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Abstract Traditionally, the operation and maintenance of optical networks rely on the experience of en-

gineers to configure network parameters, involving command-line interface, middle-ware scripting, and trou-

bleshooting. However, with the emerging of newly B5G applications, the traditional configuration cannot

meet the requirement of real-time automatic configuration. Operators need a new configuration way without

manual intervention at an underlying optical transport network. To cope with this issue, we propose an intent

defined optical network (IDON) architecture toward artificial intelligence-based optical network automated

operation and maintenance against service objective, by introducing a self-adapted generation and opti-

mization (SAGO) policy in a customized manner. The IDON platform has three key innovations including

intent-orient configuration translation, self-adapted generation and optimization policy, and close-loop intent

guarantee operation. Focusing specifically on communication requirements, the IDON uses natural language

processing to construct semantic graphs to understand, interact, and create the required network configu-

ration. Then, deep reinforcement learning (DRL) is utilized to find the composition policy that satisfies

the requirement of intent through the dynamic integration of fine-grained policies. Finally, the deep neural

evolutionary network (DNEN) is introduced to achieve the intent guarantee at the milliseconds level. The

feasibility and efficiency are verified on enhanced SDN testbed. Finally, we discuss several related challenges

and opportunities for unveiling a promising upcoming future of intent defined optical network.
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1 Introduction

Along with the drastic evolution of Internet of Things and high-bitrate applications in beyond 5G (B5G),

optical network ecosystem has unprecedented dynamics both of control and resource allocation, resulting

in unsatisfactory level of manual operation and maintenance [1]. In such context, the operators are consid-

ering to promote the upgrade of their optical network architecture for automatic intelligent operation and

maintenance [2]. As one of the transport technologies in B5G, elastic optical network is an important part

of optical network architecture, which can dynamically allocate the customized optical fine-granularity

spectrum for the user’s requirements, and provide the large-bandwidth low-latency connection [3]. In
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B5G scenario, a growing number of emerging services involved time-critical interaction and configura-

tion need the interworking with human behaviour and environment [4]. For instance, automatic pilot,

which can assist the vehicle and perform complex collision avoidance under the condition of changing

surroundings, involves complex data delivery to processing domain and reliable performance expectation

of the transport network [5]. Different from traditional requests attaching the network performance, e.g.,

bandwidth, jitter and latency, the emerging service from users just provides the operator with the desired

effect and reliability without explicit network metrics [6]. In such black-box environment, it is hardly to

grapple with the automatic configuration of smart network control. As a result of the complexity of the

emerging services, intelligent network control is faced with enormous challenges to adapt diversified ser-

vices and new ecosystems, especially for optical transport networks. In addition, software defined optical

network (SDON) merely focuses on the intelligent control of the optical network with the customized

interface after receiving the configuration parameter [7]. To the best of our knowledge, how to convert

the user’s desired goal into transport network transmission policy has been not resolved, especially in the

optical network.

In B5G scenario, users are more concerned with what to achieve, rather than how to carry out on

operation of network. User desired goal is defined as intent from operators’ perspective, and intent-

based networking represents users’ intent as high-level intent description [8]. However, it is difficult

to accurately translate high-level intent description into a network configuration language after trusted

access, guaranteeing a satisfactory level in term of quality of service without manual intervene. Similarly,

how to execute close-loop configuration policy after intent translation is still unresolved. Moreover, in

case of failure, how to achieve intent guarantee with automatic restore is equally critical. The above flow

steps are the most important component of implementing of intelligent networking control for all-life-cycle

maintenance [9–11].

On the other hand, artificial intelligent (AI) technology can provide to SDON the capability to au-

tomatically learn and promotion in accordance with operation experience without being explicitly pro-

grammed [12–14]. It is an irresistible trend to apply AI to assist in the decisions involving network oper-

ation and management. However, few researches consider the control issue that how to control network if

the controller receives technology-agnostic service objective without anything configuration performance.

Thus, it is significant to construct new network architecture toward AI-based optical network automation

for implementing of zero-touch operation.

AI is applied to enhance the intelligence of network control, from traffic recognition to fault detection

in optical network which is presented in our previous studies [15–18]. In this paper, on the basis of our

previous studies, we extend to propose a novel intent defined optical network (IDON) architecture toward

artificial intelligence-based automation maintenance of optical network for the users’ service objective.

Traditionally, the operation and maintenance of optical networks rely on the experience of operation ex-

perts to operate whole network with explicit parameters, involving command-line interface, middle-ware

scripting, and troubleshooting. The emerging services make the manual approach unsatisfactory. There-

fore, there are three motivations for IDON. Firstly, the users’ intent should be automatically converted

into networking service with explicit parameters in spite of the variety of services and the complication of

network operation procedures. Secondly, after confirming the intent and physical parameters, to achieve

the corresponding network performance expectations, the problem that how to self-generate matching

network operations without human intervention is still pending. The IDON architecture can generate

the self-adapt policy through integrating fine-grained policy together toward the intent goal. Finally, to

ensure the effective execution of the intent in the event of a network failure, most methods still fail to

response in time. The self-optimization of intent configuration should be achieved through double-closed

loop feedback in time.

Our contribution is mainly focused on converting of the user’s desired goal without any metrics into

transport network transmission policy to achieve zero-touch operation. We also present a self-adapted

generation and optimization (SAGO) policy, integrating multiple fine-grained policies in a closed-loop

automatic manner. The IDON architecture can convert the service demands into optical network perfor-

mances, promote the self-adapting customized service, and achieve the self-optimization control utilizing
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Figure 1 (Color online) Architecture of IDON.

deep reinforcement learning for all-life-cycle maintenance. The overall feasibility and efficiency of the

proposed architecture with SAGO policy are experimentally verified on enhanced SDN testbed. In the

rest of the paper, Section 2 describes the overall network architecture of IDON; and the cooperation

procedure for IDON multi-domain control is discussed in Section 3; Section 4 presents the performance

analysis using SDON testbed. Finally, Section 5 concludes the IDON architecture.

2 Network architecture of IDON

The existing network regulation and control system cannot meet the needs of network regulation and con-

trol work under the new situation. Based on the contradiction between the dynamic demand of diversified

services in optical networks and the rigid transmission system of optical networks, this paper proposes

the intent defined optical network architecture based on intention-driven [19]. Research on intelligence

policy in optical networks based on intention driven is faced with three challenges. The first challenge is

how to effectively extract the diversified characteristics of different services to achieve accurate transla-

tion of service intentions. The second one is how to automatically generate transmission strategies under

strict constraints of intent to meet service requirements. The third one is how to establish intention

guarantee mechanism to realize real-time adaptation of intelligent policies to the network environment.

Therefore, this paper starts from the frontier and important requirements in the field of optical networks,

and takes the intelligence strategy in the optical network based on intention-driven as the research ob-

jective. Firstly, aiming at the problem of low accuracy of service identification, this paper extracts the

diversification characteristics of different services based on the deep learning algorithm, and explores the

mechanism of service intention translation. Secondly, it focuses on the self-adaption of service transmis-

sion strategy in the optical network. In the end, a high-precision fault location algorithm for large-scale

alarm sets is proposed, and the strategy guarantee mechanism in optical networks is studied to form a

complete closed-loop policy based on intent-orient control.

Toward promoting the automatics of the network, the architecture of IDON is illustrated in Figure 1,

including three layers to make the structure efficiently. (1) In the network layer deployed with the radio

frequency resources, a mass of IoT terminal devices have been accessed through radio antennas and

connected into the network. To transport the data and backhaul to cloud, elastic optical network is used

to interconnect wireless and processing domains with the customized spectrum, which can provide the

bandwidth for users using fine granularity. The process domain, which contains computing and storage

resources in an edge cloud, integrates the functions of signal processing and content cashing. It can

pull the calculation elements in a centralized manner and make the procedure more efficient. (2) In

the control layer, configuration management of each domain has been maintained using its exclusive

software defined controller including radio access controller, optical transport controller and processing

controller. To accomplish the software defined control of heterogeneous networks, the protocol agent

would be added into the devices so as to boost the intercommunication between controllers and switches
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Figure 2 (Color online) (a) Intention translation mechanism; (b) intelligent policy generation mechanism based on RL;

(c) intention guarantee mechanism based on DNEN.

with OpenFlow protocol. (3) In the intent layer, a variety of applications that user desires to realize

have been deployed, and optical network would be utilized to meet the demand of such application

such as high-definition video, VR and automatic pilot. The user’s intent is only the objective of the

user wanted without the network parameters. There are four motivations for IDON. Firstly, the users’

intent should be automatically converted into networking service with explicit parameters utilizing deep

learning. Secondly, IDON can collect the physical information of the optical network which is marked

with various operating logs to detect whether the network system is abnormal. Thirdly, after confirming

the intent and physical parameters, the IDON architecture can generate the self-adapt policy through

integrating fine-grained policy together toward the intent goal. Finally, the self-optimization of intent

configuration is achieved through double-closed loop feedback.

3 Cooperation procedure for IDON multi-domain control

IDON mainly consists of three steps including intent translation, policy generation, and intent guarantee.

First, IDON needs to convert the intent into the configuration language understood by the device. After

that, the configuration policy needs to be generated according to the configuration parameters, such as

the routing and switching policy. Moreover, when the configuration is completed, the intent guarantee is

also needed to ensure the correct configuration of the user’s intention in case of failure. It means that a

closed-loop policy generation and optimization is required. Similarly, the close-loop intention guarantee

is also required for the automatic configuration and implementation of intent [20]. The flow step in the

IDON process shown in Figure 2 is elaborated as below.

3.1 Services feature extraction and intention translation mechanism

Different services in optical networks have different requirements for communication rate, transmission

delay and bit error rate, and it is difficult to unify them. The advance of 5G accelerates the trend of

services’ diversification and trusted multi-domain collaboration [21]. How to quickly extract the diversifi-

cation characteristics of services and intelligently analyze the intentions of different services is the premise

to realize intention driven.

In order to solve the above problems, the IDON first introduces a multi-feature extraction method

based on deep neural network algorithm, which explores the intrinsic relationship between services’ char-

acteristics and intentions. It then constructs a mapping relationship model between them and establishes

a connection relationship from services characteristics to network parameters, realizing rapid extraction

of diversified characteristics of different services and accurate identification of service intentions. The
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Figure 3 (Color online) The process of intent translation.

result of intention translation lays a crucial foundation for intelligent policy generation. The flow steps in

the intent translation process between users and the network shown in Figure 3 are elaborated as below.

First, high-level service requests are defined in a descriptive language, such as “I am requesting a

connection to high-performance calculation center”. The intent translation uses natural language engi-

neering to define requests and convert them into network commands, reconfiguring resources, preferences,

and policies. Focusing particularly on communication requirements, the approach uses natural language

processing (keyword extraction) to construct semantic graphs to understand, interact, and create the

required network configuration. The user’s intent request description will be split into several keywords

by long-short time memory (LSTM). The keywords then are mapped into the following configuration

aspects which define requirements of intent translation, such as jitter, bandwidth and delay.

Link: Link selection from source node to sink node.

Criteria: Transmission protocol standard.

Constrains: Quality of service constraints, such as delay, jitter, etc.

Interface: Switch port selection.

Network resource: Requirement of spectrum and power resources.

According to the keywords extracted by the LSTM, the process of mapping the keywords to the net-

work constraints can be described as follows. The proposal first searches for the corresponding network

constraints, and queries the corresponding network configuration parameters in accordance with the key-

word extraction results in the knowledge base (KB). For instance, “I” is translated into source address

“source: 10.0.0.1”, “high-perform calculation center” is translated into service provider address “service

provider node: 10.0.0.2” and corresponding communication requirements such as 120 M bandwidth, and

“requesting a connection” is translated into “establish connection between the source node and the service

provider node”. It is then rendered as OpenFlow rules and connected to the network configuration and

transport tools to allow the transfer of OpenFlow rules to configure the user’s intent. In the process of

intent translation, not only the configuration operation intricacy is abstracted (e.g., “I am requesting a

connection to high-perform calculation center” without explicitly giving delay, jitter and service provider

nodes along the route), but the controller still understands the intent language and configures the connec-
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tion at the underlying network to meet the requirements of users’ intent. In case of failure to satisfy the

requirement of intent, the intent will be automatically re-mapped to the constraint and the network will

be reconfigured to satisfy the requested connectivity without any users’ intervention. In short, the intent

translation mechanism provides reliable, simple, and technology-independent communication between

users and the network.

After converting the user language into the network configuration rule, Subsection 3.2 describes the

implementation of close-loop policy generation under the constraint of intent.

3.2 Intelligent policy generation mechanism based on intention driven

When different intentions are mapped to the understandable network parameters of the optical network,

the intent-driven intelligent transmission strategy on secure control is needed to be designed, and the

intelligent strategy adapted to the intentions is also necessary to be solved in the optical network [22–25].

Aiming at the above problems, the proposed IDON realizes the combination of fine-grained policies and

generates new policies utilizing deep reinforcement learning (DRL) on the basis of fine-grained policies

in the policy library [26].

The key points of intent-driven policy generation mechanism include the following two aspects. Firstly,

the information model and data model of fine-grained policy are established, and the fine-grained policy

is written into the policy library according to the model. Secondly, the reinforcement learning algorithm

is introduced to recombine various fine-grained policies into new policies. To be clear, the essence of the

intelligent policy generation mechanism in the network is to find the combination that satisfies the intent’s

requests through dynamic integration of fine-grained policies. In addition, there are thousands of atomic

strategies of network configuration. In such case, deep Q network (DQN) is an effective solution due

to its excellent reinforce composition action characteristics. The aim of DQN is to find the appropriate

component policy to best meet the requirement of user’s intent. Some important definitions related to

DQN are given below.

Definition 1 (Fine-grained policy). A fine-grained policy implements the configuration of some func-

tional nodes. For instance, fine-grained strategies include bandwidth configuration (BW config), Rout-

ing selection (Routing sel), switching selection (SW sel), service provider node selection (Ser prov), etc.

BW config includes sub policies such as dynamic bandwidth allocation (DBA) and fixed-bandwidth al-

location (FBA). The Routing sel policy includes routing policies such as greedy routing and shortest

routing.

Definition 2 (Network environment). The environment consists of network topology and node equip-

ment, internet service provider (ISP) and other components that implement network functions.

Definition 3 (Policy action). According to intent logic, fine-grained policies with different functions

are integrated into a loosely coupled, scalable, prolongable set of configurations, namely configuration

policy action. In our example, an action consists of five fine-grained policies, of which more can be added.

An policy action can be formalized as a = (BW config, Link sel, SW sel, Port sel, Ser pro sel).

Definition 4 (Network environment state). State s refers to the stage in which the network is running.

s consists of performance indicators and it can be formalized as s = (delay, jitter, packet loss probabil-

ity, connectivity rate, provider node configuration). The state of network indicates whether the intent

constraint is satisfied.

Definition 5 (Configuration reward). Configuration reward is a reward feedback function that is cal-

culated after taking a configuration policy action. Configuration score is the reward from the s to s′

state after configuration operation. The goal of selecting the best policy combination action is to find the

combination strategy with the highest cumulative reward. The more rewards DRL get, the better the

combination of fine-grained policies chosen by the DRL. Therefore, getting as many rewards as possible

is the standard of the fine-grained-based policy combination.

The following is a detailed description of the specific process of fine-grained policies composition based

on DQN. A policy library is first created with thousands of fine-grained policies, including BW config,

Link sel, SW sel, Port sel, Ser pro sel, etc. Then, after building the fine-grained policy library, we use
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DQN to combine the fine-grained policies into one configuration action. DQN is a combination of neural

network and reinforcement learning (RL). Its mathematical essence is a model for state migration using

Markov decision process (MDP). The purpose of the neural network is mainly to summarize the state-

action pairs and the corresponding configuration score. The automatic policy configuration needs to map

the observed state s to the configuration action a utilizing DQN. At each time step, current state s is

used as the input of the neural network, and then DQN obtains the configuration score of the combined

policy after the neural network analysis. And it outputs the action with the largest configuration score

as the next action according to the Q-learning principle. Next, an iterative process is performed to

learn the configuration score of the policy combination actions in any state. As a result of reinforcement

learning, the DQN agent selects an action from the optimum legal combination of fine-grained policies in

accordance with the network state and constraints of intent translation.

We take one configuration strategy shown in Figure 4, which is one of combinations of the fine-grained

strategies. It is assumed that the network is in state s1, and there are two combinations a1, a2 of fine-

grained policy actions. In the s1 state, the potential reward for taking a1 is higher than a2 based on

past experience. Here, we can use a configuration score (CS) table with s and a instead of the potential

reward. In the DQN memory CS table, CS(s1, a1) = 2 is greater than CS(s1, a2) = 1, so the DQN

agent decides to choose a1 as the action to take. Now that state s is migrated to s2, we still have two

identical choices, and repeat the above procedure. In the CS table, DQN agent compares the value of

CS(s2, a1), CS(s2, a2), and then chooses the larger one. Then the environment reaches s3 after acting

and repeats the above decision process here. The CS table finally indicates in what way it is changed

and promoted. According to the estimation of the CS table, because the CS value of a1 is relatively large

in s1, the agent executes a1 in s1 through the previous decision method, and arrives at s2. We multiply

the CS(s1, a2) obtained by an attenuation value γ = 0.9 when it reaches s2. Getting the real reward R

from network environment, the agent takes this as the value of CS(s1, a2) in reality. We also have the

estimation value of CS(s1, a2) in the CS table. So, we can update CS(s1, a2) based on the difference

between the estimation and the reality. Multiply this difference by a learning efficiency alpha, and plus

the value of the old CS(s1, a2) to be the new value. Moreover, epsilon greedy ǫ is used in decision making

one strategy. Epsilon is equal to 0.9, indicating that agents choose the best action in optimal CS table

with 90% probability, and it will provide the opportunity with 10% probability for the combination of

other strategies using the random selection action.

Finally, the action is transmitted to the controller. If the selected action is successfully executed without

against constraint of the intent, then modify the network environment internal state. The agent receives

a reward R indicating a change in the configuration score. In the case of violation of the constraint, the

reward becomes a negative number for penalty. The state s maintains its stage and the DQN reselects

the policy combination and executes it. The iteration does not terminate until the reward converges. In
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the above steps, the DQN agent learns through the interaction with the environment in a trial and error

manner.

In addition, we use a technique called experience replay. In the process of multiple episodes, the agent

uses e-greedy to select the action at each step, and generates experience et = (st, at, rt, st+1). et will

be stored in a memory dataset Dt = (e1, . . . , en). During the loop, we apply Q-learning principle to

sample of experience library, which is randomly extracted from the stored memory and can be defined

as (s, a, r, s′) ∼ U(D), randomly extracted from the stored memory. The model ultimately learns how to

combine the strategies to satisfy each intent constraint in each state. Under the constraints of the intent

translation, the DQN agent learns in an iterative manner through interaction with the environment,

seeking for combination actions of fine-grained policy that can achieve those intent goals.

Finally, after the above steps, we get the network configuration policy, and then send the policy to the

controller NETCONF for network configuration. However, the implementation of the above procedure is

not enough. IDON also needs a guarantee mechanism to ensure the realization of the intention in case

of failure.

3.3 Optical network intention guarantee mechanism

Due to the characteristics of high bandwidth and wide coverage in B5G, the number of optical network

nodes and links is increasing, and the network structure is becoming more and more complex, resulting in

more risk of failure [27]. In case of failure, how to guarantee the intent is also a key for close-loop zero-touch

operation. When intent-driven generation of intelligent policies is launched and executed, it may face

the difficulty of not adapting to the abrupt optical network environment. Therefore, the construction

of intention guarantee mechanism is the necessary requirement to realize the complete closed-loop of

intention-driven optical network.

To this end, the intent guarantee mechanism based on deep neural evolutionary network (DNEN) is

introduced, ensuring a high-precision fault location with large-scale fault sets collected from network [16].

It can effectively deal with the fault problems in optical networks, maximizing the protection of intent,

and achieve the complete closed-loop of intent control.

The monitor module of the controller monitors the abnormal state which breaches the constraints of

intent in the network, namely alarm information. The controller then analyzes the alarm set collected from

the configuration log to obtain the type, location, and the number of failures, and constructs an abstracted

topology view of the fault distribution. It is noted that there is an intrinsic relation among the fault

alarms for the complexity of the optical network topology, which is embodied in two aspects [28]. First,

the fault can continuously cause multiple alarm messages. For instance, the bandwidth configuration

does not meet the intent constraint, resulting in resource alarms, connection alarms, routing alarms, etc.,

meaning that other faults can be triggered by a fault. Secondly, due to the connectivity of the network

topology, the alarm information has a certain relationship in the space dimension. For instance, the port,

switching, and routing configuration have the relation in terms of the network topology space. Therefore,

when encountering a large amount of alarm information, deeply hidden fault features must be extracted

and real faults should be accurately found from complex relationships. Most of deep neural networks use

gradient descent to train models. In the process of the gradient descent, the neural networks easily tend

to be trapped by local optimization. However, DNEN constantly tries to mutate, and modify the weight,

resulting in changing the training results of the neural network. It finally retains the well-performed

model, and eliminates the poorly behaved models. As a result, it can jump out of the local optimization

to find the global optimum. Therefore, DNEN with excellent global search capability can be well applied

to the fault location during the intent configuration in optical networks.

The specific steps of applying the DNEN to fault location featuring sophisticated relation shown

in Figure 5 are illustrated as follows. In the control plane, the central controller collects operation

and maintenance data, including alarm information from all transport and control nodes. Due to the

connectivity of the network topology, an enormous amount of alarm information would be collected by the

controller when the network configuration operation fails to meet the requirement of intent constraints.
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The mutation is the most important step in the evolutionary process of DNEN. Figure 5 shows the

initial neural network structure and gene coding for the more precise location of configuration fault in

DNEN. The first step is tantamount to initialize the structure of the neural network and encode the

genome. Moreover, in order to satisfy the randomness of DNEN, a large number of neural networks

are generated as the initial population. The normal distribution method is used to perturb the neural

network weight parameters in DNEN. After that, the reward and utility of fault location will be used to

update the weight parameters of neural networks. The neural network connection weights and connection

forms have evolved, and we can obtain neural network structures that comply with the requirements of

the final evolutionary genetic code. A neural network with higher adaptability has the advantage of

breeding offspring and maintaining good features. This procedure has continued until the adaptability

of the new neural network meets the requirements of extraction and precise for fault location.

Owing to the constant evolutionary state, the neural network structure of DNEN is different from the

traditional multilayer neural network [16, 29]. Through evolutionary neural networks, we can find faults

during the configuration process and re-select configuration policies to safeguard users’ intent. DNEN not

only makes fault location more precisely, but also ensures that each intent has a guarantee mechanism

to execute in case of failure [30].

4 Performance analysis and results discussion

To verify the efficiency of the proposed IDON architecture, we have built a SAGO-IDON platform on

SDON testbed with a fat-tree topology, which includes access domain optical domain and computing

domain as well as 16 hosts with discrete intent event simulation. OpenAI Gym is also utilized to as-

semble core tools including network topology, discrete intent event generator, and monitor. Two major

components of our platform are SDON real-time network emulator and the python library ray project

that integrates the SAGO with the network emulator. The SAGO collects occupancy of switch, jitter,

delay, and active flows as the environment state input. The emulator has run 35000 timesteps so as to

prove enough significant robustness and stability level of proposed IDON architecture. Each timestep

is set to 0.5 s to give enough time to collect the changing state of the network, meaning that it lasts

for about 7 h under this step size in each running. The experimental steps are shown as follows. The

intent is to input the LSTM model constructed by Keras for semantic segmentation and then map to

network parameters. The parameter result of the intent translation is sent to the RL model, in line with

the parameter, the RL selects an appropriate configuration action to generate corresponding flow rule for

NETCONF. The monitor feedbacks the real-time states of the network to RL model. The configuration

operation would finish when achieving the optimal configuration reward calculated based on the network

status and intent expectation. Once failures appear and affect the intent configuration, DNEN locates

the fault position according to the collected alarm set. Moreover, the location result is to be sent to

the RL model for reselecting the configuration action. Once the running is accomplished, the proposed
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Figure 6 (Color online) Illustration of DNEN scheme.
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Figure 7 (Color online) Illustration of DNEN scheme.

architecture is verified on the basis of performance metrics such as cumulative configuration rewards,

configuration time, and queue length.

Cumulative rewards of SAGO configuration. The results of intent translation and SAGO con-

figuration action policy are shown in Figure 6(a). We can see that the result of intent translation is to

map the natural language to several constraints such as source node destination node, delay bandwidth,

jitter, etc. Then, according to the result of the intent translation, IDON executes the intelligent auto-

matic operation. The variations in cumulative rewards with respect to training episodes are shown in

Figure 6(b). As seen in this figure, it can be seen that SAGO gets the highest configuration rewards,

which indicates that the proposal can learn a positive policy under the constraints of intent translation.

SAGO also has been compared with the policy gradient (PG) network and benchmark configuration. In

the initial training, the performance of the proposal is not well-perform than the others. This is because

SAGO is constantly exploring various configuration policies. But it gradually learns how to configure in

the best way and outperform the others until the 30th episode.

Impact on configuration time. Figure 7(a) presents the variation on configuration time with

the passage of timestep. It can be seen that the configuration time of SAGO is shorter than PG and

benchmark after 5000 timesteps. This is because the SAGO can quickly execute the corresponding policy
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generation process after intent translation without parsing the flow table for configuration. Moreover,

DNEN can locate the position of fault configuration at the millisecond level, ensuring the reconfiguration

of closed-loop operation in case of failure. With the aid of DNEN’s fast and accurate fault location,

SAGO can reconfigure the network for failure in goal manner, avoiding the configuration of nodes on the

routing path. Thus, the proposal cuts a large amount of configuration time as well as decreases the risk

of configuration failure.

Impact on queue length of switching. The variations in queue length of switches, namely pending

intent services, with respect to the time steps are shown in Figure 7(b). As seen in the figure, after

intelligent control of SAGO-IDON, the queue length of the proposal is distinctly lower than the bench-

mark method and PG. This is because that SAGO takes global optimization of network system into

account through introducing the evaluation criterion of configuration rewards, maximizing rewards of

configuration operation. It means that the intent-driven intelligent control is considered from the global

optimal point of view in IDON with SAGO. Overall, SAGO-IDON is endowed with a promising future

in achieving zero-touch control of the optical transport network operation.

5 Conclusion and future work

This article presents a novel intent defined optical network architecture for achieving zero-touch opera-

tion, which can solve the intent-based networking operation and maintenance issue without the manual

intervene. We have investigated and presented the functional entities of the architecture and interworking

procedure in optical network automatic operation. The performances are demonstrated on the testbed

for intent-based control. Our experiments verify that IDON with SAGO can effectively perform the

intent translation and zero-touch configuration. The two closed loops, including closed-loop policy and

closed-loop intent, strongly safeguard the operation of the zero-touch configuration.
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