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The advection step in Eulerian fluid simulation is
prone to numerical dissipation [1], resulting in the
loss of fluid details. Among the various attempts
to develop accurate advection solvers, high-order
advection schemes such as back and forth error
compensation and correction (BFECC) [2] and
MacCormack [3] are effective solutions. Com-
plementary to high-order advection schemes are
high-order interpolation schemes such as mono-
tonic cubic spline [4] in the graphics field and es-
sentially non-oscillatory (ENO) [5] and weighted
ENO (WENO) [5] schemes in computational fluid
dynamics. However, these schemes are computed
over wide stencils, incurring a significant algorithm
complexity cost and potential problems on non-
uniformly spaced grids.

The constrained interpolation profile (CIP)
method [6] constructs an interpolation function
in only one mesh cell, achieving desirable third-
order accuracy on a compact stencil. Despite
these advantages over other advection schemes, it
is not easy to extend CIP to higher dimensions due
to the computational complexity and high mem-
ory cost. This problem is only partially solved
by current multi-dimensional CIP-based advection
solvers, such as monotonic CIP (MCIP) [7] and un-
split semi-Lagrangian CIP (USCIP) [8]. Moreover,
these algorithms may cause other problems such as

decreased accuracy or instability. Developing an
efficient high-dimensional CIP scheme that retains
high accuracy remains a challenging problem.

Herein, we propose an efficient CIP scheme
based on directional splitting. Unlike the existing
CIP-based schemes, in which high-order deriva-
tives are usually treated as unknowns to ensure
high accuracy, the resulting scheme takes only
the physical quantity and its first-order derivatives
as unknown variables and approximates the high-
order derivatives with third-order accuracy using
local Taylor expansions. The proposed method
considerably reduces the time and memory over-
head without impairing the numerical accuracy;
thus, it efficiently reproduces the rich fluid details.

Main idea. CIP [7] aims to advect not only the
physical quantities but also their derivatives. De-
spite its third-order accuracy, CIP is not easily
extendible to high dimensions [7, 8]. High-order
polynomials constructed for high-dimensional CIP
tend to cause numerical instability owing to the
mismatch between the numbers of known values
and terms in the polynomial. Moreover, calcu-
lating the polynomial coefficients is usually time-
consuming. Our new CIP scheme based on Taylor
expansion efficiently solves the above problems.

Consider the 2D case in Figure 1, where A, B,
C, and D are grid points, P is a backtracked point,
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and E, F, G, and H are projections of P onto the
four cell sides AB, DC, AD, and BC, respectively.
Previous methods [6–8] advect the physical quan-
tity φ and store its derivatives [∂xφ, ∂yφ, ∂xyφ] at
each grid point for high-precision interpolation.
In contrast, we store only φ and its first-order
derivatives [∂xφ, ∂yφ] as computational variables,
and approximate the second-order cross deriva-
tives ∂xyφ via an efficient approach that preserves
the computational accuracy. Consequently, our
method consumes less memory and is more com-
putationally efficient than the existing methods.

Figure 1 (Color online) Illustration of the proposed Tay-
lor expansion-based CIP in 2D.

Approximation of the cross derivatives. As
proven in [9], for a bivariate function f(x, y)
with continuous derivatives in the neighborhood
of (x, y), ∂xyf can be approximated to third-order
accuracy by the following equation, which is based
on the Taylor expansion:

∂xyf(x, y)

= (∂yf(x+∆x, y)− ∂yf(x, y))/∆x

+ (∂xf(x, y +∆y)− ∂xf(x, y))/∆y

− (f(x+∆x, y +∆y) + f(x, y)

− f(x+∆x, y)− f(x, y +∆y))/∆x∆y. (1)

Let the grid cell length be h in each dimen-
sion. The cross derivative ∂xyφ at point A in
Figure 1 can be computed using (1) by setting
∆x = ∆y = h.

∂xyφA = (∂yφB − ∂yφA)/h+ (∂xφD − ∂xφA)/h

− (φC + φA − φB − φD)/h
2. (2)

Similarly, setting ∆x = −h and ∆y = h, ∂xyφB

can be computed as

∂xyφB = (∂yφB − ∂yφA)/h+ (∂xφC − ∂xφB)/h

− (φC + φA − φB − φD)/h
2. (3)

Similarly, setting ∆x = ∆y = −h, ∂xyφC can be
computed as

∂xyφC = (∂yφC − ∂yφD)/h+ (∂xφC − ∂xφB)/h

− (φC + φA − φB − φD)/h
2. (4)

Finally, setting ∆x = h and ∆y = −h, ∂xyφD can
be computed as

∂xyφD = (∂yφC − ∂yφD)/h+ (∂xφD − ∂xφA)/h

− (φC + φA − φB − φD)/h
2. (5)

Taylor expansion-based CIP. Using the above
equations, our CIP-based interpolation method
determines the corresponding values at P from the
grid points via iterative interpolations based on 1D
CIP. First, it computes ∂xyφ at the grid points A,
B, C, and D by Eqs. (2)–(5), respectively. Second,
it computes [φ, ∂xφ] and [∂yφ, ∂xyφ] at point E by
1D CIP interpolation between A and B. Third, it
determines [φ, ∂xφ] and [∂yφ, ∂xyφ] at point F by
1D CIP interpolation between D and C. Finally, it
calculates [φ, ∂yφ] and [∂xφ, ∂xyφ] at point P by 1D
CIP interpolation between E and F. Owing to the
high-order approximations of the cross derivatives,
our method has the same computational accuracy
but requires fewer computations and memory re-
sources than the original CIP method. The whole
process is summarized in Algorithm 1.

Algorithm 1 Taylor expansion-based CIP in 2D

Input: [φ, ∂xφ, ∂yφ] at A, B, C, D;
Output: [φ, ∂xφ, ∂yφ] at P.
1: Compute ∂xyφ at A, B, C, D by Eqs. (2)–(5);
2: Compute [φ, ∂xφ]E from [φ, ∂xφ]A and [φ, ∂xφ]B by 1D

CIP interpolation;
3: Compute [∂yφ, ∂xyφ]E from [∂yφ, ∂xyφ]A and [∂yφ,

∂xyφ]B by 1D CIP interpolation;
4: Compute [φ, ∂xφ]F from [φ, ∂xφ]D and [φ, ∂xφ]C by 1D

CIP interpolation;
5: Compute [∂yφ, ∂xyφ]F from [∂yφ, ∂xyφ]D and [∂yφ,

∂xyφ]C by 1D CIP interpolation;
6: Compute [φ, ∂yφ]P from [φ, ∂yφ]E and [φ, ∂yφ]F by 1D

CIP interpolation;
7: Compute [∂xφ, ∂xyφ]P from [∂xφ, ∂xyφ]E and [∂xφ,

∂xyφ]F by 1D CIP interpolation.

Experimental results. The proposed advection
scheme was tested in a simulation of rising smoke
on a 256×512 grid. For comparison, the same sim-
ulation was run in four existing advection schemes,
namely, linear semi-Lagrangian [4], BFECC [2],
MCIP [7], and USCIP [8]. All tests were performed
on a desktop PC with an Intel i5 3.30 GHz CPU
and 12.0 GB RAM. All simulations were run on
uniform grids with no vorticity confinement [4].
The simulation results can be found in the at-
tached video and presentation slides.

In the first case, the smoke density field was
advected by different schemes, and the velocity
field was advected by the BFECC method. There-
fore, all simulations maintained the same shapes
but with different levels of details. In the second
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case, the density field was advected by the BFECC
method, and the velocity field was advected by
different schemes, producing different dynamic ef-
fects. The higher order accuracy of CIP-based
methods helps to preserve the fluid details and
capture the turbulent vortical effects, thus confer-
ring a better visual quality than those of the linear
and BFECC methods. MCIP shows more diffu-
sive results than USCIP and our method because
MCIP simply approximates the second-order cross
derivatives by a finite difference scheme, which
leads to a reduction in the computational accuracy.
Like USCIP, our method suppresses overshoots by
a delayed clamping procedure [8]. However, US-
CIP uses a high-order polynomial for interpola-
tion, which easily induces overshoots that smear
out many of the fluid details.

Table 1 in the attached presentation slides sum-
marizes the average computational time and mem-
ory requirements per frame in the second sim-
ulation. Certainly, the linear method consumes
the fewest time and memory resources. BFECC
needs a temporary variable to hold the interme-
diate results; thus, it incurs double the memory
overhead of the linear method. BFECC is also the
most time-consuming, as each call invokes the lin-
ear semi-Lagrangian advection three times. The
runtime of MCIP is approximately double that of
the linear method. This method also consumes
the most memory because it stores the physical
quantity and all its derivatives up to second-order
on the grid. USCIP and our method require less
memory than MCIP because both methods store
only the first-order derivatives at the grid points.
However, USCIP is more time-consuming than
ours because it must compute the coefficients of
the interpolation polynomial. Overall, in all the
simulation results the advection step occupies only
a small fraction of the total simulation and the
projection step is the most time-intensive step.

Discussion. Owing to its high-order advection
accuracy, our method produces much better vi-
sual results than the low-order linear and BFECC
algorithms. Our algorithm is advantageous even
when compared against other CIP-based algo-
rithms. Although high-order schemes such as ENO
and WENO (up to fifth-order) will probably re-
duce the numerical dissipation more than our ap-
proach, their high computational complexity has
limited their applicability in computer graphics.
Moreover, these methods require a wide stencil so
they can be implemented only on regular grids.

Conclusion and future work. This study pro-
poses a novel CIP-based advection method with
third-order accuracy that improves the advec-

tion results over other advection methods, thereby
achieving a visually convincing smoke simulation.
Our method only stores the physical quantity and
its first-order derivatives on the grid and efficiently
computes the high-order derivatives on the fly us-
ing Taylor expansions. Overall, our approach is
stable, fast, and accurate with low memory cost.

In future work, we will combine our method
with adaptive techniques to improve the simula-
tion results on non-uniform grids. Besides, we are
planning to accurately track free surfaces with our
method, thereby simulating water surfaces in great
detail. Finally, we are also planning to extend our
method to higher dimensional simulations.
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