel gain and
power allocation from the principle BSs to n-th

MS, respectively. G
relayi′

Cn,n
and p

relayi′

Cn,n
are the chan-

nel gain and power allocation from the relaying
BSs to n-th MS, respectively.

Eq. (5) implies that there existM×N power al-
location solutions and are hard to solve. In order
to simplify the problem, we can take the princi-
ple BS’s power allocation as a reference to allocate
transmission power to the cooperative BSs. In this

case, Eq. (5) can be simplified to be N power al-
location solutions, thus dramatically reducing the
computational complexity. The relationship be-

tween p
relayi′

Cn,n
and pmaster

Cn,n
is given by

p
relayi′

Cn,n
=

G
relayi′

Cn,n

Gmaster
Cn,n

pmaster
Cn,n

, i′ ∈ Crelay
n . (6)

Substituting (6) into (5), the n-th MS’s SINR is
given by

γn=

pmaster
Cn,n

[

Gmaster
Cn,n

+
∑

i′∈C
relay
n

(

G
relay

i′

Cn,n

)2

Gmaster
Cn,n

]

∑

j∈Sn

∑N

k=1,k 6=n pmaster
Ck,k

(Gj,nGj,k

Gmaster
Ck,k

)

+σ2
. (7)

Here, it is straightforward to prove that the power
allocation optimization is non-convex. We develop
swarm intelligence approaches to solve the above-
mentioned problem.

Methodology. The genetic algorithm steps have
been described in [6]. In this study, it is reason-
able to consider the power allocations as biologic
species that needs to fit for BSs’ downlink co-
operation. The chromosome structure is denoted
by {pmaster

C1,1
, pmaster

C2,2
, . . . , pmaster

CN ,N }. The fitness of a
chromosome depends on how well that chromo-
some solves the problem. The fitness function is
defined by

F (γn) =
1

γmax − γmin
. (8)

The selection operator selects chromosomes in
the population for the purpose of reproduction.
The genetic probability of the chromosomes γn is
given by

λ(γn) =
F (γn)

∑N

k=1 F (γk)
. (9)

The crossing operation is the reproduction of
new individuals that inherit part of the character-
istics from one individual and the other part from
the other individuals. Mutation is another oper-
ator in GA that slightly varies the offspring gen-
erated from crossover. The mutation operation of
γn is given by

γ′
n =

{

γn + (γn − γmax)f(t), r > 0.5,

γn + (γmin − γn)f(t), r < 0.5,
(10)

f(t) = r(1 − t/tmax)
2, (11)

where r is random number in the interval [0,1],
t is the current number of iterations, tmax is the
maximum number of iterations.

PSO also belongs to the family of swarm in-
telligence algorithms. The main idea of PSO is
through constructing a number of swarm particles
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and setting the fitness function (8), PSO can make
a judgment of the adaptability of each particle in
each generation. Searching procedures of PSO can
be described [7], where PSO indicates the dynamic
range of each parameter by properly setting the
inertia weight w, and the global maximum can be
found more quickly on average. Furthermore, a
higher value of w at the beginning of the run fa-
cilitates a better global search, whilst a smaller w
tends to localize the search. The following weight-
ing function is usually used in linearly decreasing
with the iterative generations as

ω = γmax −
t(γmax − γmin)

tmax
. (12)
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Figure 1 Performance analysis of system capacity in
terms of the convergence speed and the values of fitness
function.

Results and discussion. Numerical results are
provided to evaluate the performance of our pro-
posed algorithms. First, we testify the convergence
of the proposed algorithm based on GA and PSO,
respectively. Second, we analyze the performance
of system capacity in terms of (2). The system
parameters are found in [8]. As shown in Figure 1,
the PSO converges very fast. Compared to the al-
gorithm complexity, the PSO and GA algorithm
complexity are O(MN) and O(N2), respectively.
In fact, the population size of PSO requires less

than GA, which reduces computation load. More-
over, we choose M = 30, Crelay

n = 6 and increase
MSs number from N = 10 to N = 100, the system
capacity will increase 45.7 and 44.83 bps/Hz for
PSO-based and GA-based algorithm, respectively.

Conclusion. In dense cellular networks, power
allocation is a non-convex optimization problem
for MBSCC system. We employ GA and PSO to
allocate transmit power for the cooperative BSs.
Numerical results show that the group size is large
enough, the proposed algorithm has good conver-
gence, and the performance of the PSO-based al-
gorithm is better than of the GA-based algorithm
in terms of the convergence speed and the system
capacity.
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