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Abstract In this paper, we propose a low-complexity frequency slicing deep neural network (FSDNN) for

wide-band signal post-equalization in a 1.2 m underwater visible light communication system. FSDNN and

deep neural network (DNN) outperform the least mean square equalizer. Then, by splitting the received signal

into two parallel signals using a digital low-pass filter and a high-pass filter, we demonstrate that the FSDNN

significantly reduces the complexity of the traditional DNN post-equalizer. Moreover, the complexity of the

FSDNN decreases considerably to 11.15% compared with the conventional DNN for a 2.7 Gbit/s wide-band

transmitted signal with a similar bit error ratio performance.
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1 Introduction

There is significant increase in the interest of underwater visible light communication (UVLC) systems re-

cently, offering the higher transmission rate and the longer transmission distance compared to the acoustic

communication and the radio frequency (RF) transmission [1]. In addition to the benefits of eye-safe, low-

latency, and license-free, LED-based UVLC demonstrates high robustness through a giga-bit-per-second

capacity of underwater error- free transmission in many studies [2–6]. Among these studies, the advanced

modulation formats, such as discrete multi-tone (DMT) and pulse amplitude modulation (PAM), signif-

icantly improved the transmission performance of the UVLC system. An alternative to DMT and PAM

is a carrierless amplitude and phase (CAP) modulation. This scheme was proposed in VLC, showing

a relatively lower complexity and peak-to-average ratio as compared to orthogonal frequency division

multiplexing (OFDM) in [7]. Moreover, the CAP modulation with quadrature-amplitude-modulation

(QAM) theoretically has higher spectral efficiency compared to PAM with only the amplitude informa-

tion of signal [8]. Except for the advanced modulation format, various equalization schemes, especially

the artificial intelligence (AI) based deep neural network (DNN), can significantly increase the spectral

efficiency of the optical communication systems [9,10]. From the superior ability to fit complicate nonlin-

ear functions, the DNN becomes a promising equalizer at the receiver side of the VLC systems. Zhao et

al. [6] utilized Gaussian kernel-aided DNN (GKDNN) as a post-equalizer to achieve 1.5 Gbit/s high-speed

PAM-8 UVLC. Furthermore, Li et al. [11] achieved 2.4 Gbit/s CAP-modulated VLC system with the

DNN post-equalizer over 1.1 m free-space link. Though the DNN comfirms a better equalization per-

formance than other traditional adaptive equalizers in many optical communication scenarios [5,12], the
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high computation complexity of the proposed DNN constrains its wide-spread application. Hence, de-

signing a low-complexity DNN with outstanding equalization performance requires further investigations

using LED-based UVLC systems.

Therefore, in this paper, we design and propose a low-complexity frequency slicing DNN (FSDNN),

as the first-stage post-equalizer in our 1.2 m CAP-UVLC system. Inside the FSDNN, two finite impulse

response filters are utilized to split the received wide-band signal into two parallel narrow-band signals,

which are expected to relieve the equalization pressure for followed DNN. Thus, the complexity of the

FSDNN is decreased to a lower value than the traditional method using a single DNN to equalize the

whole-band signal. For proof of concept, a 2.7 Gbit/s wide-band CAP-QAM-64 signal with the bias

current of 135 mA and the peak-to-peak voltage of 0.9 V is transmitted over 1.2 m UVLC link. The

performance of the least mean square (LMS) equalizer, Volterra nonlinear equalizer, tradition DNN and

FSDNN are fairly compared in the same condition. The experimental results demonstrate not only

that both the FSDNN and DNN outperform LMS and Volterra equalizer, but also the complexity of

the FSDNN significantly decreases to the 11.15% compared with the traditional DNN. Aslo, a simple

structure of the FSDNN adds more robustness when varying peak-to-peak voltage (Vpp) and bias current.

2 Principle

The underwater channel brings a big challenge for high-speed transmission due to its higher attenuation as

compared to the common free-space channel. Specifically, the power attenuation for blue light in water is

0.4 (ocean)–11 (turbid) dB/m [13]. Conversely, the attenuation for clear air with visibility of 20 km is only

0.0007 dB/m at the wavelength of 650 nm [14], which is much lower than the underwater channel. More

details of the underwater channel information can be studied in [13, 15, 16]. Based on the characteristics

of the underwater channel and optoelectronic devices, there exists several linear and nonlinear distortion

in the UVLC system. First, LED is a bandwidth-constraints optoelectronic component with only around

20 MHz bandwidth if pre-equalization technology is not applied [17]. This nature of LED brings severe

frequency fading issue observed in Figure 1(a). There is an apparent amplitude attenuation at the high-

frequency domain of the received signal (Rx), resulting in the unignored inter-symbol-interference (ISI)

among time-domain symbols. Further more, the nonlinearity of the UVLC also constrains the high-speed

transmission, which is mainly induced using the nonlinear electro-optic response of the LED [5], the non-

linear amplification of electrical amplifier [18], and the square-law detection of photodiode [19]. Damaged

by these nonlinear effects, the constellation of the received signal at the Vpp of 0.9 V (Figure 1(b)) is no

longer as the standard lattice structure as that at the Vpp of 0.7 V (Figure 1(b)), causing extra symbol

errors during the hard decision step. To comprehensively equalize the linear and nonlinear distortion,

the DNN serves as an outstanding nonlinear post-equalizer due to its unique multi-layer structure, back-

propagation algorithm and the advanced activation function. However, the neural network (NN) must be

complex enough to handle the complicated linear and nonlinear distortions, which are explicitly hidden

in a wide-band signal. For example, the DNN in Figure 2 of Ref. [4] is with three hidden layers and more

than 100 nodes in every hidden layer to guarantee its adaptive equalization ability.

In fact, the damage to the high-frequency and low-frequency domain of the received signal is different,

suggesting that the complexity of the DNN can be relieved if these two parts of signals are equalized

separately. It is obviously observed that the frequency response of the received signal between 50 MHz and

300 MHz is relatively even as compared to the high frequency range (300–500 MHz) in Figure 1(a). If we

consider two uniform root-raise-cosine (RRC) filters f1(t) and f2(t) (filters 1 and 2 in Figure 2) with the

roll off factor of 0.1 and the length of 165. Their central frequency point is respectively ( (1+rf)×BW
4 + Z

2 )

and (3×(1+rf)×BW
4 + Z

2 ). The BW, rf and Z represent the bandwidth of the transmitted signal, roll-off

factor of the CAP signal (0.205), and a few abandoned low-frequency bandwidth (30 MHz), respectively.

The subband signals S1(t) and S2(t) are obtained by filtering the received signal R(t) with filters 1 and

2. Their relation can be expressed as

Si(t) = R(t)⊗ fi(t), i = 1, 2, (1)
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Figure 1 (Color online) (a) The frequency response of received CAP signal (Rx) and transmitted CAP signal (Tx) with

the bandwidth of 450 MHz in our UVLC system. The constellation comparison in the case (b) with nonlinear effect and

(c) without nonlinear effect in the UVLC system (w: with. w/o: without).
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Figure 2 (Color online) The schematic of FSDNN.

where ⊗ represents the convolution operation. The two subband signals are then equalized by their

own fully-connected DNNs. After reassembling two output signals from DNN through a simple addition

process, the equalized signal after FSDNN satisfies that

E(t) = D1(S1(t)) +D2(S2(t)), (2)

where Di(·) denotes the equalization operation of the i-th DNN. At the addition step, the selection of the

cut off frequency for f1 (t) and f2 (t) significantly influences the quality of the recovered signal. Cut off

frequency mainly depends on the bandwidth and roll-off parameter of the filter. Therefore, the bandwidth

BW1 of both f1 (t) and f2 (t) can be defined as

BW1 =
BW × sps1

sps2
, (3)

where sps1 and sps2 are respectively defined as the samples per symbols for shaping filter and for f1 (t)

and f2 (t). The sps1 in this study is 4. If the sps2 is 8, which means BW1 is exactly half of the width

of the shaping filter. No spectrum overlapping exists between f1 (t) and f2 (t). Hence, a drop occurs

in the middle of the spectrum for E(t) after the addition process. Similarly, if sps2 is 6, too much

spectrum overlapping will cause a small peak in the middle of the spectrum for E(t). All these cases

result in signal distortion. According to the results in Figure 3, the suitable value of sps2 is 7. Next, the

roll-off factor can be slightly tuned to obtain an optimal shape of the spectrum. From Figure 2, most

of the high-frequency fading from the channel is well compensated after the FSDNN. The normal CAP

demodulation is followed after such first-equalization of FSDNN. For the conventional DNN equalization

scheme, it has been specifically states in [4, 6, 11].
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Figure 3 (Color online) The frequency spectrum of recovered signal when (a) sps = 6, (b) sps = 7, (c) sps = 8.
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Figure 4 (Color online) Experimental setup. AWG: arbitrary wave generator. EA: electrical amplifier. Eq.: Equalizer.

TIA: trans-impedance amplifier. OSC: oscilloscope. LPF: low pass filter. HPF: high pass filter. LFSDNN: the sub-FSDNN

with the low-pass filter. HFSDNN: the sub-DNN with the high-pass filter.

3 Experimental setup

Figure 4 shows the experimental set up of the FSDNN-aided CAP modulation LED-UVLC system. The

original bit sequence of a data stream gets mapped into the 64-QAM signal. After 4-times up-sampled,

the in-phase (I) part and quadrature (Q) components of the up-sampled sequence are filtered accordingly

using digital pulse shaping filters f(t) [20]. The outputs of the filters are subtracted to generate the

time-domain CAP-QAM-64 signal sequence. Moreover, the generated signal sequence is fed into the

arbitrary wave generator (Tektronix AWG710B) to convert a digital signal with a specific sample rate

to the analog electrical signal. Through hardware equalization [17] and amplified using a commercial

power amplifier (mini circuits ZHL-6A-S+), the electrical signal is coupled with direct current bias by a

bias-tee (mini circuits ZFBT-4R2GW-FT+) to drive a blue LED manufactured by Nanchang University.

Two collimation lenses are put in a 1.2 m underwater transmission path. The optical signal is captured

using a PIN photodiode (Hamamatsu 10784) and transformed into an electrical signal. The signal is also

amplified using the trans-impedance amplifier (TIA) and power amplifier. Finally, the signal is resampled

using an oscilloscope (KEYSIGHT DSO9404A) for further digital signal processing (DSP). At the DSP

part, the resampled signal sequence is first synchronized and then fed into the FSDNN to do the first-

stage equalization. The equalized signal is then down-converted from the real signal to the complex signal

using the matched filters g(t) with relations as g(t) = f(−t). After down-conversion and down-sample,

the complex signal goes through a LMS adaptive filters serving as a 2nd stage equalizer to deal with the

residual linear distortion. Finally, the data sequence is recovered using the QAM de-mapping.
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Figure 5 (Color online) BER results versus epoch when (a) DNN has one or two hidden layers, (b) FSDNN has one or

two hidden layers.

4 Results and discussion

In order to reach the best transmission performance in CAP-UVLC system, the parameters of the two-

stage post-equalizers should be fixed to the optimal values. In this section, we discuss the following three

main factors in detailed according to the adjustable parameters of NN [21]:

(1) The number of layers of the DNN and FSDNN.

(2) The number of nodes in every layer of the DNN and FSDNN.

(3) The best taps and step size (u) in the 2nd-stage LMS equalizer.

Once the optimal structure of the FSDNN and DNN is fixed, the comparison of bit error ratio (BER)

performance at different Vpp and bias current, as well as the convergence speed are followed. Thus,

assuming one of the DNN inside the FSDNN equalizing the low-frequency signal is named LFSDNN, the

other one equalizing the high-frequency signal gets named HFSDNN. The training of NN depends on the

train set. The measurement of the BER performance is based on the test set and the NN after training.

Hence, overlapping does not occur on the data set among the train set and test set.

Figure 5 shows the BER performance of the DNN and FSDNN when they have one or two hidden

layers. The other parameters, except for the number of layers, are initially kept constant. To prevent

the DNN from underfitting due to the simple structure, the number of the input nodes, and nodes in

each hidden layer and output layer is 15, 64, and 1, respectively. Therefore, only the number of layers

is adjustable. For the FSDNN, a relatively complicate LFSDNN is initially fixed to look for the optimal

number of layers in the HFSDNN. Then, the optimal number of HFSDNN is determined in the same

method. The results in Figure 4 demonstrate both the DNN and FSDNN with two hidden layers reaching

the similar equalization performance with only one hidden layer. However, when epoch increases, the

BER performance approaches a fixed value, suggesting no underfitting and overfitting problem happening,

and only one hidden layer is enough to cope with the distortion in time-domain in the least complexity

penalty.

Next, the optimal taps of the DNN and FSDNN are determined when fixing the number of the hidden

layer and epoch is 64 and 15, respectively. As the taps of the DNN get rising, the DNN considers a broader

range of interference between the symbols. Accordingly, the BER gets decreasing (Figure 6(a)). However,

the degree of symbol distortion induced by the ISI and system nonlinearity is finite, the optimal taps of

DNN is 21. The longer taps will not bring more gain in the BER performance. For the FSDNN, the best

taps of the HFSDNN and LFSDNN are 5 and 3, respectively, which is smaller than the DNN because

the input data sequence is a narrowed signal instead of a wide-band signal. There is less distortion in the

narrow-band signal requiring fewer taps in the FSDNN to handle as compared to the DNN.

After fixing the number of layers, taps, the number of nodes in the hidden layer influences the regression

ability of the DNN for dealing with the linear and nonlinear damage. Few nodes will weaken the study

ability of the NN. However, too many nodes will increase the complexity of the NN, still, distortion is

hardly mitigated completely limited by the update algorithm, the scale of the train set and the random



Chi N, et al. Sci China Inf Sci June 2020 Vol. 63 160303:6

4 8 12 16 20 24 28

1×10−3

0.01

0.1
 DNN

@3.8×10−3

B
E

R

Taps

Best taps = 21

0 2 4 6 8 10 12 14 16

0.002

0.004

0.006

0.008

0.01

@3.8×10−3

B
E

R

Taps

 HFSDNN

 LFSDNN

Best taps = 3
Best taps = 5

(a)
 

(b)
 

Figure 6 (Color online) BER performance versus different taps of (a) DNN and (b) FSDNN, including HFSDNN and

LFSDNN. Taps is the number of input nodes in input layer.

5 10 15 20 25 30
0.002

0.003

0.004

0.005

0.006

@3.8×10−3

B
E

R

Number of nodes

 HFSDNN

 LFSDNN

Best number = 13

0 10 20 30 40 50 60

0.002

0.003

0.004

@3.8×10−3

B
E

R

Number of nodes

Best number = 53 

(a)
 

(b)
 

Figure 7 (Color online) BER performance versus different number of nodes in hidden layer of (a) DNN and (b) FSDNN.
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Figure 8 (Color online) BER performance versus different (a) taps and (b) step size (u) in the 2nd-stage LMS equalizer.

Gaussian white noise, indicating the BER will fluctuate around a fixed value when the number of nodes

increases. Therefore, the best number of nodes in the DNN, HFSDNN and LFSDNN is 53, 13 and 13,

respectively (Figure 7).

From the earlier discussion, the optimal structure of the DNN and FSDNN is both 3-layer structure,

respectively with nodes of 21, 53, 1 and 5, 13, 1 for HFSDNN and 3, 13, 1 for LFSDNN in every layer.

Based on the structure without the first-stage equalizer, we also iterate the taps and step length (u) of

LMS equalizer to find the best structure of LMS equalizer (Figure 8). Similarly, the best taps and u are

31 and 0.0065 since the LMS equalizer is only a linear equalizer with limited equalization performance.

The optimal structure of the DNN and FSDNN is established at the Vpp of 0.9 V and the current of

135 mA. In order to prove the robustness and efficiency of the FSDNN at other Vpp and current, we

compare the BER performance of LMS, Volterra, DNN plus the LMS and FSDNN plus LMS at other

Vpp and currents with the same network structure. The results are plotted in Figure 9, showing that
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Figure 9 (Color online) BER performance versus (a) different bias current and (b) Vpp for LMS, Volterra, DNN plus

LMS and FSDNN plus LMS under the optimal structure. Insets: the constellation of the equalized signal using FSDNN at

the certain Vpp of (i) 0.5 V, (ii) 0.7 V, (iii) 0.9 V and at the certain current of (i) 115 mA, (ii) 135 mA, (iii) 155 mA.
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the FSDNN has similar BER performance as the DNN, and both of them successfully lower the BER

of the case only with LMS post-equalizer. When the Vpp is around 0.3 V, the UVLC system is mainly

restrained by the low signal-to-noise ratio (SNR). The enhancement from DNN and FSDNN is little

because the random Gaussian white noise cannot be well fitted and combated using the NN. Adversely,

DNN and FSDNN significantly reduce the BER when the Vpp is at 0.5 V and 0.7 V, since the linear

distortion like the ISI becomes the main limitation to the UVLC as the SNR increasing. When Vpp is

higher than 0.9 V, the high amplitude of signal brings the severe nonlinear effect which consists of the

high order of signals, such as the square and the cubic of signal amplitude [22]. Though the complexity of

the FSDNN is lower than the DNN, the DNN has better nonlinear resistance than FSDNN because it has

the information of the whole wide-band signal to facilitate fitting the nonlinearity. Then, each FSDNN

is only trained by part of the wide-band signal. When the current changes from 95 mA to 175 mA, the

BER of FSDNN is at a similar level with DNN in general. However, at the current of 95 mA and 175 mA,

which are the currents farthest than 135 mA, the FSDNN outperforms DNN due to its simple structure,

which brought better robustness.

Finally, we conclude the optimal structure and complexity analysis of the DNN and FSDNN in Fig-

ure 10. In this paper, we use spatial complexity which is the number of weight parameters needed to

update during the update process to stand for the complexity of them. Derived from [23], the complexity

of the NN is I×H+H×O. Therefore, the complexity of FSDNN is (3×13+13×1)+(5×13+13×1) = 130.

Further, the complexity of the DNN is (21× 53+53× 1) = 1166, which is almost 9 times compared with

the FSDNN. Using the method of the frequency slicing, the complexity of the FSDNN shrinks to 11.15%

of that of the DNN.
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5 Conclusion

We first designed and proposed a low-complexity FSDNN which has a better equalization performance

compared to the LMS equalizer and similar equalization performance as the traditional DNN. Moreover,

by introducing two root raised cosine (RRC) filters to split the wide-band signal into two narrow-band

signals, the method of frequency slicing successfully suppresses the pressure during the NN training.

Further more, we discussed the optimal structure of the DNN and FSDNN at the Vpp of 0.9 V and the

current of 135 mA. Based on the optimal structure, we confirmed the complexity of the FSDNN only to

be 11.15% compared with the DNN. Aslo, the FSDNN has a similar equalization performance with the

DNN at other Vpps and currents. Although the DNN has better nonlinear resistance, the FSDNN shows

superior robustness than DNN, whereas linear noise is the main limitation of the UVLC system.
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