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Abstract Brain-inspired photonic neural networks for artificial intelligence have attracted renewed inter-

est. For many computational tasks, such as image recognition, speech processing and deep learning, photonic

neural networks have the potential to increase the computing speed and energy efficiency on the orders of

magnitude compared with digital electronics. Silicon Photonics, which combines the advantages of electron-

ics and photonics, brings hope for the large-scale photonic neural network integration. This paper walks

through the basic concept of artificial neural networks and focuses on the key devices which construct the

silicon photonic neuromorphic systems. We review some recent important progress in silicon photonic neural

networks, which include multilayer artificial neural networks and brain-like neuromorphic systems, for artifi-

cial intelligence. A prototype of silicon photonic artificial intelligence processor for ultra-fast neural network

computing is also proposed. We hope this paper gives a detailed overview and a deeper understanding of

this emerging field.
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1 Introduction

Artificial intelligence (AI) has already widely used in almost every aspect of our daily lives and shown

remarkably good performance in computational tasks, such as natural language processing and visual

object recognition [1, 2]. Inspired by parallel signal processing in human brain and benefited from the

explosion of data, AI has revitalized and attracted the interest of researchers recently. Intel [3], IBM [4],

and Google [5], have all made AI the most important strategic development direction. Deep learning [6]

with artificial neural networks (ANNs) is the key driving force promoting the explosive growth of AI.

Neural network algorithm contains massive multiply accumulate computations (MAC), while the central

processing units (CPUs) designed for traditional von Neumann architecture are laborious to perform these

operations. The memory for computing and signal processing is physically separated in von Neumann

scheme and the CPUs operating in a sequential way. The data flows between memory and processor limit

the computing efficiency when implementing massively parallel signal processing. The one-size-fits-all

approach is no longer capable of AI computing tasks. Therefore, researchers focus their attention on
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new hardware architectures (such as graphical processing units (GPUs), field-programmable gate arrays

(FPGAs)) specifically for ANNs and deep learning. Although GPUs, FPGAs and even neuromorphic

electronics, including IBM TrueNorth [7] and Google TPU [5], have improved both energy efficiency and

speed for inference (learning) tasks, the end of Moore’s Law [8] radically impedes the further development

of electronic processors. The fundamental energy consumption and bandwidth limitation [9] of electrical

interconnection have become the major bottlenecks in present AI hardware. In some power-critical

situations, such as unmanned aerial vehicle (UAV), smart phone and ‘edge computing’, these issues

become more intractable.

1.1 Photonics powers AI chips

Current microelectronic chips, regardless of the based technical framework, are designed and manufac-

tured using traditional microelectronic process. With the improvement of microelectronic integration,

the performance of microelectronic chips improves continuously. In the past few decades, microelectronic

technology continues to advance, according to Moore’s Law. However, in recent years, the development

of microelectronics processes can hardly follow Moore’s Law [8]. Limited by a series of problems such as

cross-talk, power consumption, noise, and time delay, it has been incredibly difficult to further improve

the information processing capabilities of microelectronic chips by simply improving integration density

and operation frequency. Novel techniques are required to break the intrinsic limitations of conventional

microelectronic computing framework.

Owing to the high speed, parallel processing capability and low energy consumption, photonics shows

great potential to address these bottlenecks well. Researchers have tried to develop photonic devices to

simulate neurons and synapses in biological brains to further improve the data processing and analysis

capabilities. In some specific applications, such as UAV [10] and self-driving [11], rapid data analysis and

situation judgment are essential concerns. These photonic neurons [12] constitute ‘brain-like’ photonic

neural networks (PNNs) which can be integrated on a chip. On one hand, PNNs use photons to perform

calculating and data exchanging, which offers a promising alternative approach for AI hardware acceler-

ators. On the other hand, silicon photonic technology utilizes compatible mature microelectronic process

to integrate photonic and electronic devices simultaneously, which is the ideal fabrication platform of

photonic hardware. Nowadays, silicon PNNs have become a research hotspot in academia and industry.

1.2 Silicon photonic technology

Because of the cost and special fabrication requirements, large-scale manufacturing of traditional discrete

photonic devices is quite challenging. Similar to microelectronic hardware, the improvement of computing

performance for photonic chips also relies on the growing number of devices. Fortunately, the emergence of

silicon photonics, which is compatible with standard complementary metal-oxide-semiconductor (CMOS)

microelectronic integration technology, opens the gate for large-scale fabrication and reproducible of

photonic chips. Silicon photonic technology utilizes both photons and electrons as information carriers to

integrate photonic structures with electronic devices on a same silicon substrate simultaneously [13, 14].

Then, a new integrated chip with comprehensive functions needed for rapid information processing can

be formed. Silicon photonics naturally has the dual advantages of electronics and photonics, enabling

photonic devices to be integrated and mass-produced on the same scale as microelectronic chips, with

the calculation speed of light while minimal energy consumption. Although increasing the integration

density of photonic devices is quite challenging, silicon photonics has made great progress in recent

years [15, 16]. The mature CMOS integration technology improves the yield of photonic chips while

reduces the manufacturing costs as much as possible.

Light sources are a key ingredient in photonic neural networks. Silicon does not emit light owing to

its indirect band-gap, therefore, lasers made of III-V semiconductors are usually separately packaged as

external light sources. This method requires precise alignment between the lasers and waveguides, which

suffers from higher coupling loss and packaging cost. Fortunately, these hurdles are being overcome with

technology such as hybrid photonic integration. Interuniversity Microelectronics Centre (IMEC) and CST
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Figure 1 (Color online) (a) Schematic of a neuron. (b) An artificial neuron with simple nonlinear model: showing the

input (x1, x2, . . . , xn), their relevant weights (w1, w2, . . . , wn), bias b and the non-linear activation function f(x) applied to

the weighted sum of input signals. The output is connected to other neurons through synapses (connecting links), forming

a neural network.

Global have successfully integrated InP distributed feedback (DFB) lasers into photonics platform through

a die-to-die bonding process. The hybrid integration property of silicon photonics can dramatically

improve the energy efficiency and reduce the monetary cost of current photonic architectures, particularly

in photonic neural network applications.

2 Artificial neural network

Inspired by the physical neuron system, ANN is a model that imitates the information processing of

human brains. ANN can perform complex logic and non-linear operations and is capable of parallel

distributed processing with high fault tolerance. These unique properties make ANN hold an important

status in the field of AI.

2.1 Artificial neuron

The rapid growth of ANN for AI tasks has led to intense exploration of efficient hardware implementations

to mimic the natural processing capabilities of the brain. Neuron is the basic functional unit of human

brain, as shwon in Figure 1(a). Researchers strive to comprehend the complex functionality of neuron

and emulate its unparalleled energy efficiency. An elementary illustration of an artificial neuron is shown

in Figure 1(b). The neuron consists of three parts: the first is a set of weighted connections called

synapses. The input signals (x1, x2, . . . , xn) is weighted by their relevant weights (w1, w2, . . . , wn); the

second is a liner combiner, performing weighted addition; the third is a nonlinear activation function f(x)

(usually monotonic and bounded). The combined signals experience a nonlinear process and then output.

f(x) has a normalizing effect, which prevents the divergence of the output after several layers. Artificial

neurons can be trained (rather than programmed) to execute a computing task by feeding massive of

data, called learning. Nowadays, artificial neurons combined with ‘deep learning’ algorithms [17] have

received an explosion of interest in both academia and industry for their utility in image recognition [18],

language translation, decision-making problems and so on [6].

2.2 Multilayer architecture

Figure 2 shows a multilayer ANN which consists of a large number of interconnected artificial neurons.

The connections between two neurons represent a set of weighted signals passing through the network.

The input should be preprocessed and vectorized data, such as voice, image and language. The input

layer connects to at least one hidden layer. In each layer, data experiences a linear combination (e.g.,

matrix multiplications) followed by an nonlinear activation. Each neuron passes data to all the neurons

in the next hidden layer until the last output layer, which gives the final results. The acyclic topology

means that there are no feedback connections or loops in the network. The input and output layers are

the optical interfaces to the real world. ANNs can be well trained by feeding enough training data into the
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Figure 2 (Color online) Multilayer artificial neural network scheme composed of an input layer, multiple hidden layers

and an output layer. The circles are neurons and each neuron is connected to all neurons in the next layer.

network and then computing the output by forward propagation; the weight parameters are subsequently

optimized and tuned using standard back propagation method.

3 Silicon photonic neural networks

Silicon PNN, which consists of interconnected silicon photonic devices, is a concrete form of ANN. Re-

cently, a number of studies on silicon PNNs to accelerate computing and reduce power consumption have

been proposed, such as artificial neural networks [19–23] and brain-like neuromorphic networks [12,24–28].

Each layer of the network can be realized by using silicon Mach-Zehnder interferometer (or microring

resonator) array and the silicon waveguides act as connection between two adjacent layers. Compare

with electronic neural computing schemes, silicon PNNs have much faster operating speed and lower

energy consumption [29]. Because of the large volume and high energy consumption, traditional discrete

photonic devices are unsuitable for constructing complex systems. Therefore, photonic integration has

become an inevitable choice to implement high-performance PNNs. Silicon photonics, which combines

the high performance, super manufacturability, and widespread demand, well addresses these issues and

has the potential to integrate large scale neural networks that vastly exceed the capabilities of electron-

ics. This section focuses several basic cells for building a silicon PNN and describes some highlighted

achievements in this nascent field.

3.1 Silicon photonic integration

By patterning silicon-on-insulator (SOI) or bulk silicon wafers using modern lithographic technology, sili-

con photonics enables precise alignment and cheap large-scale manufacturing of electronic-photonic chips.

With the development of silicon photonic devices, such as low-loss optical waveguides [30], high-efficiency

fiber-to-chip couplers [31], fast electro-optic modulators [32, 33], and broadband silicon germanium pho-

todetectors [34], it has been possible to construct high-performance integrated silicon PNNs. Some elec-

tronics foundries (e.g., Global Foundries and Taiwan Semiconductor Manufacturing Company (TSMC))

and research institutions (e.g., IMEC and Advanced Micro Foundry (AMF)) have been able to provide

silicon photonics multi-project wafer (MPW) and low-volume wafer-level process service. In China, the

United Microelectronics Center (CUMEC) is in the process of launching 8-inch silicon photonic manu-

facturing line. The emergence of commercial silicon photonics manufacturing platforms will continuously

promote the commercialization of large-scale photonic parallel-computing accelerator for AI.

3.2 Silicon photonic units in neural networks

Silicon waveguides, which enable low-loss light propagation, are the fundamental building block silicon

photonic devices or circuits. Waveguides are essential for communication and computing applications

because they can transmit data at very high speed and they are immune to electromagnetic interference.

In silicon photonic waveguide, the high-index silicon core is surrounded by low-index material (e.g., silica
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Figure 3 (Color online) (a) An individual programmable Mach-Zehnder interferometer with two thermo-optic phase

shifters [21] @Copyright 2017 Springer Nature. (b) Schematic illustration of a programmable MZI, which comprises a phase

shifter (θ) between two 50:50 evanescent directional couplers, followed by another phase shifter (ϕ).

or air), called cladding. The guided light propagates in the waveguide along the longitudinal direction (z

direction) and is confined to the small region either within or adjacent to the silicon core surfaces. The

properties of the waveguide are characterized by the spatially transverse distribution of the refractive

index, n(x, y). Owing to the high refractive index contrast between Si and SiO2 (ncore = 3.47, nclad =

1.44 @ wavelength λ = 1.55 µm), light is tightly confined in an extremely small effective mode area, which

makes the photonic device quite compact. By solving Maxwell’s equations while combining boundary

conditions, the electric and magnetic field of a guide mode can be express as

Eν (r, t) = Eν (x, y) · ejβνz−jωt, Hν (r, t) = Hν (x, y) · ejβνz−jωt, (1)

where ν is the mode order, Eν (x, y) and Hν (x, y) are the transverse mode field distributions, and βν is

the propagation constant of the mode. Another important parameter to characterize a mode is effective

refractive index, written as

neff = βν/k0, (2)

where k0 = 2π/λ is a wave vector in free space. neff signifies how strongly the light is confined to the

waveguide core. Analytic methods to calculate neff are quite complex, therefore, numerical simulation is

of great importance when designing photonic waveguides.

Mach-Zehnder interferometer (MZI) is the most commonly interferometer used in photonic integrated

circuits, especially for electrical or thermo modulation of photonic signals. A lossless phase-modulated

MZI (Figure 3) with two perfect (50:50) beam splitters performs an optical transformation, which can be

described by a 2×2 unitary matrix U(2). The scattering matrix of a single directional coupler DC is

DC =

(

cos(κL) jsin(κL)

jsin(κL) cos(κL)

)

, (3)

where κ is the coupling coefficient, L is the length of the coupling region; j is the square root of −1, which

indicates that the field cross the directional coupler acquires a π/2 phase shift. For 50:50 beam splitter,

κL = π/4, therefore, the unitary matrix U(2) can be describe as

U(2) = Pϕ ·DC2 · Pϑ ·DC1

=

(

ejϕ 0

0 1

)

1√
2

(

1 j

j 1

)(

ejϑ 0

0 1

)

1√
2

(

1 j

j 1

)

= jejϑ/2

(

ejϕsin(ϑ/2) ejϕcos(ϑ/2)

cos(ϑ/2) −sin(ϑ/2)

)

,
(4)

where Pϕ and Pϑ are the phase-shift operators, DC1 and DC2 are the 50:50 beam splitter operators and

the same phase factor jeϑ/2 can be ignored. Arbitrary unitary transformation U can be decomposed into

sets of U(2) rotations by cascading programmable MZIs (Figure 4) and the relationship between input

and output optical signals is Eout = UEin. Generalized discussion of using regular universal multiport

interferometers can be found in [19, 35].

Microring resonator (MRR) is another important fundamental component for photonic integrated

circuits. On-chip synaptic weights and fully programmable neural networks called broadcast-and-weight
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Figure 4 (Color online) (a) Top-view SEM image of a silicon all-pass microring resonator [37] @Copyright 2010 IEEE.

(b) A symmetric add-drop microring resonator on SOI with O/E conversion and amplification. (c) Output of the balanced

photodiode (blue triangle curve) as a function of the detuning ∅. The orange and green lines are the transmissions of drop

Tdrop and through Tthru ports, respectively.

schemes [24, 36] can be created using tunable silicon MRRs. An MRR consists of one or two evanescent

directional couplers and a ring cavity. In steady state, the outgoing energy (absorption) of the ring equals

that of the incoming energy. For all-pass type (Figure 4(a) [37]), the input light from the bus waveguide

transfers into the ring cavity through the directional coupler and then recombines at the same position,

thereby interfering with the input light. The power transmission between the output port and input port

can be expressed as

T (φ) =
a2 − 2racos(φ) + r2

1− 2racos(φ) + (ra)2
=

{

1, if a → 1,
(r−a)2

(1−ra)2 , if φ = 0,
(5)

where r is the self-coupling coefficient, a defines the propagation loss of the ring and the directional

coupler. The phase φ depends on the wavelength λ and radius R of the MRR:

φ = kL =
2π

λ
neff · L, (6)

where L is the distance around the ring cavity. The value of φ can be tuned by applying a current across

the embedded heater, resulting in a phase shift of the transmission spectrum. For add-drop type MRR

(Figure 4(b)), the power transmission of the thru port Tthru and drop port Tdrop with respect to the input

port are

Tthru(φ) =
(ra)2 − 2r2acos(φ) + r2

1− 2r2acos(φ) + (r2a)2
, Tdrop(φ) =

(1− r2)2a

1− 2r2acos(φ) + (r2a)2
. (7)

When ignoring the coupling loss and a → 1, the power transmission relationship between thru port and

drop port is Tthru + Tdrop = 1. Assuming that the data signal ak(t) is normalized (|ak(t)| 61) and

modulated to the amplitude of the electric field, then the time-frequency expression for the input optical

signal is

Ein(ω) = E0

√

1 + ak(t)

2
δ(ω − ω0) = E0

√

xk(t)δ(ω − ω0), (8)

where E0 is the amplitude of the input electric field, δ is the Dirac delta function, and ω0 is the frequency

of the optical field. If the thru port and drop port are connected to a balanced photodiode (BPD) and a

TIA with gain of G (Figure 4(b)), the photocurrent of the BPD after TIA amplification is described by

iBPD = xk(t)R0G [Tdrop(φk)−Tthru(φk)] |E0|2
︸ ︷︷ ︸

µk

= µkxk(t)
︸ ︷︷ ︸

Dot Product

, (9)

where = R(ω0) is spectral response, which can be roughly seen as a constant R0 in the research spectral

region; φk is the phase when applying a specific current wk to the heater. It is worth noting that the

value of Tdrop(φk)− Tthru(φk) is between −1 and +1, as shown in Figure 4(c). Such photonic framework

can be used to create any kernel value and realize vector dot product [38], which is the key operation in

a convolution neural network [39].

3.3 Silicon photonic artificial neural network

There are two specific forms of silicon PNNs. One is multilayer artificial neural networks using silicon

photonic structures to achieve matrix multiplication and nonlinear activation; the other is brain-like neural
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Figure 5 (Color online) (a) Optical micrograph image of the silicon photonic ANN using MZI arrays with 4 input ports

and 4 output ports. (b) General PNN architecture and an individual layer consisting of optical interference and nonlinearity

units. Reprinted from [21] @Copyright 2017 Springer Nature.

systems which mimic the synaptic-like connections of physical neurons. Silicon PNNs combine the parallel

signal processing capabilities of neuromorphic and the high speed and bandwidth of silicon photonics,

which offer a promising optoelectronic computing paradigm for AI. Monolithic silicon photonic integration

technology [14] allows greater compatibility with digital electronic devices, enabling compact and powerful

photonic accelerator. Neural network computing relies heavily on fixed matrix multiplication, which can

be well realized by specially designed photonic structures (e.g., MZI arrays and MRRs). Different from

traditional electronic hardware, PNNs transport data and perform calculations at the speed of light,

namely, the training and inference tasks in AI could be fulfilled in optical domain. Once a PNN is trained,

the entire structure becomes a passive system, and the energy consumption of matrix multiplication is

almost zero. These unique features enable PNNs far more efficient and faster than their electronic

counterparts.

A silicon photonic ANN utilizing coherent nanophotonic circuits for deep learning has been demon-

strated in [21]. The reconfigurable silicon photonic ANN (Figure 5(a)), which realizes matrix mul-

tiplication (highlighted in red) and attenuation (highlighted in blue) via constructive and destructive

interference effects, is constituted by tuneable MZI arrays. This structure includes input layer, hidden

layers and output layer, as shown in Figure 5(b). In each layer, the input optical signals first experience

a linear matrix multiplication and then pass through a nonlinearity unit. The training data is fed into

the input layer, and the PNN can be trained using feed-forward and back-propagation algorithm. The

weights of the matrix wij is replaced by (θij , ϕij) of each MZI and optimized by calculating the gradient

of the loss function. The method implemented in this PNN is consistent with the training strategy for

traditional electronic AI chips. Each layer of the PNN consists of an optical interference unit (OIU) and

a nonlinearity unit (ONU) (Figure 5(b)). The role of OIU is to construct any real-valued matrix and

complete matrix multiplication. By using singular value decomposition (SVD) method [40], any matrix

M can be decomposed into

M = UΣV ∗, (10)

where U is an m ×m unitary matrix, Σ is an m × n diagonal matrix and V ∗ is the complex conjugate

of the n × n unitary matrix V . U,Σ, V ∗ can be implemented using photonic programable MZI arrays.

The digital electrical signal to drive the heater can be converted to analog optical intensity. For example,

by tuning the phase of each MZI, the π phase shift means complete destructive interference and the

associated driving voltage can be set as ‘000’; 0 phase shift means maximum output and the driving

voltage corresponds to ‘FFF’. ONU can be realized using semiconductor optical amplifier (SOA) [41] or

microring resonators [42]. For an input optical intensity Iin coded with input information Xin, the output

intensity is

Iout = f(Iin), (11)

where f(x) is a nonlinear function, such as ‘Sigmoid’, ‘(Leaky) ReLu’, etc. Iout is detected by photode-

tector arrays and the analog electrical signal returns the absolute value of the output information Xout.

Ref. [19] shows a new design for universal multiport interferometers using an alternative arrangement of

programable MZIs, which has a much shorter optical depth and suffers less propagation loss compared
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Figure 6 (Color online) (a) A micrograph image of the fabricated silicon photonic neuron. (b) Equivalent circuit diagram

of the silicon MRR modulator neuron. Two photodetectors are connected to the neuron, resulting in an O/E/O nonlinear

transfer function. (c) The normalized relationship between the input power and output power under different bias current

Ib. Reproduced from [12] @Copyright 2019 American Physical Society.

with Reck scheme [43]. Ref. [35] proposed a gradient-based optimization method to initialize the random

unitary matrices on universal photonic devices, which greatly improves convergence speed.

3.4 Silicon photonic brain-like neurosynaptic system

Compared with photonic ANNs, photonic neurosynaptic systems are the higher-level morphologies of

PNNs. Photonic neurons are the fundamental elements of a brain-like PNN. An isolated photonic neuron,

which is compatible with currently available silicon photonic platforms and capable of interacting with

other neruons, is experimentally demonstrated in [43]. The neuron consists of a balanced photodetector

connected to a tunable MRR modulator (Figure 6(a)). This photonic neuron, which behaves as a neuron

participating in a network, can convert multiple weighted optical inputs into a single optical output

(fan-in) and implement a nonlinear activation function to the weighted sum inputs. By showing the

capacity of driving other neurons including itself (cascadability), this device shows great resemblance to

physical neuron. Figure 6(b) shows the equivalent circuit diagram of the silicon neuron. The two optical

inputs (IN+, IN−) convert to two photocurrents (i+, i−) by a balanced photodetector. The output current

(i+ − i−) combined with bias Ib remodulates the new optical signal with wavelength of λn, which serves

as the neuron’s optical output. Owing to the Lorentz type transmission spectrum of MRR, the output

signal is a nonlinear function of the input. The resonance wavelength of the MRR can also be tuned

by an in-ring heater with a current Ih. More important, configurable optical-to-optical nonlinearity is

also observed. Figure 6(c) illustrates six nonlinear function shapes under different biases. Especially the

sigmoid and rectified linear unit (ReLU) nonlinear activation functions are commonly used in machine

learning and convolutional neural networks (CNNs). Essentially, these nonlinear proprieties come from

the modulator’s transmission function. Different biases correspond to different parts of the MRR’s Lorentz

shape response. Besides, this photonic device is capable of inhibitory fan-in, pulse compression, time-

resolved pulse processing, and indefinite cascadability, which constitutes the final piece needed to make

PNNs fully integrated on silicon photonic chips.

Photonic spiking neurosynaptic networks, which mimic biological neurons and synapses, can process

information more analogously to human brains in optical domain. An all-optical, integrated and scalable

neuromorphic framework using phase-change material (PCM) on Silicon Nitride on Insulator (SiNOI)

platform was demonstrated in [27] for the first time. PCM, such as Ge2Sb2Te5 (GST), is commonly used

in reversible optical recording medium, and exhibits a large contrast in the absorption of light between
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Figure 7 (Color online) (a) Optical micrograph of one complete neuron (D1) with a zoomed in ring resonator to implement

activation function. (b) Schematic of a single-layer neurosynaptic system consisting of four neurons with 15 synapses each.

(c) The output spike intensity of the four trained patterns (four letters A, B, C and D) illustrated on the right side.

Reproduced from [27] @Copyright 2019 Springer Nature.

amorphous (low absorption) and crystalline states (high absorption) [44]. The states of the neuronal

PCM cells (red circles in Figure 7(a), sputter-deposited on top of the waveguides) can be switched

in a controlled manner and then the input optical signal is weighted. The weighted inputs with four

different wavelengths are combined into the bus waveguide via four microrings and then propagate to

the spiking neuron circuit. Only if the weighted sum of the input power exceeds a threshold, the PCM

cell will be switched to low absorption state. Owing to the resonance condition variation of the larger

ring, the probe pulse outputs as a neural spike. Such photonic neuron naturally emulates the basic

‘integrate-and-fire functionality’ of a biological neuron and can be used as a a fundamental building block

for neurosynaptic PNNs. The whole PNN consists of an input, an output layer and N hidden layers.

Each layer (Figure 7(b)) consists of a collector uniting the optical pulses from the previous layer using

wavelength-division-multiplexing (WDM) multiplexer, a distributor with well-designed coupling efficiency

distributing the input signal equally to individual neurons. A prototypical AI task of 15-pixel images

pattern recognition is successfully demonstrated in the optical domain as each neuron only responds

to one of the four patterns (Figure 7(c)). In addition, this PNN is capable of supervised learning and

unsupervised learning as well.

4 Performance evaluation of photonic neural networks

Compared with electronics, photonics has congenital advantages—high speed, large bandwidth, and high

energy efficiency. In microelectronic chips, electrons are the carrier of information transportation and

most of the energy is consumed during the process of moving electrons through metal links. While

photonic interconnections can transfer data at the speed of light with ultra-low energy consumption [45].

Because photons with different wavelengths do not interfere with each other, photonic chips can achieve

large bandwidth density through WDM and high-speed signal transmission technology. Lately, single lane

200 G optical interconnects with silicon photonic modulator have been demonstrated [46]. If combined

with dense WDM (DWDM) technology, e.g., on-chip frequency comb [47], the bandwidth density of the

photonic chip will dramatically increase. Utilizing some specific optical structures, e.g., cascaded MZI [21]

and meta-lens [48], photons can implement some mathematical operations (e.g., Fourier transform and

MACs) at the speed of light with almost zero energy consumption. That is, when photons pass through the

optical structures, the calculation process is complete. These unique properties significantly improve the

computational performance of photonic chips for both energy efficiency and compute density. Therefore,
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Figure 8 (Color online) Comparison of digital electronic architectures with photonic platforms for multiply-accumulate

computations (MACs) which takes the form b′ ← b+w×x. Here b is accumulator, w is multiplier and x is input. Photonic

neural networks have the potential to outperform digital hardwares. Taken from [26] @Copyright 2017 IEEE.

Table 1 Comparison of electronic AI chips with photonic neural networks. Modified from [29].

Architecture Energy efficiency/MAC Vector size Latencya)

Google TPU [50] 0.43 pJ 256 2 µs

Flash (analog) [51] 7 fJ 100 15 ns

Hybrid laser neural networks [52] 0.22 pJ 56 <100 ps

Integrated silicon PNN [12] 2.7 fJ 148 <100 ps

Sub-λ nanophotonics (prediction) 30.6 aJ 300 <50 ps

a) Latency is the required time for completing a single MAC at the given vector size.

photonic architectures can significantly surpass electronic computing schemes, as shown in Figure 8.

The core challenge of electronic AI chips is to process massive of data at high speed with low energy

consumption. A well trained ANN is able to execute what is programmed for, which is called inference.

PNNs use waveguides, high-speed modulators, high-sensitivity photodetectors to implement high perfor-

mance, low energy consumption computing architectures. Once the PNNs have been trained, the inference

process can be passive by introducing non-volatile phase change materials [49] to maintain the phase.

Then, the matrix multiplication requires almost no energy consumption. The whole energy consumption

of the PNNs is mainly derived from the energy required to activate the nonlinearity unit and to obtain

a high signal-to-noise ratio for the detector. Calculations show that the energy efficiency of PNNs can

be at least two orders of magnitude better than digital electronic [29]. In electronic AI chips, the energy

consumption is proportional to the square of the matrix dimension N . Because the optical computing

process requires almost no energy consumption, PNNs is more efficient than traditional processors. In

other words, the larger the neural network, the bigger advantages of using photonics.

In AI, latency is one of the important parameters to evaluate the performance of an neural network.

PNNs are particularly good at reducing the latency of inference because the time required for the opti-

cal signal from input to the output is roughly determined by the speed of light. It is crucial for some

applications that require fast response, such as autonomous driving and unmanned aerial vehicle. Re-

searchers have made great efforts to develop specialized digital processors, such as GPU (NVIDIA) and

TPU (Google), for calculating MACs more efficient. Recently, silicon photonics provides an alternative

solution to alleviate the energy consumption of moving data via metal wires and MAC in electronic AI

hardware. Table 1 [12, 50–52] gives a comparison of electronic AI chips with PNNs. Theoretically, the

modulation and detection bandwidth of the PNNs is generally above 100 GHz, which is two orders of

magnitude faster than the electronic ANNs. The energy efficiency of PNNs is on the order of pJ/MAC,

even aJ/MAC, and the latency is below 100 ps. A concrete MAC comparison between electronic hardware
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Figure 9 (Color online) Block diagram of a silicon photonic AI processor. On-chip WDM technology makes full use of

the advantages of large bandwidth and parallel processing of light. The control unit allows for training the PNN.

and PNNs using several empirically validated device and system models is provided in [29].

5 Outlook for silicon photonic AI processor

Different from the general-purpose processor (e.g., CPU and GPU), silicon photonic AI processor is similar

to the electronic application specific integrated circuits (ASICs), which is customized for specific comput-

ing. In AI algorithms, matrix multiplications (MACs) are the basic operations and appear everywhere.

PNNs can perform MACs in the speed of light with low energy consumption, which are particularly

suitable for accelerating the AI computing tasks. PNNs are appropriate for analog computation tasks

(e.g., image identification and voice recognition) that the calculation results are probability distributions

instead of precise numerical values. In this section, the schematic of a silicon photonic AI processor and

how it can be applied to specific applications are described.

Figure 9 illustrates the internal framework of the proposed silicon photonic AI processor. The optical

input with a series of wavelengths is demultiplexed by using on-chip wavelength division demultiplexer.

Most of the optical energy (e.g., 99%) with specific wavelength λi is fed into a 1×N beam splitter, followed

by MZ modulators. The preprocessed input vector (x1, x2, . . . , xN ) are encoded in the amplitude of the

optical signal via high-speed modulator array. The reconfigurable PNN consists of a photonic interference

unit (PIU) that performs matrix multiplication and a photonic nonlinearity unit (PNU) that implements

the nonlinear activation. The PIU can be programmed by tuning the heaters embedded in the cascaded

MZ interferometers. The high-speed PD array converts the weighted, summed and nonlinearized optical

signal to electrical output. The electrical I/O interface can be easily connected to the peripheral control

unit or computer, increasing the portability of the processor.

To ensure the photonic AI processor is well trained and performs as expected, control unit and on-

chip optical monitor are essential components. The control unit receives data and instructions from

the outside and loads the preprocessed input vectors via signal generator. The matrix tuning controller

gets commands from FPGA & CPU, and then adjusts the weights in PNN by manipulating the phase

shifters (heaters). When training the weight parameters in PNN, the output electrical signals are stored

in the internal memory for conducting back-propagation algorithm using gradient descent method. Once

the training is completed, the entire computing is in optical analog domain and the results are directly

output, which breaks through the Von-Neumann computing framework. Because photonic devices are

sensitive to the temperature and stress variation, the information from the on-chip optical power monitor
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and the memory should be also be considered in order to achieve the desired weights.

For practical applications, the fabrication variations (e.g., waveguide width variation and layer thick-

ness fluctuation) may influence the performance of the photonic devices and result in inconsistent behavior

from one device to another. Photonic neural networks are analog computation systems which are sus-

ceptible to noise and environment variation. Proper fabrication optimization and control techniques

should be developed and employed. Besides, the wavelength shift, ageing of the devices, humidity of the

environment, robust of the system, etc. should all be taken into account when designing the proposed

processor.

6 Conclusion

Photonic neural networks, which combine the large bandwidth, high speed, low energy consumption of

photonics and the efficient parallel processing capacity of neural networks, have the potential to perform

ultrafast computing that exceeds electronic hardware by several orders of magnitude. Silicon photonics

provides an ideal platform for large-scale photonic integration, allowing silicon PNNs to perform far more

complex operations than other competitors. This paper focuses on the key photonic units and gives an

overview of two specific forms of silicon PNNs, one is multilayer artificial neural networks using silicon

photonic structures to realize matrix multiplication and nonlinear activation; the other is brain-like neural

systems which mimics the synaptic-like connections of physical neurons. We evaluate the performance

of the photonic neural networks and make a comparison with electronic AI chips. A silicon photonics

AI processor for ultra-fast AI computing is also proposed as a proof-of-concept. We hope this paper

provides a deeper understanding of PNNs for ultra-fast AI computing. There are many problems that

need to be solved before PNNs can be implemented to real applications, including low-power, swift matrix

tuning control, thermal management, monolithic integration with the digital electronic control unit, etc.

Nevertheless, academia and industry have been striving to solve these problems, leading to a bright future

of this emerging field.
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