
SCIENCE CHINA
Information Sciences

June 2020, Vol. 63 162101:1–162101:22

https://doi.org/10.1007/s11432-019-2720-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .

Learning a graph-based classifier for fault localization

Hao ZHONG* & Hong MEI

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received 21 July 2019/Revised 22 September 2019/Accepted 21 November 2019/Published online 9 May 2020

Abstract Because software emerged, locating software faults has been intensively researched, culminating

in various approaches and tools that have been applied in real development. Despite the success of these de-

velopments, improved tools are still demanded by programmers. Meanwhile, some programmers are reluctant

to use any tools when locating faults in their development. The state-of-the-art situation can be naturally

improved by learning how programmers locate faults. The rapid development of open-source software has

accumulated many bug fixes. A bug fix is a specific type of comments containing a set of buggy files and their

corresponding fixed files, which reveal how programmers repair bugs. Feasibly, an automatic model can learn

fault locations from bug fixes, but prior attempts to achieve this vision have been prevented by various tech-

nical challenges. For example, most bug fixes are not compilable after checking out, which hinders analyzing

bug fixes by most advanced static/dynamic tools. This paper proposes an approach called ClaFa that trains

a graph-based fault classifier from bug fixes. ClaFa is built on a recent partial-code tool called Grapa, which

enables the analysis of partial programs by the complete code tool called WALA. Once Grapa has built a

program dependency graph from a bug fix, ClaFa compares the graph from the buggy code with the graph

from the fixed code, locates the buggy nodes, and extracts the various graph features of the buggy and clean

nodes. Based on the extraction result, ClaFa trains a classifier that combines Adaboost and decision tree

learning. The trained ClaFa can predict whether a node of a program dependency graph is buggy or clean.

We evaluate ClaFa on thousands of buggy files collected from four open-source projects: Aries, Mahout,

Derby, and Cassandra. The f -scores of ClaFa achieves are approximately 80% on all projects.

Keywords fault classifier, partial code analysis, bug fix analysis

Citation Zhong H, Mei H. Learning a graph-based classifier for fault localization. Sci China Inf Sci, 2020, 63(6):

162101, https://doi.org/10.1007/s11432-019-2720-1

1 Introduction

As man-made artifacts, software systems can contain bugs that return incorrect values, compromise

security, or even crash the systems. In critical applications, bugs can incur huge losses. To improve

the quality of software, the software engineering community has devoted much time and attention to

bug location (see Section 6 for a detailed survey). Researchers have demonstrated the effectiveness of

their proposed approaches, and several tools (e.g., FindBugs [1] and PMD1)) have been widely applied

in modern software development.

Despite the success of their developments, further improvements are greatly demanded by program-

mers. For example, DiGiuseppe and Jones [2] considered that spectra-based approaches are less effective

at locating multiple faults than single faults, as the execution of one fault can hinder the execution of

other faults (e.g., crashes). Although possible solutions to this problem have been proposed, their true

effectiveness remains in questionable. For example, Abreu et al. [3] proposed an approach that locates

*Corresponding author (email: zhonghao@sjtu.edu.cn)
1) PMD. https://pmd.github.io.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2720-1&domain=pdf&date_stamp=2020-5-9
https://doi.org/10.1007/s11432-019-2720-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2720-1
https://doi.org/10.1007/s11432-019-2720-1
https://pmd.github.io

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:2

multiple faults, but evaluated it on only the Siemens benchmark [4], in which faults are manually con-

structed and each faulty version has exactly one fault. As another example, Wang et al. [5] found that

the effectiveness of information retrieval (IR)-based approaches is significantly reduced, when bug reports

are poorly written or contain misleading descriptions. Johnson et al. [6] argued that many programmers

are dissuaded by the limitations of bug-detection tools, and prefer to rely on their own programming

experiences in code debugging. Attempts to improve the state-of-the-art situation are ongoing (see Sec-

tion 6 for details). In this paper, we explore bug detection by mining programming experiences from real

bug fixes. Our approach locates multiple faults with more fidelity than the above dynamic approaches,

and with finer accuracy than the above static approaches.

Software programmers often coordinate their development progress with source-code control sys-

tems [7]. After repairing bugs, programmers commit their changes to such systems. Meanwhile, the

rapid progress of open-source software has promoted bug fixing by open-source communities, and many

real bug fixes have accumulated. By examining the commit histories, researchers [8, 9] can identify the

commits with repaired bugs, i.e., the bug fixes. Mei and Zhang [10] advocated that big data analysis

can revolutionize software automation. Following their visions, we believe that the accumulated data

open new research opportunities for locating bugs. Indeed, several researchers [11–13] have conducted

empirical studies on bug fixes to understand how programmers repair bugs and make code changes.

Our insight. Inspired by the state-of-the-art situation and the availability of bug fixes, we contem-

plated mining a graph-based fault classifier developed from thousands of real bug fixes. Data cleaning

is a hot research hotspot in the data mining area [14]. The output quality of many mining algorithms

depends on the input quality. If a tool cannot extract accurate code facts from the source files, it cannot

produce accurate bug predictions. In the software engineering and programming language communities,

source files are often presented as dependency graphs [15], which more easily present facts of the source

files than raw texts. Meanwhile, similar software engineering tasks (e.g., predicting bug fixes from com-

mits [9]) can be assisted by classification techniques. Based on the above observations, we make the

following proposition: In a proper presentation format (e.g., dependency graphs), one can accurately

display related facts of the buggy code, and can train a classifier to locate bugs.

The challenges. To our knowledge, no previous researchers have attempted our proposition despite

its benefits, because they are daunted by the following challenges.

Challenge 1. The first challenge is extracting the accurate facts from bug fixes. Most bug fixes are non-

compilable, but most static tools (e.g., WALA2)) need compilable code. An empirical study [16] showed

that only 38% of commits are compilable. When checking out the whole project of a commit, researchers

must manually repair many compilation errors, before applying complete-code tools in analyses. Although

bug signatures have been mined from buggy code [17] (see Section 6 for details), repairing the compilation

errors in checked out buggy code requires much efforts; consequently, prior approaches typically analyze

only a small number of known buggy samples. For example, Sun and Khoo [18] evaluated their approach

only on the Siemens benchmark [19], in which the bugs are manually constructed and known. Li and

Ernst [20] mined the bug signatures from only 53 bugs. This small training set is insufficient for training

a reliable classifier. Meanwhile, empirical studies on bug fixes (e.g., [12,13]) have analyzed only the buggy

files and their corresponding fixed files, with partial-code tools (e.g., [21]), which are too imprecise and

lightweight [22,23] to extract accurate facts from bug fixes. Without accurate facts, one cannot train an

accurate classifier.

Challenge 2. Even when the facts can be accurately extracted from bug fixes, training a reasonably

accurate classifier presents additional challenges. An empirical study [12] showed that faults account for

only a small portion of source files; that is, most of the lines in a faulty source file are still clean. From

a classifier perspective, the training set is quite imbalanced, because few locations are positive (contain

faults). According to Yang and Wu [24], the problem of mining imbalanced data is one of ten challenging

problems in data mining research. As most classifiers are designed for balanced data, their effectiveness

is reduced when applied on imbalanced data.

2) WALA. http://wala.sf.net.

http://wala.sf.net

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:3

Our contributions. To handle the first challenge, we build ClaFa on Grapa and thereby analyze

thousands of real bug fixes. Grapa [25] extends the inference strategies of PPA [23], and resolves

the remaining unknown code names using released binary files that are related to a partial program.

Grapa enables source-file analysis (even in the presence of compilation errors) by the state-of-the-art

Java analysis tool WALA. In this way, it builds program dependency graphs (PDGs) from bug fixes.

Definition 1. A PDG is defined as g = 〈V,E1, E2〉, where V is a set of nodes corresponding to variables

or expressions, and E1, E2 ⊆ V ×V are two sets of edges. A 〈s1, s2〉 ∈ E1 edge denotes a data dependency

from s1 to s2, and a 〈s1, s2〉 ∈ E2 edge denotes a control dependency from s1 to s2.

With Grapa, researchers in [26,27] built PDGs from bug fixes to explore open questions in automatic

program repair and code change patterns. To handle the first challenge, ClaFa uses Grapa to build

PDGs from bug fixes that are not compilable. To handle the second challenge, we reduce the bias by a

cost function that punishes a classifier, if it wrongly predicts a minority instance (Subsection 3.3.1). The

major contributions of this paper are described below:

• We propose the first approach, called ClaFa (classifying faults), that predicts faulty nodes in a

given PDG. The internal component of ClaFa is a classifier trained on thousands of bug fixes. During

the training phase, ClaFa builds PDGs from the bug fixes, and extracts the feature vector of each node

via graph analysis. To prepare labeled training data, ClaFa identifies the buggy nodes by comparing

the PDGs of the buggy nodes with those of the fixed nodes. During the prediction phase, ClaFa uses

its trained classifier to predict whether a node in a PDG is buggy or clean based on its extracted feature

vector.

• We evaluate ClaFa on four popular open source projects. In total, we extract the feature vectors of

19343 nodes, covering 3534 buggy methods. To ensure the reliability of our results, we perform within-

project and cross-project fault predictions in a time-aware evaluation. ClaFa reasonably predicts the

within-project faults (with f -scores 70%), but is less effective in cross-project fault prediction, unless the

projects are similar. We further found that the best features can differ among projects, which explains

why cross-project fault prediction is less effective than within-project fault prediction. Despite these

differences, our results show that bug reports and their called application programming interfaces (APIs)

are more useful for locating faults than other features; also, that the outgoing control-dependent nodes

of a node often determine whether the node is buggy or clean. Furthermore, our results reveal the best

parameter and classification techniques, but their impacts prove subtle. In summary, our results reveal

plenty of scope for improvement, especially by adding more features.

2 Motivating example

Suppose that a programmer Mary needs to repair the reported bug3) shown in Figure 1. If she locates

the program’s faults by a spectra-based approach, she must prepare many test cases that trigger both

buggy and normal behaviors. ClaFa negates the need to prepare such test cases. Instead, Mary needs

to feed only the reported bug to ClaFa. If using IR-based approaches, Mary must manually analyze the

faults in the obtained buggy files. Here she can be further assisted by ClaFa, which can locate the finer

faults in buggy files.

Although ClaFa and IR-based approaches have the same inputs, they operate by different techniques.

IR-based approaches compare the bug reports and source files to locate similar pairs. Instead of comparing

the two types of files, ClaFa builds graphs from the code, and inspects their detailed features. The

techniques of ClaFa are similar to those programmers who manually review code for bugs. During a

code review, programmers often read the corresponding bug reports to understand the buggy behaviors.

Similarly, ClaFa reads the bug reports first using its trained topic model. In the above example, ClaFa

identifies the topics of the bug report in Figure 1 as “blueprint”, “service”, “dependency”, “server”, and

“create”. Based on the topics, ClaFa then generates a vector (b) presenting the bug report. In this

vector, each bit denotes a topic, and “1” denotes that the bug report is related to the topic. After reading

3) ARIES-1612. https://issues.apache.org/jira/browse/ARIES-1612.

https://issues.apache.org/jira/browse/ARIES-1612

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:4

Figure 1 (Color online) The bug report of ARIES-1467.

(a)

(c)

(b)

Figure 2 (Color online) The source code of ARIES-1467. (a) The buggy file of ARIES-1467; (b) the fixed file of ARIES-

1467; (c) the program dependency graph of (a) (partial).

a bug report, programmers often look through source files to locate the bug. During this process, they

can check many relevant aspects of the problem (e.g., the called APIs). Similarly, ClaFa understands

code by building PDGs from source files. Figure 2(a) shows the buggy code, and Figure 2(c) shows the

built PDG. For each node of the PDG, ClaFa extracts a vector (c) based on the node features (e.g.,

node names), the local features (i.e., features of the k -deep nodes before and after the node), and the

global features (i.e., features of all the nodes before and after the node). The node vector generated by

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:5

Bug fix

Bug report

Buggy method

Fixed method

Parsing

Parsing

PDG

PDG

Comparing

Topic modeling

Word
embedding

Extracting

Extracting

Classifier

Prediction
buggy or cleanTraining data

New instance

Node
1,0,1,...

0.1,0.2,0.1,...

0,0,1,...

5
...

...
...

Node1

Node1

F1
F1,F2,...,F46

F1,F2,...,F46

F1,F2,...,F46

F2

F45

F46

Node
n

×

√

?

(a) (b)

Figure 3 (Color online) The overview of our approach. (a) Extracting features; (b) training and predicting faults.

ClaFa combines the b and c vectors. When input with the vector of the red-boxed node in Figure 2(c),

the internal classifier of ClaFa predicts that the node is buggy (see Section 3 for details).

Mary does not need to understand the above details, because ClaFa automatically determines that

the red-boxed node in Figure 2(c) is buggy. If she is unfamiliar with PDGs, ClaFa can locate the buggy

lines through the WALA interface4), which allows the location of the code elements corresponding to a

given node of a PDG. In this example, the buggy node is mapped to Line 4 in Figure 2(a). Figure 2(b)

shows the fixed code, which checks some conditions before calling Line 8 (the buggy line). This example

of a bug report illustrates the common use of ClaFa. However, our evaluation results show that even

without a bug report, ClaFa achieves reasonably high f -scores when identifying buggy nodes in buggy

PDGs (see Subsection 4.3.6 for details).

Despite the differences, between IR-based approaches and ClaFa, the two approaches can be easily

combined. For example, IR-based approaches (e.g., [28]) can reduce the effort of locating buggy files

prior to detecting their faults by ClaFa. In addition, ClaFa can be integrated with other tools such

as automatic-program-repair tools, which locate faults by spectra-based approaches (e.g., [29]). In each

iteration, many candidate patches are generated. If none of these patches pass all test cases, automatic-

program-repair approaches must locate new faults in all candidates by spectra-based approaches, which

is time-consuming. As ClaFa does not need to execute test cases, it can significantly reduce the time of

locating faults.

3 Approach

The term, fault, defines different granularities of buggy code. In IR-based approaches, a fault is a

buggy file, whereas in spectra-based approaches, it often defines a buggy code line. Although spectra-

based approaches can locate faults with finer granularity than IR-based ones, existing studies (e.g., [30])

typically evaluate spectra-based approaches on code-line level, because code lines are more common than

other granularities. In our approach, a fault is a buggy node in a PDG. When a code line calls multiple

methods, each method invocation is encoded into a node. Consequently, a code line is often encoded into

multiple nodes of a PDG, creating a finer granularity. Intuitively, locating finer faults is more challenging

than coarser ones.

Our approach involves two stages: model training and fault localization. In the model training stage,

a topic model is trained to classify bug reports, and a word embedding model is trained to encode code

names into vectors. The faults are then located by a classification model. As the word embedding model

and the topic model are learned by unsupervised approaches, they do not need labeled data. Meanwhile,

as the classification model is learnt by a supervised approach, it requires labeled data with each node

marked as buggy or clean.

Figure 3 shows the overview of our approach. Its major steps are (1) feature extraction (Subsection 3.2),

and (2) training of the classification model and fault prediction (Subsection 3.3). In Figure 3, the word

embedding model and the topic model are already learnt, and the labels for the classification model

are prepared as follows. First, ClaFa builds a PDG (Sb) for the buggy method and a PDG (Sf) for its

corresponding fixed method, and compares Sb and Sf to locate the modified nodes of Sb. When preparing

4) The usage guide of WALA. http://wala.sourceforge.net/wiki/index.php/UserGuide:MappingToSourceCode.

http://wala.sourceforge.net/wiki/index.php/UserGuide:MappingToSourceCode

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:6

Table 1 The features extracted by ClaFa

ID Node feature

F1 Main code name (full method name or field name)

F2 Node type

F3 Number of API names

F4 Number of client code names

F5 Occurrences of code names in bug reports

ID Local feature

F6 Number of k-depth incoming nodes

F7 Number of k-depth outgoing nodes

F8 Similar to F2 but for k-depth incoming nodes

F9 Similar to F2 but for k-depth outgoing nodes

F10 Similar to F3 but for k-depth incoming nodes

F11 Similar to F3 but for k-depth outgoing nodes

F12 Similar to F4 but for k-depth incoming nodes

F13 Similar to F4 but for k-depth outgoing nodes

F14 Similar to F5 but for k-depth incoming nodes

F15 Similar to F5 but for k-depth outgoing nodes

(F6 − F15 are calculated for data-dependent nodes)

F16 − F25 Similar to F6 − F15 but for control dependency

ID Global feature

F26 − F45 Similar to F6 − F25 but the depth is maximized

ID Bug report feature

F46 Classification result

the training data, it marks any modified node as buggy (×), and any unmodified node as clean (
√
). Our

underlying Grapa tool detects a modified node, if its name or edges are changed. Modifications include

the addition and deletion of code lines by programmers. For example, the buggy line in Figure 2(a) is

not modified, but its control edges in Figure 2(c) are changed by the code lines added to Figure 2(b).

Accordingly, ClaFa detects the modified node in Figure 2(c).

Table 1 lists our extracted features. Note that ClaFa extracts F46 from each bug report. For each

node, ClaFa extracts a set of code features, and combines them with F46 to produce a vector. Once its

classifier is trained, ClaFa can predict whether the vector of a node indicates a bug.

3.1 Data acquisition

The data are acquired from Apache projects, in which bugs are easily identified. Zhong and Su [12]

showed that the links of most Apache projects are carefully maintained, meaning that most bug fixes in

Apache projects can be identified by extracting and comparing their issue numbers. The issue number

is often included in the title of an Apache commit (e.g., “ARIES-960” in Figure 4). In our setting, bug

fixes can be identified without complicated techniques (e.g., [9]). We determine that this commit is a bug

fix, because its bug report5) says that “ARIES-960” is a bug. As shown in Figure 4, a commit provides

a link to its changed files. The commits are extracted and compared by our extension of the eGit tool6).

It checks out the buggy files and fixed files of each bug fix.

The bug reports are collected by a web crawler based on XPath [31]. This technical choice reduces

the effort of handling different styles of bug reports. Even when composed by the same open source

community, bug reports can have subtle differences. For example, although Derby and Cassandra are

both from the Apache foundation, the “Detail” section of a Derby report7) includes an item called “Affects

5) ARIES-960. https://issues.apache.org/jira/browse/ARIES-960.
6) eGit. http://www.eclipse.org/egit/.
7) DERBY-5396. https://issues.apache.org/jira/browse/DERBY-5396.

https://issues.apache.org/jira/browse/ARIES-960
http://www.eclipse.org/egit/
https://issues.apache.org/jira/browse/DERBY-5396

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:7

Figure 4 (Color online) A sample commit.

Version/s”, which is absent in a Cassandra report8). Our web crawler can extract bug reports of different

styles after minor modifications on XPath queries.

3.2 Feature extraction

3.2.1 The analysis of bug reports

ClaFa combines the title, description, and comments of each bug report into a bag of words. Stop words

(e.g., “is”, “are”, and “would”) are removed, as these words are used in most bug reports and thus have

little discriminative power. The remaining words are reduced to their roots by a stemming operation [32].

After that, ClaFa extracts the topics of each bug report using latent Dirichlet allocation (LDA) [33].

We choose LDA to classify bug reports, because it is a widely used technique to classify texts [33]

including IR-based fault localization (e.g., [34]). LDA treats each topic as a multinomial distribution of a

vocabulary of w words. Topics are not predefined, but are learnt by unsupervised labeling. LDA models

each document as a mixture of k latent topics, and produces a relevance score between a topic and a

document. ClaFa considers that a document contains a topic if the relevance score exceeds 0.3. Based

on the LDA results, ClaFa encodes a bug report as a k-dimensional vector, with each bit denoting a

topic. If a bug report is related to a topic, the corresponding bit is set to 1; otherwise, it is set to 0.

3.2.2 The analysis of source files

Source files in ClaFa are analyzed by Grapa [25], which extends the state-of-the-art WALA to build

PDGs of bug fixes. Whereas WALA does not discriminate between the control dependencies and data

dependencies of a PDG, Grapa extracts both types of dependencies. When ClaFa extracts the local

and global features of a node (see Table 1) it identifies the nodes before and after the node in the PDG.

The node labels are extracted by the Hungarian algorithm [35], which compares PDGs to locate their

modified nodes (i.e., buggy nodes).

3.2.3 The analysis of code names

In a built PDG, a node denotes an instruction that can call a method or access a field. For each node,

ClaFa extracts code names by parsing its label. As such labels are generated by WALA, they follow

specific name patterns. More than one code name can be extracted from a node name. For example, if

a node denotes a method invocation, ClaFa extracts its return type, full method name, and parameter

type names as its code names. For the buggy node in Figure 2(c), it extracts two code names such as

java/lang/Object and java/util/HashMap.put. Here, we ignore duplicated code names. For each node,

ClaFa identifies a main code name: the full method name is the main code name of a method invocation,

and the field name is the main code name of a field access. We collect all code names, and use word

embedding [36] to train a word model. With the model, ClaFa generates a vector for each code name.

8) CASSANDRA-2044. https://issues.apache.org/jira/browse/CASSANDRA-2044.

https://issues.apache.org/jira/browse/CASSANDRA-2044

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:8

3.2.4 Extracted features

Table 1 lists our extracted features. For F1, ClaFa encodes the code names into vectors, with the

support of word embedding [36]. For F2, ClaFa identifies the instruction types of nodes. In total,

ClaFa identifies 33 node types (e.g., invokevirtual, getfield, and putfield). The type of a node is

denoted as one bit in a vector. As mentioned in Subsection 3.2.3, ClaFa can extract multiple code

names from one node. F3 and F4 count its API code names and its client code names, respectively. Here,

API code names are code names that are declared by third party libraries. For example, when analyzing

bug fixes of Aries9), the prefix org/apache/aries determines whether a code name is an API name. Wang

et al. [5] showed that both IR-based approaches and programmers locate buggy files by searching code

names in bug reports. As such code names are useful for locating bugs, we determine F4 if code names

in nodes overlap the code names in bug reports. Local features are derived from node features, and are

extracted from the k -depth nodes before and after a current node. For example, when calculating F6 of

the red node in Figure 2(c) and the depth is set to one, we sum up the incoming data-dependent nodes

of 2©, 3©, and 5©, which have direct data dependencies to 6©. As 1© and 4© are the directly incoming

nodes of the three data-dependent nodes, F6 of 6© is 2, when the depth is one. The global features are

the local features, whose values are obtained at maximum k -depths. For F46, ClaFa encodes each bug

report into a vector based on its topics. Here, the size of the vector is set to one hundred. Whereas other

features capture the structure of the code, F46 sets the type of a reported bug.

When extracting the features from a bug report, the comments are ignored as they reveal the true

locations of faults. For example, some faulty locations are fixed repetitively [37] and can be supplemented

with comments added by programmers with true locations. When extracting our features from source

files, we also ignore code comments. After these exclusions, no known labels exist in our extracted

features. Our evaluation results are encouraging (see Section 4), but we expect that collecting more

features in PDGs would improve the effectiveness. We further discuss this issue in Section 5.

3.3 Model training and bug localization

3.3.1 Training the classifier

He and Garcia [38] divided the state-of-the-art solutions for imbalanced learning into sampling approaches

and cost-sensitive approaches. Sampling approaches modify an imbalanced data set either by adding in-

stances to minority classes (e.g., [39]) or by removing instances from majority classes (e.g., [40]). Although

sampling is easily understood, it can lead to overfitting or omission of important concepts [38,41]. Cost-

sensitive approaches (e.g., [42]) impose costs on misclassified instances. Determining whether a node

is buggy or clean is a binary classification problem. Accordingly, we define c(min, maj) as the cost of

misclassifying a majority class instance as a minority class instance, and c(maj, min) to denote the cost

of the contrary case. In traditional classification techniques, both costs are the same. In cost-sensitive

approaches, the cost of misclassifying minority instances is usually higher than the cost of misclassify-

ing majority instances, i.e., c(maj, min) > c(min, maj). He and Garcia [38] claimed that cost-sensitive

approaches are superior to sampling approaches, because costs can be naturally imposed on imbalanced

learning problems [43]. To balance our data, we therefore define the cost of a node (it) as follows:

cost(it) =

n∑

i

wi

n
wt

|Cm|
|C| , it ∈ Cm, (1)

where wi denotes the weight of the ith node; wt denotes the weight of node it; Cm denotes all nodes

(buggy and clean) in the mth class; and C denotes all nodes. For simplicity, we assign all wi as one.

Our classifier comprises two classification techniques: the decision tree learning [44] and AdaBoost [45].

Decision tree is a supervised classification technique that classifies instances by constructing an if-else

tree. Each interior node denotes a variable, and each leaf denotes a class. Adaboost is a meta-level

learning technique that combines the outputs of weak classifiers into a weighted sum to predict the final

9) Apache Aries. http://aries.apache.org.

http://aries.apache.org

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:9

Table 2 Subject

Project Single Multiple Graph Fix Percentage (%)

Aries 37 263 1192 394 76.1

Mahout 47 253 1573 313 95.8

Derby 32 268 1981 1134 26.5

Cassandra 30 270 1468 2536 11.8

Total 146 1054 6214 4377 27.4

output. The training set of ClaFa is a set of labeled data (fi, li), where fi is the feature vector, and li

is the label of a node. Adaboost repeatedly tunes its weights. We defined by dt(i) to denote the weight

of the ith instance of the training data in the tth iteration. In the next iteration t + 1, the weight is

updated as follows:

dt+1(i) =
dt(i)exp(−αtht(fi)li)

zt
, (2)

where αt =
1
2 ln(

1−εt
εt

) is the weight updating parameter, ht(fi) is the prediction on feature vector fi, and

zt is a normalization factor that ensures that the all new weights sum to one. Here, εt is the error in the

current model over the training set. After imposing cost cost(i) on the ith instance, the above equation

is modified to

dt+1(i) =
dt(i)exp(−αtcost(i)ht(fi)li)

zt
. (3)

3.3.2 Locating bugs

For simplicity, a trained classifier is considered as a function (y = f(x)), where x denotes the vector

of a node and y denotes the prediction. To predict whether a node is buggy, ClaFa extracts its x

and feeds the vector to its trained classifier. In particular, for a newly reported bug, ClaFa first uses

its trained topic model to generate a feature vector (F46). For each source file, it builds a program

dependency graph, and for each node of the graph, it then extracts its node features, local features, and

global features. Furthermore, ClaFa combines the above features into a vector (x). Given x as the

input, ClaFa predicts whether the node is buggy or clean. In particular, if a prediction value of a node

is greater than a threshold (0.5), ClaFa determines that the node is buggy.

4 Evaluation

4.1 Research question

For a fair comparison, we must align inputs and outputs in a controlled experiment. The inputs of

ClaFa differ from both spectra-based approaches (which require test cases), and the outputs of ClaFa

differ from IR-based approaches (which cannot detect faults within source files). The different inputs and

outputs preclude a fair comparison of ClaFa and prior spectra-based or IR-based approaches. Instead,

we pose the following research questions.

(RQ1) How effectively does ClaFa detect faults in source files (Subsection 4.3.1)?

(RQ2) How does the local-feature depth affect the effectiveness (Subsection 4.3.2)?

(RQ3) How effectively does ClaFa detect faults, after learning from other projects (Subsection 4.3.3)?

(RQ4) What are the best discriminating features of buggy nodes (Subsection 4.3.4)?

(RQ5) How does ClaFa compare with other classification techniques (Subsection 4.3.5)?

(RQ6) What is the impact of bug reports (Subsection 4.3.6)?

4.2 Setup

4.2.1 Dataset

Table 2 shows the subjects of our evaluations (300 randomly selected bug fixes from each project). The

“Single” and “Multiple” columns list the number of bug fixes that modify single methods and more than

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:10

Table 3 Overall effectiveness of ClaFa

Project Precision Recall f -score The area under ROC

Aries 0.772 0.818 0.787 0.647

Mahout 0.856 0.888 0.871 0.619

Derby 0.902 0.924 0.912 0.647

Cassandra 0.892 0.917 0.903 0.650

one method, respectively. Column “Graph” list the number of PDGs (over six thousand PDGs in total).

Column “Fix” lists the total number of bug fixes. Column “Percentage” is calculated as 300
Fix .

4.2.2 Metric

Comparing our predictions against the gold standard of the faults (taken as the modified nodes of each

bug fix), we classify all the nodes into false negatives (FNs), false positives (FPs), true negatives (TNs),

and true positives (TPs). Based on the results, we measured our classifier by the following metrics:

precision =
TP

TP + FP
, (4)

recall =
TP

TP + FN
, (5)

f -score =
2× precision× recall

precision + recall
. (6)

ClaFa classifies nodes into clean and buggy ones. For each type of nodes, we calculate the precisions,

recalls, and f -scores, followed by their weighted averages. The weight of each type is the proportion of

its nodes over the total number of nodes.

4.3 Empirical result

4.3.1 RQ1 Effectiveness of ClaFa

Setting. This research question explores the effectiveness of ClaFa in bug detection. For this purpose,

we apply ClaFa to bug detection for each project listed in Table 2. Di Nucci et al. [46] mentioned that

the traditional n-fold cross validation ignores the time sequences of the data instances. To avoid this

problem, we conduct a time-aware evaluation [47, 48]. In particular, we sort the bug fixes in Table 2 by

their issue numbers. After sorting, we use the top 80% bug fixes as the training data, and reserve the

remaining bug fixes as the testing data. The effectiveness of ClaFa is evaluated by the precision, recall,

f -scores, and the area under the receiver operating curve (ROC).

Results. The training data and the testing data consume approximately 1 gigabyte of storage per

project. The classifier is trained after several hours, but once trained, it predicts the state of a node within

seconds. Table 3 shows the overall results. OurClaFa achieve high f -scores for all the projects. Although

a fair comparison with spectra-based and IR-based approaches is infeasible, an indirect comparison can

provide a reference. The prior studies [2,49,50] show that spectra-based approaches can predict only one

fault location effectively. We suspect that when a buggy file has multiple faults their f -scores shall be

low. Meanwhile, the f -score of a recent IR-based approach [51] is 0.641. As ClaFa locates finer faults

than IR-based approaches or spectra-based approaches, our results show that ClaFa already achieves

reasonably accuracies. In summary, our results show that ClaFa is able to predict buggy nodes with

reasonable precisions and recalls.

4.3.2 RQ2 Impact of the depth parameter

Setting. As mentioned in Subsection 3.2.3, F6 to F25 are extracted from the k deep incoming or outgoing

nodes. To understand the impact of the k -depth parameter, we change the k-depth from one to ten and

investigate its impact on ClaFa. At each step, we record the precisions, the recalls, and the f -scores in

the four projects, and analyze the optimized depth.

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:11

Aries

(a)

(c)

Depth

(b)

Mahout
Derby
Cassandra

Aries
Mahout
Derby

Cassandra

Aries
Mahout
Derby

Cassandra

102 4 6 8 91

0.68

0.66

0.64

0.75

0.70

0.65

0.70

0.72

0.74

0.76

3 5 7

Depth
102 4 6 8 91 3 5 7

Depth
102 4 6 8 91 3 5 7

R
ec

al
l

0.78

0.72

0.74

0.76

P
re

ci
si

o
n

f-
sc

o
re

Figure 5 The impacts of our depth parameter. (a) Precision; (b) recall; (c) f -score.

Table 4 Learning from other projects

Project Aries Mahout Derby Cassandra Combination

Aries – 0.445 0.431 0.485 0.459

Mahout 0.467 – 0.440 0.428 0.439

Derby 0.519 0.439 – 0.507 0.479

Cassandra 0.496 0.468 0.457 – 0.463

Results. The impacts of varying the k -depth are shown in Figure 5. The k -depth parameter little

affects the precisions, recalls and f -scores of the four projects. The three measures follow different trends.

For example, the f -scores of Aries and Derby are optimized at a depth of ten, whereas those of Mahout

and Cassandra are maximized at unity depth. We suspect that the depth reflects the complexity of bugs

in different projects. Most projects yield favorable results at a depth of nine. Consequently, the depth is

set to 9 in other research questions.

4.3.3 RQ3 Learning from other projects

Setting. To explore this research question, we use the data of each project as the testing data, and the

data from other projects and their combinations as the training data. We then analyze the changes in

the f -scores under different settings.

Results. Table 4 shows the f -scores during learning from other projects. Each row and column denote

the source of the testing and training data, respectively. For example, when the classifier is trained on

Mahout and applied to the prediction of Aries faults, the obtained f -score is 0.445. Comparing the

results of Tables 4 and 3, we find that the effectiveness is reduced when the model is learnt from the date

of other projects. Column “combination” lists the f -scores when all the other projects are used as the

training data. For example, when the data of Aries are predicted by the model that is trained on the

data of Mahout, Derby, and Cassandra, the f -score is 0.459. Introducing more data for training does not

always improve f -scores of the projects. In summary, our results show that predicting the buggy nodes of

projects other than the training projects reduces the effectiveness of a trained model. Furthermore, the

effectiveness may not be improved, by naively adding more training data. However, some training-testing

pairs yield higher f -scores than others. This suggests that when a project does not have previous bug

fixes, ClaFa can be feasibly trained on the data of similar projects.

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:12

Table 5 Top ten features, ranked in the order of their importance in the clean versus buggy classificationa)b)c)d)

Rank Aries Mahout Derby Cassandra

1 g, F5, o,
c
←− F46 g, F5, o,

c
←− g, F5, o,

c
←−

2 l, F5, o,
c
←− g, F1, o,

d
←− g, F3, o,

c
←− g, F5, o,

c
←−

3 l, F7, o,
c
←− l, F1, o,

d
←− l, F5, o,

c
←− g, F5, i,

c
←−

4 l, F6, i,
c
←− l, F1, o,

c
←− l, F3, o,

c
←− g, F5, i,

c
←−

5 g, F3, i,
c
←− g, F4, o,

c
←− l, F7, o,

c
←− l, F5, i,

c
←−

6 l, F3, i,
c
←− g, F1, i,

c
←− g, F2, o,

c
←− F46

7 l, F2, o,
c
←− n, F1 l, F2, o,

c
←− l, F5, i,

d
←−

8 g, F2, o,
c
←− l, F1, i,

c
←− g, F4, o,

c
←− n, F1

9 l, F3, o,
c
←− g, F5, o,

c
←− l, F4, o,

c
←− g, F4, o,

c
←−

10 g, F3, o,
c
←− g, F1, o,

c
←− g, F2, o,

c
←− l, F7, o,

c
←−

a) n: node feature; l: local feature; g: global feature.

b) F1: main code name; F2: node type; F3: number of API code names; F4: number of client code names; F5: code

names mentioned in bug reports; F6: in-degree; F7: out-degree; F46: categories of bug reports.

c) i: incoming; o: outgoing.

d)
c
←−: control dependency;

d
←−: data dependency.

4.3.4 RQ4 Identification of important features

Setting. This research question explores the features that contribute to our high effectiveness. The

results will provide insights into the nature of bugs. In particular, we rank the features by their Pearson

correlation coefficients [52]. We then compare the top ten features of all projects and select those with

commonality to all projects. This study is not intended to further tune the effectiveness of ClaFa, which

can be better achieved by the correlation-based feature selection [53]. Indeed, even the default settings

of the classifier yield satisfactory results in RQ1. We believe that all features are valuable, and removing

any one of them will reduce the overall effectiveness, as observed in Subsection 4.3.6.

Results. Table 5 shows the top ten features in the four projects. As shown in Table 1, our features

are derived from several basic features (i.e., F1 to F7). To improve the presentation, Table 5 shows how

features are derived from the features, instead of giving their number. For example, F8 is written as “l,

F2, i,
d←−” meaning that F8 is derived from F2 and is a local feature calculated from the incoming-data-

dependent nodes. From Table 5, we obtain the following findings.

(1) The node features alone cannot satisfactorily determine buggy nodes from clean ones. In total, only

two node features rank among the top features, indicating whether a node is buggy is difficult to determine

by inspecting only the node. This result highlights the importance of ClaFa, which accurately extracts

local and global features. Without such features, the effectiveness of our approach can be significantly

reduced.

(2) The quality of bug reports is important. In Table 5, F5 and F46 are related to bug reports. As the

effectiveness of IR-based approaches relies on the quality of bug reports [5], the quality of bug reports

matters, when locating faults in buggy files. As an extreme case, seven of the top ten features in the

Cassandra project are derived from F5, but this feature is non-dominant in other projects, confirming

that only bug reports alone are insufficient for locating finer faults.

(3) Calling APIs can introduce bugs. Although reusing APIs significantly reduces the programming

effort, existing empirical studies (e.g., [12]) show that many bugs are related to wrong API usages. Our

results show that API-related features such as F3 and F1 are useful for locating faults. In particular, F3

appears in the top ten features of Aries and Derby, but is not ranked in Mahout. In fact, six of the ten

top features in the Mahout project are derived from F1, which can be related to APIs (note that a code

name can be an API code name).

(4) Most of the features are related to outgoing nodes. In all projects, most of the features are more

related to outgoing nodes. As an extreme case, all top ten features of Derby are related to outgoing

nodes. After inspecting some bug fixes, we identify two types of bug reports: outsider reports (often

submitted by users) and insider reports (usually submitted by the project programmers). Although users

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:13

have limited knowledge of the implementation details, their reports typically provide error messages for

locating faults. As faults often appear before the messages, the outgoing nodes have stronger impacts

ion the fault localization than the incoming nodes. In contrast, the programmers submitting the insider

reports fully understand the implementation details, so their reports typically explain why faults occur.

As such explanations often appear before faults, the incoming nodes have stronger impacts on the fault

localization than the outgoing nodes. Other important factors, such as code structures and semantics,

are also worthy exploring in future work.

(5) Most of the features are related to control dependencies. Typically, control dependencies are

related to code structures, whereas data dependencies are related to input and output values. For

example, various approaches that detect legal call sequences of APIs (e.g., [54]) are more related to

control dependencies. Our results indicate that exploring more control-dependency bugs is a promising

prospect.

In summary, whether a node is buggy or clean cannot be discerned from the node features alone. The

features in bug reports and the called APIs are more effective in fault localization than other types of

features. The outgoing control dependencies of a node can also usefully determine whether that node is

buggy.

4.3.5 RQ5 Other classification techniques

Setting. In this research question, we exchange our classifier with related classifiers. As the Adaboost

boosts various classifiers, we eliminate it from this study, and compare the effectiveness of various in-

ternal classifiers. Many off-the-shelf classifiers are implemented in the WEKA suite of machine learning

algorithms. Among these classifiers, we select the following for comparison with ClaFa.

(1) SMO [55] is a sequential optimization algorithm that trains a support vector machine (SVM).

An SVM [56] represents a data point as a vector, and the training process searches for one or more

hyperplanes that split the data points. The hyperplanes are used for classifying new data points.

(2) Naive Bayes [57] is a probabilistic classifier based on Bayes’ theorem. During training, a naive

Bayes classifier constructs a graph model representing the dependencies among observations, and then

estimates the probability distributions of the observations. The graph model is used for predicting new

data points.

(3) Decision table [58] is a compact model for constructing complex rule sets and their corresponding

actions. Given a set of data points, it constructs rules based the distributions of their features. The

constructed decision table is used for predicting new data points.

(4) Logistic [59] is a multinomial logistic regression model. During training, the regression model min-

imizes the estimated prediction errors. Given a set of independent variables, it predicts the probabilities

of the categories of dependent variables.

These classifiers are selected because they are widely applied in software engineering papers

(e.g., [9,28]). In this study, all classifiers are operated with their default settings. For different thresholds,

we compare ROC and precision-recall (PR) curves of the five classifiers.

Results. Figures 6 and 7 show the ROC curves and the PR curves, respectively. As mentioned in

Subsection 3.3.1, the internal classifier of ClaFa is a decision tree. The findings are summarized below.

(1) The logistic classifier outperformed the other classifiers on Cassandra. The top ten features of

Cassandra differ from those of the other three projects (see Table 5). We suspect that the features in this

project are intrinsically more suited to logistic regression than to other classifiers. When programmers

apply ClaFa to bug detections in their own projects, they can tune its internal classifier to suite the

nature of their debug features.

(2) ClaFa is the optimum classifier on the other three projects. The left sides of our ROC and

PR curves are above the left sides of the other classifiers. Although the curves intertwine, Fawcett’s

analysis [60] implies that the shape of our curves is optimal in the case of highly imbalanced data.

(3) There remains much space for improvement. As the ROC areas are not maximized, all classifiers

are sub-optimal. The ROC curves are intertwined, suggesting that multiple classifiers can be interpolated

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:14

(a)

False positive rate

T
ru

e
p
o
si

ti
v
e

ra
te

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4

(b)

False positive rate

T
ru

e
p
o
si

ti
v
e

ra
te

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4

(d)

False positive rate

T
ru

e
p
o
si

ti
v
e

ra
te

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4

(c)

False positive rate

T
ru

e
p
o
si

ti
v
e

ra
te

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4

SMO
Naive Bayes
Decision table
Decision tree
Logistic

SMO
Naive Bayes
Decision table
Decision tree
Logistic

SMO
Naive Bayes
Decision table
Decision tree
Logistic

SMO
Naive Bayes
Decision table
Decision tree
Logistic

Figure 6 (Color online) ROC. (a) Aries; (b) Mahout; (c) Derby; (d) Cassandra.

by existing techniques (e.g., [61]). However, as the curves closely resemble each other, we suspect that

the combining the classifiers will little improve the results. This issue is further discussed in Section 5.

Figures 6 and 7 show that the differences among several classifiers (e.g., decision tree and logistic) are

minor, and the classifiers could not be distinguished by their f -scores and AUC values. Consequently,

we answer this research question by analyzing the ROC and PR graphs.

Ghotra et al. [62] evaluated the effectiveness of buggy-file prediction by different classifiers. Although

their research goal differs from ours, some of their findings are consistent with ours. For example, they

report that logistic (SL) is one of the best classifiers, and SMO is among the bottom classifiers. Other

findings of Ghotra et al. [62] differed from ours, owing to the different settings in the two studies. Whereas

we compared individual classifiers, they compared both individual classifiers and their combinations. They

report that some combinations are significantly better than individual ones (e.g., Bag+J48).

In summary, ClaFa is the best classifier for Aries, Derby, and Mahout, and Logistic is the best

classifier for Cassandra. However, the differences are minor, indicating that tuning classifiers may not

achieve significant improvement. This finding is unsurprising, because Hall et al. [63] also reported that

simple models such as logistic achieved even better results than complicated models such as SVM. Instead,

we expect that exploring more features is effective for better results.

4.3.6 RQ6 Impact of bug reports

Setting. We supplement the graph features with the information from bug reports, which are used in

existing approaches (e.g., [64]). In Subsection 4.3.4, our results show that the features from bug reports

are important in fault localization, which somewhat overshadows the significance of ClaFa. In this

research question, we reveal the true effectiveness of the graph features, removing all features from bug

reports. Specifically, we remove F46, F5 from Table 1, and all features that are derived from F5. We

then analyze the precisions, recalls, and f -scores to understand the classification potential of the graph

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:15

(a)

Recall

P
re

ci
si

o
n

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4 SMO
Naive Bayes
Decision table
Decision tree
Logistic

(b)

Recall

P
re

ci
si

o
n

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4

(d)

Recall

P
re

ci
si

o
n

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4

(c)

Recall

P
re

ci
si

o
n

0.80.6 1.00.40.20

0.2

0

1.0

0.6

0.8

0.4

SMO
Naive Bayes
Decision table
Decision tree
Logistic

SMO
Naive Bayes
Decision table
Decision tree
Logistic

SMO
Naive Bayes
Decision table
Decision tree
Logistic

Figure 7 (Color online) Precision-recall graph. (a) Aries; (b) Mahout; (c) Derby; (d) Cassandra.

Table 6 The results without bug reports

Project Precision Recall f -score

Aries 0.691 0.664 0.651

Mahout 0.710 0.679 0.668

Derby 0.735 0.672 0.652

Cassandra 0.706 0.657 0.631

features.

Results. Table 6 shows the results. Remove the features from bug reports reduced all the precision,

recall, and f -score. Wang et al. [5] reported that the overall effectiveness of their compared IR-based

approach [65] is severely degraded, when the bug reports lacked code entity names. ClaFa achieve

reasonable high f -score even without inputs from bug reports (Table 6).

Although Table 5 show that more top features are related to bug reports in Cassandra than other

projects, the f -score on this project is less reduced by removing the bug-report features than f -scores

of the other project. Note that Table 5 does not present the weight of each top feature. The results

of learning classification model by code features alone are consistent (see Table 6), but the impacts of

adding more features are apparently complicated.

4.3.7 Threats to validity

The threats to internal validity include the experimental bias of labeling faults in buggy files. For example,

when programmers fix a bug, they somewhat also modify clean code lines (e.g., refactoring). Another

threat is missed bug fixes in commits. Although such cases can be rare, they will negatively impact on

the results. The threat could be reduced by introducing manual inspection in future work. Meanwhile,

the threats to external validity include the selected subjects, which are all open-source projects. This

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:16

threat could be reduced by replicating our studies on commercial projects.

5 Discussion and future work

Exploring more basic features. As shown in Table 1, our basic features are limited. Previous

researchers explored other data sources such as stack traces [66], version histories [67], and commit

activities [68]. They also proposed useful metrics [68] for predicting buggy code. When we introduce

more features in future work, we plan to borrow ideas from these approaches. To handle the complexity

of features, we must allow features with variable lengths. For example, mined specifications (e.g., [54])

are widely used in the detection of bugs related to wrong API sequences. To detect such bugs, the API

call sequences can be encoded into feature vectors. As client code methods can call different APIs, feature

vectors of the encoded API call sequences are length-variable. To fully leverage such features in future,

we plan to tune our classification technique or introduce more advanced techniques.

Definition of bugs and its measures. Outside Apache projects, programmers can fail to maintain

the links between the bug reports and their fixes [69]. Even if programmers maintain the links, they

can define bugs in different ways, and their definitions can be disputed by researchers [70, 71]. These

inconsistent definitions can lead to different labels of faulty nodes. Here, the effectiveness of ClaFa is

evaluated only on the definitions of programmers. Evaluate ClaFa under other definitions would help to

assess the rationality of these definitions. A reasonable definition shall be consistent, and should therefore

yield better results than a dubious definition. We plan to explore this issue in future work.

Integrating with automatic program repair. Automatic program repair (e.g., [72]) has recently

become a research hotspot, but remains limited in scope (e.g., [73]). Automatic program repair typical

invokes many iterations of spectra-based fault localization to locate the buggy lines of mutated candidates.

This time-consuming process might partially explain why only limited number of bug fixes by the prior

approaches. ClaFa reduces the time of fault localization by removing the need to execute test cases. In

addition, spectra-based approaches cannot effectively locate multiple faults. ClaFa resolves this problem

by eliminating the interference among multiple bugs. In future work, we plan to integrate ClaFa with

automatic program repair. An automatic program-repair approach must know the nodes to be modified,

but modified nodes do not necessarily indicate bugs. To assist bug discrimination by the prior approach,

we intend to locate the bug-causing nodes in an extended version of ClaFa.

Tuning ClaFa. Although ClaFa achieves high f -scores in our evaluation analysis, the results are

obtained under the default settings of classifiers. The effectiveness of ClaFa could be further improved

by fine-tuning. He and Garcia [38] recommended cost-sensitive approaches for handling imbalanced data,

but sampling approaches might be more effective for our specific application. Researchers have proposed

various techniques to automatically tune the parameters of a classifier [74–77]. In future work, we plan

to tune ClaFa using these approaches.

Combining with other fault-localization approaches. Bug finding bugs has been widely re-

searched. Even the 100-plus papers cited in Section 6 do not cover all approaches; moreover, many

new approaches are proposed each year. As mentioned in Subsection 4.1, a fair controlled experiment is

precluded because the inputs and outputs of ClaFa differ from those of other approaches. Despite the

large number of available approaches, many programmers prefer to their own debugging experience [6].

To handle the problem, a feasible way is to combine existing approaches, instead of arguing the best

approach. For example, Le et al. [78] combined IR-based and spectra-based approaches to improve the

fault-localization results. In future work, we will explore the combination of ClaFa and other approaches

in a real development context.

Words and topics outside the vocabulary. Our present evaluation trains our topic model and

word embedding on all subjects, which excludes words or topics outside the vocabulary. In real usage, a

bug report can contain new words or topics that never appear in the previous histories, which confound

the trained models. This problem could be feasibly solved by re-training the models on the new bug

reports. Alternatively, the new words and topics could be replaced with similar ones in the vocabulary.

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:17

In future work, we plan to explore both approaches.

6 Related work

Spectra-based fault localization. A typical spectra-based approach calculates the suspicious scores

of buggy lines based on passed and failed tests. These approaches assume that if a code line often

appears in failed tests, it probably contains a bug. This research topic has been intensively studied,

and some early approaches (e.g., [79]) are published in 1980s [80]. Various research metrics (e.g., [81–

83]) can calculate suspicious values of code lines, and their effectiveness has been explored in various

empirical studies (e.g., [84, 85]). Besides these explicitly defined metrics for suspicious buggy code,

researchers have explored the automated mining of metrics. For example, Wong and Qi [86] learnt a neural

network for buggy code prediction. Approaches other than metrics have also improved the state-of-the-art

situation. Hao et al. [29] proposed an approach that reduces the number of test cases while minimizing

the impacts on fault localization. Mao et al. [87] removed irrelevant code by slicing before calculating

suspicious buggy code. However, most of the published papers assumed that one bugs in each buggy file.

Although some approaches (e.g., [3,88]) locate multiple faults, these multi-faults are typically assumed as

independent [80]. Abreu et al. [3] proposed an approach that locates multiple faults, but their approach is

evaluated on only the Siemens benchmark [4], on which faults are manually constructed and each faulty

version contains exactly one fault. Although Abreu et al. [3] combined multiple versions to simulate

multiple faults, the combination again assumed independent multiple faults, which do not represent true

faults. Gao and Wong [89] proposed another approach that locates multiple faults, but their evaluation

also generated multiple faults from single fault versions. Pearson et al. [30] argued that artificial faults

cannot confirm the true effectiveness of spectra-based localizations. In particular, their collected traces

may not reflect the interferences among multiple faults observed in empirical studies (e.g., [2,90]). As the

problem lies in the underlying assumption, many researchers (e.g., [2, 90]) considered that spectra-based

approaches cannot insufficiently locate multiple faults, although at least one fault can top a suspicious

list. Perez et al. [91] claimed that over 82% of bug fixes are single-fault fixes. In their definition, a bug

is single-faulted, if all tests affect at least one changed component of the fix [91]. They considered that

single faults can modify multiple locations, which is inconsistent with our definitions. Moreover, the best

results from spectra-based approaches are typically obtained only after many high-quality test cases. Just

et al. [92] showed that if the test cases are of superior quality, the time of generating correct patches can

be significantly reduced. Spectra-based approaches have been adapted with fewer test inputs [93,94], but

our approach focuses on a precise static analysis rather than test coverage. The multi-fault detection by

our approach, which needs no test inputs, can complement spectra-based approaches.

IR-based fault localization. Typical IR-based approaches locate buggy files by comparing the bug

reports with the source files. The bug reports are assumed to share similarity with their corresponding

buggy files. The similarity is detected by various machine learning techniques such as TF-IDF [64],

LDA [95], naive Bayes [28], and SVM [65, 96]. The early papers handled source files such as natural

language texts, but more recent papers (e.g., [97]) have extracted the code structures (i.e., class, meth-

ods, variables, and comments) from source files to improve fault-localization accuracy. Besides natural

language descriptions of bug reports, other data sources such as stack traces [66], version histories [67],

and their combination [98] have been explored. Wang et al. [5] argued that the similarity lies in the code

names that appear in both bug reports and source files. ClaFa is not an IR-based approach, as it does

not calculate the similarity between bug reports and source files, although it extracts features from bug

reports. Being built on accurate source analysis, ClaFa can determine the buggy locations in source

files, completing the IR-based approaches.

Model-based fault localization. A model can define either legal usages (specs) or illegal usages (bug

signatures). Ammons et al. [99] mined automata for APIs. Pandita et al. [100] refined their approach,

while other researchers [54,101–103] mined graphs for specs. Robillard et al. [104] showed that automata

and graphs are equivalent. These types of model-based fault localization can be reduced to the grammar

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:18

inference problem. Method-pair extraction, proposed by Li and Zhou [105], has been improved in more

complicated contexts [106]. The approach of Engler et al. [107], which extracts frequent call sequences, has

also been improved by advanced techniques [108,109]. Furthermore, mined sequences have been encoded

as temporal logic [110, 111]. This research line can be reduced to sequence mining [112]. All of the

above approaches are based on call sequences. Ernst et al. [113] inferred invariants to define the variable

rules. More informative specs can be obtained by combining the invariants with sequences [114], and spec-

mining has been enriched in various test cases [115,116]. Brünink and Rosenblum [117] mined performance

models from runtime traces. Zhong and Meng [26] empirically analyzed several open questions (e.g., the

best formats of specs). Meanwhile, bug signatures have been mined in sequences [17] and graphs [18,20,

118–120]. Most of these approaches analyzed traces [17, 18, 20, 120]; only a few approaches [20] analyzed

the buggy source files. Hsu et al. [17] and Sun and Khoo [18] applied a frequency-based mining approach;

Li and Ernst [20] extracted subgraphs; and Cheng et al. [119] applied discriminative graph mining. These

approaches differ from our approach by applying different techniques and taking different inputs from

our approach.

Bug prediction. Studies on bug prediction have applied well-known metrics [121] or self-defined

metrics [122]. In a bug prediction, a bug is assumed to cause a metric violation. However, defining the

metrics is a challenging task. Nagappan et al. [123] predicted module-level bugs using several metrics,

but none of the metrics yielded high effectiveness on all projects. ClaFa is not built on known metrics.

Bug prediction can also be based on commit activities [48, 68], assuming that bugs can be identified by

specific commit activities (e.g., bursting). Rahman et al. [124] showed that bug predicting by activities

is not substantially better than counting the number of commits touching a source file. ClaFa differs

from the above approaches in both its underlying assumptions and technical details. In addition, most

of these approaches predict faults on courser levels (e.g., modules and classes) [63].

Classification in software engineering. Classification is an intensively studied technique in data

mining, and commonly assists software engineering tasks such as requirement elicitation [125], develop-

ment [126], testing [127], debugging [128], maintenance [129], and software reuse [130]. ClaFa is designed

mainly for debugging and maintenance. Because it accurately analyzes source code, ClaFa predicts the

faults within source files, complementing existing approaches (e.g., [9]).

7 Conclusion

Open-source communities accumulate many real bug fixes. Locating code faults using knowledge mined

from bug these fixes, and is desired, but is rendered challenging by various technical limitations. This

paper proposed an approach called ClaFa that combines graph analysis and classification to locate

multiple faults in source files. First, it builds program dependency graphs from the bug fixes and compares

them to detect buggy nodes. The buggy nodes are used to label the faults. ClaFa extracts the graph

features of each node, and denotes them in a vector. A classification model is then trained on the labeled

data. We have evaluated ClaFa on thousands of real bug fixes extracted from four popular open-source

projects. Our results confirmed that ClaFa can locate multiple faults with reasonably high accuracy.

Acknowledgements This work was sponsored by National Key R&D Program of China (Grant No. 2018YFC0830500),

National Nature Science Foundation of China (Grant No. 61572313), and Science and Technology Commission of Shanghai

Municipality (Grant No. 15DZ1100305). We appreciated the anonymous reviewers for their constructive comments.

References

1 Hovemeyer D, Pugh W. Finding bugs is easy. In: Proceedings of Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA), 2004. 132–136

2 DiGiuseppe N, Jones J A. On the influence of multiple faults on coverage-based fault localization. In: Proceedings of

International Symposium on Software Testing and Analysis (ISSTA), 2011. 210–220

3 Abreu R, Zoeteweij P, van Gemund A J C. Spectrum-based multiple fault localization. In: Proceedings of the 2009

IEEE/ACM International Conference on Automated Software Engineering, 2009. 88–99

4 Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: an infrastructure and

its potential impact. Empir Softw Eng, 2005, 10: 405–435

https://doi.org/10.1007/s10664-005-3861-2

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:19

5 Wang Q, Parnin C, Orso A. Evaluating the usefulness of IR-based fault localization techniques. In: Proceedings of

International Symposium on Software Testing and Analysis (ISSTA), 2015. 1–11

6 Johnson B, Song Y, Murphy-Hill E, et al. Why don’t software developers use static analysis tools to find bugs?

In: Proceedings of the International Conference on Software Engineering (ICSE), 2013. 672–681

7 Rochkind M J. The source code control system. IEEE Trans Softw Eng, 1975, 1: 364–370

8 Wu R, Zhang H, Kim S, et al. Relink: recovering links between bugs and changes. In: Proceedings of ESEC/FSE,

2011. 15–25

9 Tian Y, Lawall J, Lo D. Identifying linux bug fixing patches. In: Proceedings of the 34th International Conference

on Software Engineering (ICSE), 2012. 386–396

10 Mei H, Zhang L. Can big data bring a breakthrough for software automation? Sci China Inf Sci, 2018, 61: 056101

11 Guo P J, Zimmermann T, Nagappan N, et al. Characterizing and predicting which bugs get fixed: an empirical

study of microsoft windows. In: Proceedings of the International Conference on Software Engineering (ICSE), 2010.

495–504

12 Zhong H, Su Z. An empirical study on real bug fixes. In: Proceedings of the International Conference on Software

Engineering (ICSE), 2015. 913–923

13 Martinez M, Monperrus M. Mining software repair models for reasoning on the search space of automated program

fixing. Empir Softw Eng, 2015, 20: 176–205

14 Rahm E, Do H H. Data cleaning: problems and current approaches. IEEE Data Eng Bullet, 2000, 23: 3–13

15 Ottenstein K J, Ottenstein L M. The program dependence graph in a software development environment. ACM

SIGPLAN Not, 1984, 19: 177–184

16 Tufano M, Palomba F, Bavota G, et al. There and back again: can you compile that snapshot? J Softw Evol Proc,

2017, 29: e1838

17 Hsu H-Y, Jones J A, Orso A. Rapid: identifying bug signatures to support debugging activities. In: Proceedings of

the 23rd IEEE/ACM International Conference on Automated Software Engineering, 2008. 439–442

18 Sun C, Khoo S-C. Mining succinct predicated bug signatures. In: Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, 2013. 576–586

19 Hutchins M, Foster H, Goradia T, et al. Experiments of the effectiveness of dataflow-and controlflow-based test

adequacy criteria. In: Proceedings of the International Conference on Software Engineering (ICSE), 1994. 191–200

20 Li J, Ernst M D. CBCD: cloned buggy code detector. In: Proceedings of the International Conference on Software

Engineering (ICSE), 2012. 310–320

21 Fluri B, Wuersch M, PInzger M, et al. Change distilling: tree differencing for fine-grained source code change

extraction. IEEE Trans Softw Eng, 2007, 33: 725–743

22 Mishne A, Shoham S, Yahav E. Typestate-based semantic code search over partial programs. In: Proceedings of

Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), 2012. 997–1016

23 Dagenais B, Hendren L J. Enabling static analysis for partial Java programs. In: Proceedings of Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), 2008. 313–328

24 Yang Q, Wu X. 10 challenging problems in data mining research. Int J Info Tech Dec Mak, 2006, 05: 597–604

25 Zhong H, Wang X. Boosting complete-code tools for partial program. In: Proceedings of IEEE/ACM International

Conference on Automated Software Engineering, 2017. 671–681

26 Zhong H, Meng N. Towards reusing hints from past fixes. Empir Softw Eng, 2018, 23: 2521–2549

27 Wang Y, Meng N, Zhong H. An empirical study of multi-entity changes in real bug fixes. In: Proceedings of IEEE

International Conference on Software Maintenance and Evolution (ICSME), 2018

28 Kim D S, Tao Y D, Kim S H, et al. Where should we fix this bug? A two-phase recommendation model. IEEE Trans

Softw Eng, 2013, 39: 1597–1610

29 Hao D, Xie T, Zhang L, et al. Test input reduction for result inspection to facilitate fault localization. Autom Softw

Eng, 2010, 17: 5–31

30 Pearson S, Campos J, Just R, et al. Evaluating and improving fault localization. In: Proceedings of the International

Conference on Software Engineering (ICSE), 2017. 609–620

31 Berglund A, Boag S, Chamberlin D, et al. XML path language (xpath). World Wide Web Consortium (W3C), 2003

32 Lovins J B. Development of a stemming algorithm. Mech Transl Comput Linguist, 1968, 11: 1–10

33 Newman D, Asuncion A, Smyth P, et al. Distributed algorithms for topic models. J Mach Learn Res, 2009, 10:

1801–1828

34 Nguyen A T, Nguyen T T, Al-Kofahi J, et al. A topic-based approach for narrowing the search space of buggy files

from a bug report. In: Proceedings of IEEE/ACM International Conference on Automated Software Engineering,

2011. 263–272

35 Kuhn H W. The Hungarian method for the assignment problem. Naval Res Logist, 1955, 2: 83–97

36 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. 2013. ArXiv:

1301.3781

37 Gu Z, Barr E T, Hamilton D J, et al. Has the bug really been fixed? In: Proceedings of the 32nd International

Conference on Software Engineering (ICSE), 2010. 55–64

38 He H B, Garcia E A. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 2009, 21: 1263–1284

39 Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res,

2002, 16: 321–357

40 Liu X-Y, Wu J X, Zhou Z-H. Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybern

https://doi.org/10.1109/TSE.1975.6312866
https://doi.org/10.1007/s11432-017-9355-3
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1145/390011.808263
https://doi.org/10.1002/smr.1838
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1142/S0219622006002258
https://doi.org/10.1007/s10664-017-9584-3
https://doi.org/10.1109/TSE.2013.24
https://doi.org/10.1007/s10515-009-0056-x
https://doi.org/10.1002/nav.3800020109
https://arxiv.org/abs/1301.3781
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1613/jair.953

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:20

B, 2009, 39: 539–550

41 Mease D, Wyner A J, Buja A. Boosted classification trees and class probability/quantile estimation. J Mach Learn

Res, 2007, 8: 409–439

42 Sun Y, Kamel M S, Wong A K C, et al. Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn,

2007, 40: 3358–3378

43 Weiss G M. Mining with rarity: a unifying framework. ACM SIGKDD Explor Newsletter, 2004, 6: 7–19

44 Frank E. Pruning decision trees and lists. Dissertation for Ph.D. Degree. Hamilton: University of Waikato, 2000

45 Freund Y, Schapire R E. Experiments with a new boosting algorithm. In: Proceedings of International Conference

on Machine Learning, San Francisco, 1996. 148–156

46 Di Nucci D, Palomba F, Tamburri D A, et al. Detecting code smells using machine learning techniques: are we there

yet? In: Proceedings of the 25th IEEE International Conference on Software Analysis, Evolution, and Reengineering,

2018. 612–621

47 Di Nucci D, Palomba F, de Rosa G, et al. A developer centered bug prediction model. IEEE Trans Softw Eng, 2018,

44: 5–24

48 Hassan A E. Predicting faults using the complexity of code changes. In: Proceedings of the International Conference

on Software Engineering (ICSE), 2009. 78–88

49 Lucia L, Lo D, Jiang L, et al. Extended comprehensive study of association measures for fault localization. J Softw

Evol Proc, 2014, 26: 172–219

50 Di Giuseppe N, Jones J A. Fault density, fault types, and spectra-based fault localization. Empir Softw Eng, 2015,

20: 928–967

51 Wang S, Liu T, Tan L. Automatically learning semantic features for defect prediction. In: Proceedings of the

International Conference on Software Engineering (ICSE), 2016. 297–308

52 Benesty J, Chen J, Huang Y, et al. Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Berlin:

Springer, 2009. 1–4

53 Hall M A. Correlation-based feature selection for machine learning. Dissertation for Ph.D. Degree. 1999

54 Zhong H, Zhang L, Xie T, et al. Inferring resource specifications from natural language API documentation. In: Pro-

ceedings of the 24th IEEE/ACM International Conference on Automated Software Engineering, 2009. 307–318

55 Platt J C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel

Methods, 1999. 185–208

56 Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9: 293–300

57 John G H, Langley P. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the 11th Con-

ference on Uncertainty in Artificial Intelligence, 1995. 338–345

58 Kohavi R. The power of decision tables. In: Proceedings of the 8th European Conference on Machine Learning, 1995.

174–189

59 Le Cessie S, van Houwelingen J C. Ridge estimators in logistic regression. Appl Stat, 1992, 41: 191–201

60 Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett, 2006, 27: 861–874

61 Flach P A, Wu S. Repairing concavities in roc curves. In: Proceedings of the 19th International Joint Conference on

Artificial Intelligence, 2005. 702–707

62 Ghotra B, McIntosh S, Hassan A E. Revisiting the impact of classification techniques on the performance of defect

prediction models. In: Proceedings of the International Conference on Software Engineering (ICSE), 2015. 789–800

63 Hall T, Beecham S, Bowes D, et al. A systematic literature review on fault prediction performance in software

engineering. IEEE Trans Softw Eng, 2012, 38: 1276–1304

64 Rao S, Kak A. Retrieval from software libraries for bug localization: a comparative study of generic and composite

text models. In: Proceedings of the 8th International Working Conference on Mining Software Repositories, 2011.

43–52

65 Zhou J, Zhang H, Lo D. Where should the bugs be fixed? more accurate information retrieval-based bug localization

based on bug reports. In: Proceedings of the International Conference on Software Engineering (ICSE), 2012. 14–24

66 Wong C, Xiong Y, Zhang H, et al. Boosting bug-report-oriented fault localization with segmentation and stack-trace

analysis. In: Proceedings of IEEE International Conference on Software Maintenance and Evolution (ICSME), 2014.

181–190

67 Sisman B, Kak A C. Incorporating version histories in information retrieval based bug localization. In: Proceedings

of 9th IEEE Working Conference on Mining Software Repositories, 2012. 50–59

68 Kim S, Zimmermann T, Whitehead Jr E J, et al. Predicting faults from cached history. In: Proceedings of the 29th

International Conference on Software Engineering (ICSE), 2007. 489–498

69 Bachmann A, Bird C, Rahman F, et al. The missing links: bugs and bug-fix commits. In: Proceedings of the 18th

ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2010. 97–106

70 Antoniol G, Ayari K, Di Penta M D, et al. Is it a bug or an enhancement? a text-based approach to classify change

requests. In: Proceedings of Conference of the Center for Advanced Studies on Collaborative Research, 2008. 304–318

71 Herzig K, Just S, Zeller A. It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In: Proceedings

of the International Conference on Software Engineering (ICSE), 2013. 392–401

72 Weimer W, Nguyen T, Le Goues C, et al. Automatically finding patches using genetic programming. In: Proceedings

of the International Conference on Software Engineering (ICSE), 2009. 364–374

73 Qi Y, Mao X, Lei Y, et al. The strength of random search on automated program repair. In: Proceedings of the 36th

International Conference on Software Engineering (ICSE), 2014. 254–265

https://doi.org/10.1109/TSMCB.2008.2007853
https://doi.org/10.1016/j.patcog.2007.04.009
https://doi.org/10.1109/TSE.2017.2659747
https://doi.org/10.1002/smr.1616
https://doi.org/10.1007/s10664-014-9304-1
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.2307/2347628
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/TSE.2011.103

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:21

74 Sarro F, Di Martino S, Ferrucci F, et al. A further analysis on the use of genetic algorithm to configure support

vector machines for inter-release fault prediction. In: Proceedings of the 27th Annual ACM Symposium on Applied

Computing, 2012. 1215–1220

75 Tantithamthavorn C, McIntosh S, Hassan A E, et al. Automated parameter optimization of classification techniques

for defect prediction models. In: Proceedings of the International Conference on Software Engineering (ICSE), 2016.

321–332

76 Thornton C, Hutter F, Hoos H H, et al. Auto-WEKA: combined selection and hyperparameter optimization of clas-

sification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2013. 847–855

77 Tantithamthavorn C, McIntosh S, Hassan A E, et al. The impact of automated parameter optimization on defect

prediction models. IEEE Trans Softw Eng, 2019, 45: 683–711

78 Le T-D B, Oentaryo R J, Lo D. Information retrieval and spectrum based bug localization: better together. In: Pro-

ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 2015. 579–590

79 Shapiro E. Algorithmic program debugging. Dissertation for Ph.D. Degree. New Haven: Yale University, 1983

80 Wong W E, Gao R, Li Y, et al. A survey on software fault localization. IEEE Trans Softw Eng, 2016, 42: 707–740

81 Jones J A, Harrold M J, Stasko J. Visualization of test information to assist fault localization. In: Proceedings of the

International Conference on Software Engineering (ICSE), 2002. 467–477

82 Naish L, Lee H J, Ramamohanarao K. A model for spectra-based software diagnosis. ACM Trans Softw Eng Methodol,

2011, 20: 1–32

83 Wong W E, Debroy V, Xu D. Towards better fault localization: a crosstab-based statistical approach. IEEE Trans

Syst Man Cybern C, 2012, 42: 378–396

84 Abreu R, Zoeteweij P, van Gemund A J C. An evaluation of similarity coefficients for software fault localization.

In: Proceedings of the 12th Pacific Rim International Symposium on Dependable Computing, 2006. 39–46

85 Abreu R, Zoeteweij P, Golsteijn R, et al. A practical evaluation of spectrum-based fault localization. J Syst Softw,

2009, 82: 1780–1792

86 Wong W E, Qi Y. BP neural network-based effective fault localization. Int J Soft Eng Knowl Eng, 2009, 19: 573–597

87 Mao X, Lei Y, Dai Z, et al. Slice-based statistical fault localization. J Syst Softw, 2014, 89: 51–62

88 Dickinson W, Leon D, Podgurski A. Finding failures by cluster analysis of execution profiles. In: Proceedings of the

International Conference on Software Engineering (ICSE), 2001. 339–348

89 Gao R, Wong W E. MSeer-an advanced technique for locating multiple bugs in parallel. IEEE Trans Softw Eng,

2019, 45: 301–318

90 Debroy V, Wong W E. Insights on fault interference for programs with multiple bugs. In: Proceedings of IEEE

International Conference on Software Reliability Engineering, 2009. 165–174

91 Perez A, Abreu R, d’Amorim M. Prevalence of single-fault fixes and its impact on fault localization. In: Proceedings

of IEEE International Conference on Software Testing, 2017. 12–22

92 Just R, Parnin C, Drosos I, et al. Comparing developer-provided to user-provided tests for fault localization and

automated program repair. In: Proceedings of International Symposium on Software Testing and Analysis (ISSTA),

2018. 287–297

93 Campos J, Abreu R, Fraser G, et al. Entropy-based test generation for improved fault localization. In: Proceedings

of IEEE/ACM International Conference on Automated Software Engineering (ASE), 2013. 257–267

94 Perez A, Abreu R, van Deursen A. A test-suite diagnosability metric for spectrum-based fault localization approaches.

In: Proceedings of the International Conference on Software Engineering (ICSE), 2017. 654–664

95 Lukins S K, Kraft N A, Etzkorn L H. Bug localization using latent dirichlet allocation. Inf Softw Tech, 2010, 52:

972–990

96 Wang S, Lo D, Lawall J. Compositional vector space models for improved bug localization. In: Proceedings of IEEE

International Conference on Software Maintenance and Evolution (ICSME), 2014. 171–180

97 Saha R K, Lease M, Khurshid S, et al. Improving bug localization using structured information retrieval. In: Pro-

ceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE), 2013. 345–355

98 Wang S, Lo D. AmaLgam+: composing rich information sources for accurate bug localization. J Softw Evol Proc,

2016, 28: 921–942

99 Ammons G, Bod́ık R, Larus J R. Mining specifications. In: Proceedings of the 29th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, 2002. 4–16

100 Pandita R, Xiao X, Zhong H, et al. Inferring method specifications from natural language API descriptions. In: Pro-

ceedings of the 34th International Conference on Software Engineering (ICSE), 2012. 815–825

101 Nguyen T T, Nguyen H A, Pham N H, et al. Graph-based mining of multiple object usage patterns. In: Proceedings

of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on

The Foundations of Software Engineering, 2009. 383–392

102 Nguyen H V, Nguyen H A, Nguyen A T, et al. Mining interprocedural, data-oriented usage patterns in JavaScript

web applications. In: Proceedings of the International Conference on Software Engineering (ICSE), 2014. 791–802

103 Corbett J C, Dwyer M B, Hatcliff J, et al. Bandera: Extracting finite-state models from Java source code. In: Pro-

ceedings of the 22nd International Conference on Software Engineering (ICSE), 2000. 439–448

104 Robillard M P, Bodden E, Kawrykow D, et al. Automated API property inference techniques. IEEE Trans Softw

Eng, 2013, 39: 613–637

105 Li Z, Zhou Y. PR-Miner: automatically extracting implicit programming rules and detecting violations in large

https://doi.org/10.1109/TSE.2018.2794977
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/TSMCC.2011.2118751
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1142/S021819400900426X
https://doi.org/10.1016/j.jss.2013.08.031
https://doi.org/10.1109/TSE.2017.2776912
https://doi.org/10.1016/j.infsof.2010.04.002
https://doi.org/10.1002/smr.1801
https://doi.org/10.1109/TSE.2012.63

Zhong H, et al. Sci China Inf Sci June 2020 Vol. 63 162101:22

software code. In: Proceedings of the 10th European Software Engineering Conference Held Jointly With 13th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, 2005. 306–315

106 Saied A, Benomar O, Abdeen H, et al. Mining multi-level API usage patterns. In: Proceedings of IEEE 22nd

International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2015. 23–32

107 Engler D, Chen D, Chou A. Bugs as inconsistent behavior: a general approach to inferring errors in systems code.

In: Proceedings of 18th Symposium on Operating Systems Principles, 2001. 57–72

108 Wasylkowski A, Zeller A, Lindig C. Detecting object usage anomalies. In: Proceedings of the 6th Joint Meeting of

the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering, 2007. 35–44

109 Ramanathan M, Grama A, Jagannathan S. Path-sensitive inference of function precedence protocols. In: Proceedings

of the 29th International Conference on Software Engineering (ICSE), 2007. 240–250

110 Maoz S, Ringert J O. GR(1) synthesis for LTL specification patterns. In: Proceedings of the 10th Joint Meeting on

Foundations of Software Engineering, 2015. 96–106

111 Lemieux C, Park D, Beschastnikh I. General LTL specification mining. In: Proceedings of the 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2015. 81–92

112 Agrawal R, Srikant R. Mining sequential patterns. In: Proceedings of the 11th International Conference on Data

Engineering, 1995. 3–14

113 Ernst M D, Perkins J H, Guo P J, et al. The Daikon system for dynamic detection of likely invariants. Sci Comput

Programm, 2007, 69: 35–45

114 Le T, Le X, Lo D, et al. Synergizing specification miners through model fissions and fusions. In: Proceedings of the

30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2015. 115–125

115 Dallmeier V, Knopp N, Mallon C, et al. Generating test cases for specification mining. In: Proceedings of the 19th

International Symposium on Software Testing and Analysis, 2010. 85–96

116 Pradel M, Gross T R. Leveraging test generation and specification mining for automated bug detection without false

positives. In: Proceedings of the International Conference on Software Engineering (ICSE), 2012. 288–298

117 Brünink M, Rosenblum D S. Mining performance specifications. In: Proceedings of the 24th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, 2016. 39–49

118 Pham N H, Nguyen T T, Nguyen H A, et al. Detecting recurring and similar software vulnerabilities. In: Proceedings

of the International Conference on Software Engineering (ICSE), 2010. 227–230

119 Cheng H, Lo D, Zhou Y, et al. Identifying bug signatures using discriminative graph mining. In: Proceedings of

International Symposium on Software Testing and Analysis (ISSTA), 2009. 141–152

120 Zuo Z, Khoo S-C, Sun C. Efficient predicated bug signature mining via hierarchical instrumentation. In: Proceedings

of International Symposium on Software Testing and Analysis (ISSTA), 2014. 215–224

121 El Emam K, Melo W, Machado J C. The prediction of faulty classes using object-oriented design metrics. J Syst

Softw, 2001, 56: 63–75

122 Marcus A, Poshyvanyk D, Ferenc R. Using the conceptual cohesion of classes for fault prediction in object-oriented

systems. IEEE Trans Softw Eng, 2008, 34: 287–300

123 Nagappan N, Ball T, Zeller A. Mining metrics to predict component failures. In: Proceedings of the International

Conference on Software Engineering (ICSE), 2006. 452–461

124 Rahman F, Posnett D, Hindle A, et al. Bugcache for inspections: hit or miss? In: Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, 2011. 322–331

125 Hayes J H, Dekhtyar A, Osborne J. Improving requirements tracing via information retrieval. In: Proceedings of 11th

IEEE International Requirements Engineering Conference, 2003. 138–147

126 Williams C C, Hollingsworth J K. Automatic mining of source code repositories to improve bug finding techniques.

IEEE Trans Softw Eng, 2005, 31: 466–480

127 Last M, Friedman M, Kandel A. The data mining approach to automated software testing. In: Proceedings of the

9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003. 388–396

128 Podgurski A, Leon D, Francis P, et al. Automated support for classifying software failure reports. In: Proceedings of

the 25th International Conference on Software Engineering (ICSE), 2003. 465–475

129 Hindle A, German DM, Holt R. What do large commits tell us? a taxonomical study of large commits. In: Proceedings

of the 2008 International Working Conference on Mining Software Repositories, 2008. 99–108

130 Menzies T, Di Stefano J S. More success and failure factors in software reuse. IEEE Trans Softw Eng, 2003, 29:

474–477

https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/S0164-1212(00)00086-8
https://doi.org/10.1109/TSE.2007.70768
https://doi.org/10.1109/TSE.2005.63
https://doi.org/10.1109/TSE.2003.1199076

	Introduction
	Motivating example
	Approach
	Data acquisition
	Feature extraction
	The analysis of bug reports
	The analysis of source files
	The analysis of code names
	Extracted features

	Model training and bug localization
	Training the classifier
	Locating bugs

	Evaluation
	Research question
	Setup
	Dataset
	Metric

	Empirical result
	RQ1 Effectiveness of ClaFa
	RQ2 Impact of the depth parameter
	RQ3 Learning from other projects
	RQ4 Identification of important features
	RQ5 Other classification techniques
	RQ6 Impact of bug reports
	Threats to validity

	Discussion and future work
	Related work
	Conclusion

