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Abstract Over the past few decades, the demand for the capacity and reliability of optical networks has

continued to grow. In the meantime, optical networks with larger knowledge scales have become sources of

numerous heterogeneous data. In order to handle these new challenges, many issues need to be resolved,

among which the low-margin optical networks design, power optimization, routing and wavelength assignment

(RWA), failure management are quite important. However, the use of traditional algorithms in the above four

applications shows some shortcomings. Fortunately, artificial intelligence (AI), especially machine learning

(ML), is regarded as one of the most promising methods to overcome these shortcomings. In this study, we

review the applications of ML methods in solving these four issues. Although many ML-based researches

have emerged, the applications of ML techniques in optical networks still face challenges. Therefore, we also

discuss some possible future directions of investigating ML-based approaches in optical networks.
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1 Introduction

With the rapid progress of Internet services, 5G technologies [1], Internet of Things and so on, the traffic

demand of optical networks has been ever-increasing. Such demand puts forward higher requirements for

the capacity and reliability of the next generation optical network. In the past few decades, the capacity

of fiber transmission systems has been remarkably increased and is now approaching the theoretical limit.

Fortunately, with the development of elastic optical network (EON), network resources, e.g., spectrum,

route, optical power, etc., can be utilized more efficiently to extract more capacity [2]. In addition,

margins can be minimized so as to avoid resource underutilization [3]. On the other hand, reliability of

optical networks is also of great importance. Since a massive amount of data is transmitted in optical

networks, even a tiny disruption of a service may cause huge losses for customers.

As described above, the next generation optical network is expected to be more resource-efficient and

more reliable, which requires intelligent and dynamic control of the system. The controller needs to be

able to adapt the physical layer to the dynamic links and make proper strategies, among which the design

of low-margin optical network, power optimization, routing and wavelength assignment (RWA) and failure
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management has drawn many attentions. Their functions are described as below. The design of low-

margin optical network aims to extract capacity from spare margins. The power optimization applications

can help obtain further capacity through adjusting the launch power of each lightpath [4]. The RWA

applications allocate route and wavelength effectively, thus reducing blocking rate for a better resource

utilization [5]. The failure management performs detection, identification and localization of anomaly

that degrades performance of the system [6]. In many previous studies, traditional algorithms based on

mathematical models have been widely studied. However, many of them show deficiencies in modern

optical networks, because the optical networks are typically dynamic and heterogeneous, and analytical

algorithms based on static models may be hard to fulfill the requirements [7]. Fortunately, the fast-growing

artificial intelligence (AI) methods provide a promising alternative to build these applications [8]. The

AI techniques are especially suitable for complex modeling and can adapt themselves to the dynamic

system. In this study, we review the recent progress of applying AI to optical communication systems

and networks, focusing on the design of low-margin optical networking, power optimization, RWA and

failure management. In addition, the challenges of using AI in these scenarios are discussed, and the

future of AI-enabled optical networks is outlooked.

The rest of the paper is organized as follows. In Section 2, we introduce the requirements for the

next generation optical networks and motivations of applying machine learning (ML) to fulfill these

requirements. In Section 3, the applications of ML in the aspects of designing low-margin network,

power optimization, RWA and failure management are discussed, respectively. In Section 4, we review

the recently reported experimental verifications of using ML in optical networks. Section 5 discusses the

future directions and challenges of applying AI in optical networks. Finally, we give the conclusion in

Section 6.

2 Background and motivations

In this section, we first describe the requirements of the next generation EON, and then provide a brief

introduction of the ML, followed by the elaboration of the advantages of adopting ML, to help readers

better understand these new technologies.

2.1 Requirements of management and control applications in optical networks

In order to improve the capacity and reliability of optical networks, the control of network needs to be

fast-response, autonomous and intelligent. The detailed requirements are elaborated as below.

• Fast response. Since optical networks are changing dynamically, the control of the EON should

be capable of tracking changes and making decisions accordingly. To adapt to the real-time status of

optical networks and guarantee the transmission performance, many applications in the control layer

need to respond in a short time. For example, failures in optical networks may result in network service

interruptions, affecting tens of thousands of users and causing huge economic losses. Therefore, it is

essential for the controller to recover links to the normal state as fast as possible [6].

• Automation and intelligence. The increase of network complexity requires the control of optical

networks to be more intelligent and autonomous [9]. The increase of network complexity mainly comes

from: (1) a great number of devices, protocols and applications are applied to optical networks, which

greatly increases the heterogeneity of the network [10]; (2) the development of coherent transmission

technologies including advanced coding, modulation and digital signal processing (DSP) introduces a

large number of adjustable system parameters, e.g., modulation format, symbol rate, coding scheme,

DSP configurations, etc. [11]. The increase of network complexity increases the difficulty of the network

control, and it is preferable to build an autonomous and intelligent optical network.

2.2 Brief introduction of ML

As a branch of AI, ML can learn system patterns from a given dataset. Depending on the different types

of the outputs, ML attempts to solve two categories of problems: classification (for discrete outputs)
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and regression (for continuous outputs). A typical workflow of ML consists of two phases: training and

inference. At the training phase, ML methods are applied to learn the system characteristics using the

training dataset. At the inference phase, the system obtains the estimated output for each new input.

The categories of ML can be divided into supervised learning (SL), unsupervised learning (USL) [12]

and reinforcement learning (RL) [13]. SL utilizes a known output (labels) to establish a mapping between

the input and output data. USL algorithms classify a set of data or discover the relationships among

data without any label-driven feedback mechanisms [7]. In the area of optical networks, these two groups

of algorithms are mainly investigated in the applications such as designing low-margin optical network,

power optimization and failure management. RL refers to the mechanism that the agents interact with

the environment periodically to obtain the feedback on the previous decision from the environment so as

to make next decisions. RL is particularly useful in uncharted territories since it can learn from its own

experience instead of getting trained with labeled datasets [12]. Most RL algorithms can be performed

in the context of Markov decision process (MDP) and are often applied to solve RWA problems.

2.3 Advantages of ML-based methods

• Data-driven. For modern optical networks, there is a large amount of underutilized data which can be

retrieved from network telemetry, quality indicators, network alarms, traffic traces, user profiling, etc. [11].

These data can be applied to monitor the networks but the underlying relationships among them are

unclear. In this case, ML can show its advantages in discovering the hidden relationships between various

types of information, thereby performing data-driven tasks with limited manual intervention [14]. For

instance, the amplitude noise and phase noise correlations of the received symbols implicitly exhibit the

same trend of the nonlinear noise [15], and the ML can make use of abundant data from experiments and

simulations to learn such a relationship for nonlinear impairment monitoring.

• Self-adaptiveness. Many applications aim to optimize network performance and update network

parameters through continuously monitoring the network environment. Analytical methods are often

based on specific assumptions and constraints, which may not be compatible with such a target. On the

contrary, ML shows its advantage in the ability of self-adaptiveness [7]. Compared with analytical models,

ML can comprehensively analyze multi-domain data and adapt itself to the real-time conditions [16].

3 Review of the applications of ML-based methods in optical networks

3.1 Design of low-margin optical networks

In general, to ensure the quality of transmission (QoT) of an optical system, operators tend to set a

high margin and prefer not to make any changes once the service is established. This kind of design

strategy is the well-known “set and forget”. However, with the physical layer approaching the theoretical

limit, this traditional design method seems a waste of spectrum, and needs to be changed to fulfill the

ever-increasing demand of the capacity. Therefore, the design of low margin optical networks has been

drawing increasing attentions and many studies have been reported. In this subsection, we first explain

the concept of the link margin and then review the previous studies on applying ML techniques to the

design of low margin optical networks.

As described in [17], link margin can be classified into three types. Unallocated margins are caused

by the mismatch between the required capacity demand and that of the equipment actually deployed. It

can be addressed by using the bandwidth variable transponder (BVT). System margins are caused by the

time-varying effects of a system, such as the aging or the increasing loading. Design margins are caused

by the inaccuracy of planning tools. To reduce these margins, many investigations have been conducted,

most of which focus on reducing design margins and system margins. The details are discussed as below.
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Figure 1 Block diagram of ML-aided fiber nonlinearity modeling [29].

3.1.1 The reduction of design margins

The current QoT tool mainly consists of approximate mathematical models such as the Gaussian noise

(GN) model [18]. These mathematical models are based on some ideal assumptions (e.g., the transmitted

signal is assumed to behave as stationary Gaussian noise [18]), which may not be compatible with practical

situations. Besides, the parameters input to the model exacerbates the inaccuracy owing to the imperfect

knowledge of the physical layer [19]. To overcome these two disadvantages of traditional QoT tools, many

ML techniques have been investigated recently.

In [20], the ML model is combined with the physical layer model (PLM) to estimate the QoT per-

formance. In this study, the uncertainty of the input parameters can be effectively reduced, and the

accuracy of the estimating model can also be improved if more data from the network topology can be

obtained. In [21], Gaussian process regression is used to estimate the optical signal-noise-ration (OSNR)

of the link, and the mean-square error (MSE) is only 0.7 dB. In [22], an artificial neural network (ANN)

is utilized to predict the OSNR. As a novel planning framework, this ML-based prediction tool and the

software-defined network (SDN) controller are cooperated to adapt the actual network states. In [23],

ANN-based transfer learning is used to assist the ML techniques to be applied to different link condi-

tions. The result proves that the ML technique is flexible and can be adjusted easily to adapt to different

conditions. In [24], the k-nearest neighbor (KNN) and random forest are used to determine whether a

candidate path can be established. The accuracy of the random forest can achieve up to 96%, while

the KNN can achieve 91% accuracy. In [25], the deep graph convolutional neural network (DGCNN) is

employed to perform the same task as [24], and the achieved accuracy can be up to 97%. In [26], ANN,

support vector machine (SVM) and KNN are used to determine whether the residual margin is positive

or not. The accuracy can reach up to 99%. Besides, the value of residual margin is also estimated by

using ANN and the average error of the estimation is smaller than 0.4 dB. In [27], the Gaussian process

is utilized to estimate whether the BER values of unestablished links exceed the threshold. Meanwhile,

active learning and transfer learning are adopted to optimize the accuracy in the presence of small-sized

training datasets. Similarly, in [28], an evolutionary transfer learning approach is proposed for Q-factor

estimation. Results indicate that this approach can reach the accuracy over 90% with the reduction

of the training data amounts. In [29], the ANN and GN model are combined to achieve an accurate

QoT estimator as shown in Figure 1. Compared with the GN model, the absolute SNR deviation can

be reduced from 5.41 to 1.76 dB with ANN involved in. In addition, the result proves that the method

has a much better tolerance to the uncertainty of the input parameters. In [30], SVM is utilized to

estimate the QoT of the unestablished lightpaths using a synthetic bit error ratio (BER) database. And

long short time memory (LSTM), which is a recurrent neural network, is adopted to predict SNR of the

established lightpaths using historical field performance data. Results indicate that SVM shows a good

accuracy of 99.5% in area under the curve and LSTM increases root mean-square error (RMSE) with a

maximum improvement of 0.05 dB. In [14], ANN is applied to extract the network parameters (e.g., fiber

coefficients) for the purpose of implementing a near-zero margin network.

All these studies above mainly focus on obtaining an accurate QoT model exploiting ML techniques.

As for the uncertainty of the input parameters, in [31], the monitor information is feedback to a gradient

descent algorithm to decrease this kind of uncertainty. The design margin of future demands can then

be reduced with more accurate input parameters. In [32], a re-configurable model based on physical

abstraction is proposed. The extended Kalman filter is used for parameter learning. The result with a

0.6 dB Q-factor accuracy is verified experimentally. In [33], the impact of wavelength dependent Erbium

doped fiber amplifier (EDFA) gain ripple on the QoT is investigated and ML involves in reducing the

uncertainty of EDFA-related parameters. While the polynomial regressions are adopted to estimate the
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gain ripple penalty, the reduction of OSNR from 1.02 to 0.08 dB is observed. In [34], deep neural network

(DNN) is utilized to reduce the uncertainty of the received signal power and the amplified spontaneous

emission (ASE) noise, and results indicate that the reduction of the margin for optical networks can

achieve up to 3.2 dB. In [35], the customized ANN with a three-stage training framework is utilized

to estimate the SNR of specific links in optical networks. Additionally, an active acquisition approach

is adopted in the stage of online training to acquire real values of impairments. Results show that the

customized training scheme can improve the ANN’s tolerance to link parameter uncertainties. The RMSE

can be reduced by over 50% compared with the ML-based modelling method in [29].

3.1.2 The reduction of system margins

As described earlier, system margins come from the time-varying effects in the system. It is necessary

to monitor the real-time system status to reduce this part of margin. In [36], instead of assuming all

the wavelength-division multiplexing (WDM) channels in C-band are occupied (96 channels with 50 GHz

grid), the actual loading is monitored. In fact, as described in [36], the loading of 84% links of the

North American backbone network is less than 50%. Through obtaining the actual loading, the real-time

nonlinear interference between channels is computed by available models. Then the actual margin is

extracted to increase the system capacity. Although the capacity of the network increases a lot, the

main flaw of this study is that a traditional model is used, which may be inaccurate in some complicated

scenarios [29]. This problem can be easily resolved by using a more accurate and flexible model based

on ML techniques. In [37], the BER of the link is continuously monitored. The relationship between the

link configurations, such as baud rate, forward error correction (FEC) overhead, etc., and the BER is

learned by the stochastic gradient descent polynomial regression, which can then be used to choose an

optimal link setting according to the real status of the optical network. The proposed method is quite

appropriate for a dynamic system. In [38], the aging effect is considered. The results show that the cost

savings can reach 14%. However, as in [36], the used model is also the traditional GN model, which may

lead to inaccuracy. Another drawback of the method is that the aging function of the instruments is

assumed to be a linear function of time which may not be the real scene. This can be resolved using

some advanced time series ML models, such as the recurrent neural network, LSTM and gated recurrent

unit (GRU). In [39], the cost reduction is calculated when using the actual system margin instead of the

worst case. The result proves a 36% cost reduction of elastic networks, and the reuse of equipment can

provide an extra cost reduction up to 8%.

Overall, ML has been adopted as an effective and accurate tool to reduce margins of optical networks.

With the increasing evolution of ML in building the low-margin optical networks, more complex and

novel models, such as LSTM and active learning, are utilized to estimate the QoT of targeted links with

a good generalization ability. To summarize this subsection, we list the algorithms mentioned above in

Table 1.

3.2 Power optimization

To obtain gains in capacity, channel power optimization can help mitigate the degradation imposed by

linear and nonlinear impairments. On one hand, to design the channel power allocation for capacity

maximization, many methods based on the information theory have been proposed. The maximization

procedure can be formulated as a convex optimization problem [40] and various aspects of the optimization

problems in heterogenous optical networks have been addressed in [41–43]. However, the analytical pre-

design methods are based on some ideal assumptions, which may not perform as expected in practical

systems. Therefore, adjusting the launch power based on the monitoring information is preferable for

achieving the optimal ratio between ASE noise and Kerr nonlinearity. In this case, ML shows its potential

in extracting the noise ratio of the signals from the receivers [44]. On the other hand, the transmission

performance may be constrained by power excursions owing to specific gain-tilt of the EDFAs, EDFA

gain-control mechanisms, and the number of EDFAs [45]. Power excursions can increase the discrepancy

of the EDFA’s output, and the excursion caused by each EDFA can be further exacerbated during the
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Table 1 Applications of ML techniques in low-margin optical networks design problems

Algorithm Ref. Description

Regression model, nonlinear

regression
[20]

Extracting the actual QoT metrics, reducing the inaccuracy of input

parameters

Gaussian process regression [21]
Estimating OSNR

ANN [22]

ANN, transfer learning [23] Predicting Q-factor

KNN, random forest [24]
Estimating the feasibility of the candidate path

DGCNN [25]

ANN, KNN, SVM, logistic

regression
[26]

Estimating the feasibility of the candidate path and the value of resid-

ual margin

Gaussian process, active

learning, transfer learning
[27]

Estimating BERs of unestablished links with small-sized training data

Evolutionary transfer learn-

ing
[28]]

Estimating Q-factor and reducing the amounts of required training

data

ANN [29] Estimating the nonlinearities

SVM, LSTM [30] Estimating the QoT of unestablished and established lightpaths

ANN, Q-learning [14]
Extracting the network parameters, varying traffic patterns and band-

width

Gradient descent [31]
Correcting the deviations of the input parameters (power and noise

figure)

Extended Kalman filter [32]

Reducing the inaccuracy of physical layer parametersPolynomial regressions [33]

DNN [34]

ANN, transfer learning [35]
Estimating nonlinear SNR of specific links and improving tolerance

to link parameter uncertainties

Stochastic gradient descent

polynomial regression
[37]

Predicting accurate BER, then adapting modulation format, or FEC

and slot-size

transmission. In this case, ML is a reliable tool to solve this problem and make the methods transferrable

among dynamically changing heterogeneous networks. Learning form the historical data can help each

ML-based engine adapt to the specific scenarios and mitigate power excursions effectively.

In this subsection, ML-based methods for optimizing the channel power allocation and reducing the

power excursions are discussed. The details of these proposed methods are elaborated as below.

3.2.1 Designing the channel power allocation for capacity maximization

The power optimization problem is formulated as a convex optimization problem in [36–39]. The SNR

of the nth channel is given by

SNRn(Pn) =
Pn

PASE,n +NLn(Pn)
, (1)

where SNRn(Pn), Pn, PASE,n, NLn(Pn) is the SNR, signal power, ASE noise power and nonlinear noise

power of the nth channel. However, in many previous analytical methods, the noise figure and gain

of each EDFA are assumed to be accurate and ideal. These assumptions are not suitable for practical

systems, and the performance of these methods may not perform as good as expected. To better utilize

the data monitored from the real scenes for the power optimization, a few methods based on ML have

been proposed. In [44], ANN is adopted to monitor the power ratio between the ASE noise and nonlinear

noise so as to adjust the launch power. The input of ANN is the all-optical power density spectrum

(without DSP) of the central channel, and the output is the correction term of the launch power. Results

indicate that this method can make SNR gain up to 1 dB. Meanwhile, this ANN-based monitor can

be placed anywhere along the link without interrupting the transmission since it does not require a full

coherent reception.
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3.2.2 Reducing the influence of EDFA power excursions

In metro optical networks, power excursions occur during the transmission because the wavelength-

dependent gain and noise figure spectrum of EDFAs can cause the uneven output after the amplifica-

tion [46]. At the same time, the output power level can be controlled via automatic gain control (AGC).

If a channel is added with an undesired high gain, AGC reduces the gain of all channels to maintain

the global mean gain. This leads to the situation that high gain channels steal power from low gain

channels [47]. Hence, the disparity among channel powers increases. It has been verified in [46] that

power excursions can reach up to 2 dB through occasional channel additions after 3-cascade EDFAs.

Many previous analytical methods are based on the prior knowledge of one specific network, which limits

these methods being extended to other dynamically changing networks. However, ML-based methods

have promising prospects in solving this problem for their flexibility. The applications of ML on this issue

are introduced as below.

For fixed-grid channels, in [48], authors adopted a neural network to estimate the EDFA gain for an

individual channel. The input of the neural network is all-channel power levels. Results indicate that the

ML model can effectively reduce the RMSE to 0.08 dB under the input of +/− 3 dB. Instead of creating

a separate neural network for each output channel in [48], in [49], authors employed the neural network

to predict all-channel gain spectrum. The input is a vector including channel input powers, total input

power and gain settings while the output is the full-fill gain profile. The power excursion predicted by the

EDFA gain model is utilized to pre-adjust the input power [49]. Results demonstrate that the maximum

channel gain is 0.18 dB and the error standard deviation (STD) is 0.019 dB. In [45], kernelized Bayesian

regression (KBR) was applied and the output was the power STD of all active channels. According to

the results, accurate suggestions on adding or dropping a channel are given. Based on [45], the ridge

regression (RR) model was proposed in [50], which is more efficient than KBR and the error is less than

1% [50]. In [51], ANN was adopted with the same input as in [45, 50], and the output is the power

excursion of each channel and the accuracy can reach up to 90%. However, the experiment environments

of [45, 50] did not consider the interaction of channels in WDM systems and the wavelength switching

operations. To solve this problem, authors in [52] extended the application to multiple reconfigurable

optical add-drop multiplexer (ROADM) hops and full C-band WDM channels. Under the same setup

in [50], the employment of the neural network in [52] can obtain further improvement with a RMSE below

0.15 dB compared to the RR model. And the accuracy of wavelength assignment can achieve up to 99%.

Similarly, the DNN was utilized in [53]. It illustrates that DNN obtains 0.1 dB RMSE for 8400 random

test samples and has better performance than the regression method and random forest.

For the flex-grid network, more flexible utilization of spectrum resources may lead to a fragmented

spectrum [54], so the defragmentation is necessary [55]. However, the defragmentation algorithms can

exacerbate the post-EDFA power discrepancy. Therefore, power excursions in flex-grid scenarios need to

be addressed with the defragmentation algorithms. In [55, 56], in order to reduce the post-EDFA power

discrepancy in flex-grid networks, RR was adopted to pre-adjust the pre-EDFA sub-channel powers based

on different algorithms of the defragmentation. Results show that the mitigation of post-EDFA power

difference among channels can achieve over 62%.

Overall, ML methods can help to estimate the wavelength-dependent gain and noise figure of each

EDFA in order to effectively reduce power excursions. Because ML is able to address complex situations

efficiently without any ideal assumptions, it has broad application prospects to design the power opti-

mization strategy in complex heterogenous optical networks. To summarize this subsection, we list the

algorithms mentioned above in Table 2.

3.3 Routing and wavelength assignment

RWA problem can be described as allocating the lightpath and wavelength for each request from the

source node to the destination node under a given network topology and a set of information, such as

traffic demand and traffic distribution. For many previous studies, RWA problems are usually solved

by integer linear programming (ILP) methods to obtain the optimal solution [57–59]. However, the ILP
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Table 2 Applications of ML techniques in power optimization problems

Algorithm Ref. Description

ANN [44] Obtaining the correction term of the launch power

Neural network
[48] Obtaining EDFA gain for an individual channel

[49] Estimating the full-fill gain profile

Kernelized Bayesian

regression
[45]

Outputting power STD of all active channels and giving accurate sugges-

tions of slots on adding or dropping a channel

ANN [51] Estimating the power excursion of each channel

Ridge regression
[50] Estimating power excursions with the input of channel states

[55, 56] Pre-adjusting the pre-EDFA sub-channel powers in flex-grid networks

Neural network [52]
Extending the application scenarios compared with [45,50]

DNN [53]

algorithm consists of a set of equations and inequations that describes the constraints (i.e., continuity

constraint and nonoverlapping constraint) and the measurement index of the network state, making it not

feasible in the complex real network environment for its complicated computation process. To solve this

problem, many researchers propose heuristic algorithms. Nevertheless, traditional heuristic algorithms

may not approach the optimal solution [60]. This is because the heuristic designs often apply fixed policies

based on artificially defined rules and some potential influence factors are not included in the algorithms,

resulting in suboptimal performance [61]. Therefore, inspired by the applications of AI in many other

fields of optical communication, many researches utilize AI techniques to address the RWA problem. The

specific ML-based methods are described as below.

First, the applications based on SL are introduced. SL is directly used to solve the RWA problem for

the first time in [5]. The input features are network topology, network capacity, available wavelength

and traffic demands while the output is the RWA configuration. In [62], the traffic matrices are classified

using a logistic regression classifier and the pre-trained model can output the optimal routing solutions.

However, SL still shows some deficiencies, such as a relatively poor generalization ability and the

demand of large amounts of data [61]. Fortunately, RL paves a new promising way. RL refers to a

learning procedure that the agents interact with the environment periodically, make policy decisions

and observe results, i.e., rewards and new states. Unlike SL, RL trains DNN with online experiences

(rewards) rather than mass of data, which helps to realize self-learning. In [60], the bandwidth allocation

(BA) was formulated as MDP and the predictive BA (PBA) model is constructed. In order to solve the

RWA problem, the output of the PBA model is taken as the input of an ILP algorithm or alternatively

a heuristic algorithm. In [63], owing to the underutilization of network characteristics in traditional

algorithms, the concept of multi-mode network was proposed to represent various characteristics in optical

networks. These characteristics are then utilized as the input of the RL algorithm (actor-critic algorithm).

Compared with the heuristic algorithm, this algorithm can make better use of network features. In [64],

RL was used to maximize the available paths which build a bridge between the link capacity and traffic

distribution. Learning efficiency is improved by the following methods: reducing the dimension of the state

vector, introducing the pre-training process and the temporal-difference (TD) learning process. In [65],

a new criterion, named the whole network cost-effectiveness value with survivability (WCES), was raised

for network performance measurement. To improve the network survivability, they also proposed the

survivable routing, modulation level and spectrum assignment (S-RMLSA) algorithm with the shared

backup path protection (SBPP). In [66], a semi-flexible spectrum assignment scheme was proposed to

suppress spectral fragmentation. The number of input vectors is reduced because each specific-bandwidth

channel is aligned to an equally spaced virtual grid, which also reduces computation cost.

Although performing well in solving the RWA problem, RL still takes a long time to approach the op-

timum strategy in the learning process because it requires the exploration and acquisition of knowledge

about the overall system. This shortage leads to its unfeasibility in large-scale networks. Deep rein-

forcement learning (DRL) overcomes this shortage by combining RL with deep learning, which improves

the learning speed and performance. The utilization of deep learning can help the decision-making of
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the agents through automatically extracting important features from the data and conducting modeling

with high-level abstraction. The schematic representation of the DRL operation and its applications

were introduced in detail in [67]. Based on the study in [65], a double-agent DRL based survivable

routing, modulation level and spectrum assignment (DA-DRL-RMLSA) algorithm was further proposed

in [68]. This algorithm is based on the double-agent DRL, in which the two agents refer to the working

agent and the protection agent. Both algorithms in [65, 68] are measured by the new criterion and show

improvement of overall network performance compared with the baseline algorithm. In [69], a multi-task-

learning-aided knowledge transferring approach was proposed, which effectively reduce the training time

of DRL through exploiting the similarities between tasks and reusing existing knowledge, i.e., the shared

network state spaces. In [61], to avoid the low level of automation, which results from the demand of

domain specific knowledge (e.g., working principle of data layer and mathematical optimization theory)

to provide services in EONs, a new network framework, autonomic and cognitive networking framework,

and a DeepRMSA agent based on DRL are proposed. Based on [61], the episode-based training mecha-

nism (DeepRMSA-EP) was further raised [70]. It divides the dynamic provisioning process into multiple

episodes, in which a certain number of lightpath requests are served. The training is performed at the end

of each episode. A window-based flexible training mechanism (DeepRMSA-FLX) is proposed to overcome

instability as well. This training mechanism significantly enhances the training stability and shows lower

blocking rates compared to the benchmark. In order to further improve the scalability and universality,

in [16], another inter-domain service framework named DeepCoop was proposed, in which DRL agents

cooperate with each other. State parameters and rewards are shared and calculated collaboratively by

the agents. Besides, in order to control the overhead, interactions among the agents are limited.

Although the algorithms mentioned above show great performance, the generalization ability of them

is still limited. Firstly, traditional methods regard DRL as a black box and represent the observation

space and the action space roughly. Secondly, the network topology is usually represented graphically

while ordinary DRL cannot learn information about the graph structure. For the first problem, a rep-

resentation of the network state named feature engineering was proposed [71–73]. This representation

reduces the number of required data and can easily capture the singularities of network topology, such as

the potential bottlenecks. In [72], in order to better understand the routing policy learned by the DRL

agent, reverse engineering is conducted. Owing to the consideration of the overall network utilization

and the dependency between links caused by the network topology, this method performs an easier and

faster DRL procedure and can be applicated in many scenes. To solve the second problem, in [74], DRL

was combined with graph neural network (GNN) that can learn the network environment by captur-

ing the relations between the paths and links in the network topology. The algorithm behaves strong

generalization ability when facing the unseen topologies during training.

Overall, ML has been applied to choose an optimal routing scheme, make fully utilization of spectrum

and suppress the spectral fragmentation in a faster and less complex way. In this way, overall performance

of optical network and convergence speed may be improved and the blocking rate may be reduced at the

same time. With the development of flexible-grid optical network, the ML-based RWA algorithm may

attract more attentions in the future. To summarize this subsection, we list the algorithms mentioned

above in Table 3.

3.4 Failure management

The failure management is quite important for a reliable optical network. According to the news report,

70% of connections of Egypt to outside world are lost owing to the fiber cut in Mediterranean Sea in

2008. Therefore, an intelligent failure management system is of great significance. In general, soft failure

management involves the following three problems as shown in Figure 2. (1) Failure detection that is

responsible for detecting whether a failure occurs or not. (2) Failure identification that is responsible

for identifying the cause of it. (3) Failure localization that is responsible for finding the failure location.

Based on the results obtained, proper actions can be taken to restore the optical link to the normal state.

The details of recent studies on this problem are discussed as below.
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Table 3 Applications of AI techniques in RWA problems

Algorithm Ref. Description

Supervised

learning

[5] Directly solving the RWA problems with ML for the first time

[62] Classifying the traffic matrices with the optimal routing schemes

Reinforcement

learning

[60] Proposing the PBA model

[63]
Proposing the concept of multi-modal and the actor-critic algorithm using

convolutional neural network (CNN)

[64] Evaluating the network status values

[65]
Presenting a criterion to measure the comprehensive network performance

and a network resource assignment strategy

[66]
Proposing a semi-flexible spectrum assignment algorithm for flexible-grid

network

Deep reinforcement

learning

[68] Using WCES to measure the overall network performance

[69]
Proposing a multi-task-learning-aided knowledge transferring approach

by reusing network state spaces

[61] Proposing a new framework and a multi-agent DRL algorithm

[70]
Proposing the DeepRMSA training mechanism and the flexible training

mechanism

[16]
Proposing an inter-domain service framework named DeepCoop in which

DRL agents cooperate with each other

[71–73] Proposing a new representation of state and action

Deep reinforcement

learning, graph neural

network

[74]
Combing DRL with GNN that can capture the relations between the

paths and links
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• Whether the

failure occurs 

in the system?

Identification

Yes

No

Detection + Identification

Normal state of optical networks

Recovery
Failure 
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Detection Localization

Monitoring 

data

Figure 2 (Color online) The work flow of failure management.

3.4.1 Detection and identification

The accuracy of traditional failure detection methods is highly dependent on a pre-defined threshold. If

the threshold is set too loose, failures may be neglected and lead to service disruption. If it is set too tight,

many error detections will occur. Besides, the threshold is usually static that cannot adapt to a dynamic

optical link. To overcome the shortcomings of the traditional method, recent research pays attentions to

the ML techniques. After solving the detection task, failure identification is implemented to provide the

type of failures to controller. In general, failure identification can be regarded as a classification task, for

which ML has a promising potential to solve it.

In [75], a one-class SVM was used to analyze the tap value of the adaptive equalizer to detect the soft

failure. Results indicate that the detection error is less than 4%. In [76], the digital spectrum of the signal

from a coherent receiver was analyzed to perform the soft failure detection and the false positive rate was

just 0.14%. In [77], a hybrid of SL and USL was proposed, the density-based clustering algorithm and

DNN were used, the former was responsible for analyzing the patterns of monitoring data, and then the
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Table 4 Applications of ML techniques in failure management problems

Algorithm Ref. Description

SVM
[75] Analyzing the tap value of the adaptive equalizer

[76] Analyzing the digital spectrum of the signal

Density-based clustering, DNN [77] Analyzing the patterns of monitoring data, and detecting failures

Design tree, linear regression, SVM [78] Identifying the cause of soft failure between laser drift and filter failure

SVM, ANN, random forest, neural

network
[79] Detecting BER abnormality

CNN [80]
Identifying the failure causes between the filter tightening (FT) and

the shift of center frequency (FS), nonlinear Kerr effect and ASE noise

of EDFA

Feedforward neural network [81] Detecting and identifying multiple impairments in optical networks

Bayesian network [82]
Identifying the failure causes between inter-channel interference and

filter tightening

XGboost [83] Detecting failures of equipment in optical networks

Gaussian process [84]
Locating the link failures

Network Kriging [85]

Gated GNN [86] Locating the fault entities in optical networks

ANN [87] Locating the WSS anomaly

latter was responsible for detecting failures. The results show that up to 99% detection accuracy can be

achieved in [78]. The optical spectrum of the signal is obtained using an optical spectrum analyzer, and

a decision tree is used to detect the soft failure caused by the wavelength-selective switch (WSS) and the

laser. Then SVM is used to identify the cause of failure. In [79], the BER is monitored continuously.

An ANN is used to identify whether the failure is caused by WSS or EDFA. Results demonstrate the

identification accuracy can reach 98%. In [80], a convolutional neural network was used to identify the

cause between filter shift, filter tightening, nonlinear Kerr effect and ASE noise of EDFA. The accuracy

can reach up to 100%. In [81], readily available adaptive filter coefficients (AFCs) were input to a

feedforward neural network to detect and identify multiple impairments in optical networks. According

to the experiments, both detection and identification can achieve an accuracy over 99%. In [82], a

Bayesian network was used to identify the cause of soft failure between inter-channel interference and

filter tightening, and the accuracy can reach up to 95%. In [83], an interpretable extreme gradient

boosting (XGboost) method was utilized to detect the failure of equipment in optical networks. This

proposed method achieves a high accuracy of 99.72%, and a low positive rate of 0.18%.

3.4.2 Localization

After the failure is detected and identified, we then need to locate it. In [84], the suspect links are

first found through the graph-based correlation heuristic algorithms. Then, the failure probabilities are

estimated for each suspect link by adopting the binary Gaussian process. Results indicate that this

method achieves a high accuracy. In [85], the link failures were localized by the network kriging. Results

indicate that this method can achieve unambiguous failure localization with fast response. In [86], a

gated GNN, which is a variant of GNN, was proposed to locate the fault entities in optical networks.

Results indicate that the accuracy of this reasoning model can reach up to 99%. In [87], WSS failure in

an optical link was located based on receiver DSP and ANN method. Results show that the proposed

algorithm can achieve an accuracy over 90% for most of the cases.

Overall, with numerous data collected from optical networks, it is difficult to obtain the knowledge

related to failure conditions with traditional methods. ML has played an increasingly important role in

failure management with its powerful data processing ability. It is foreseeable that in the trend of future

research, ML is still a major solution of failure management. To summarize this subsection, we list the

algorithms mentioned above in Table 4.
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4 Field trial

In this section, we review the field trial and experiment verification from three aspects: (1) the optical

performance monitoring (OPM), (2) the SDN, and (3) the failure management.

(1) Optical performance monitoring. The OPM is quite essential to a reliable operation and an

efficient management of the optical network. Through OPM, the management system can be aware of

the real-time state of the physical layer, and the parameters of the physical layer can be adjusted to

achieve an optimum state [37]. In [88], an OSNR monitoring algorithm based on ANN was verified on

the testbed based on the national dark fiber facilities (NDFIS) in UK. The inputs of the ANN are launch

power, the gain of EDFA and the noise figure of it, etc. After training, the relationship between OSNR

and the inputs of the ANN is learned, and it can predict the performance of the unestablished lightpaths

accurately. According to the results, the BVT can be configured properly to maximize the spectrum

efficiency of the link.

(2) SDN. With the advance of the optical network, its architecture is becoming more and more com-

plex. To control the optical network more intelligently, researchers have been paying attentions to the

SDN paradigm. By decoupling the data plane and control plane, the intelligent algorithms can be imple-

mented in the center controller. In [89], an SDN architecture called ORCHESTRA was elaborated and

validated through experiments. The QoT is continuously monitored, and then the cross-layer optimiza-

tion is performed. The results are feedback to the controller. As a result, a closed loop is implemented,

through which a self-adaption network is achieved.

(3) Failure management. It is widely regarded that the failure management is a key module to

ensure the QoT of the optical links, and many experiment verifications have been performed on this

topic. In [90], a double exponential smoothing (DES) algorithm was constructed to predict the future

value of some network parameters, such as the laser bias current, optical power and so on. The predicted

values of these parameters are input to an SVM classifier, which is pre-trained using historical data. The

SVM will then output the future state of the network, i.e., normal or failed. One thing to be noticed

is that the dataset used for training the two ML models is from the practical operation data of China

Mobile Communication Corporation (CMCC). The results show the excellent performance of the DES and

SVM. In [91], the rotation speed of the signal’s state of polarization in coherent receiver was monitored

continuously. Once the speed exceeds the pre-defined threshold, an alarm will be output that the fiber

stress is detected. Subsequently, the Stokes vector is extracted to train a näıve Bayes classifier to identify

the stress kind of the fiber, i.e., bending, shaking, etc. The accuracy of the classifier exceeds 95%. In [92],

a convolutional neural network was used to detect the fiber bending through the constellation of the

received data, and the experiment results show the detection accuracy is quite high.

5 Challenges and future work

The modern optical networks with enormous data have provided unprecedented opportunities to employ

ML-based applications to further improve the capacity and reliability. However, it may be difficult to

deploy many ML-based methods to practical systems. This is especially a big challenge considering

the generalization ability and robustness of the ML models trained with data from simulations or lab

experiments offline. Therefore, to achieve the successful deployment of AI techniques, many challenges

still remain. In this section, we discuss the future directions for the ML-related investigations in optical

networks.

• Interpretability. For many applications, ML-based methods are responsible for capturing some

of the intrinsic regularities or patterns in the data. Because ML is data-driven, the performance of the

ML methods highly depends on the training scheme. If the training dataset is extracted from or similar

to the reality, the performance may be satisfactory. If the patterns or characteristics of testing data

are different from the training data, the ML algorithms cannot work as expected. In this case, if the

interpretable explanations for what kind of pattern or knowledge has been derived by ML algorithms
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are unavailable to users, the performance of the ML-based methods cannot be guaranteed, which is an

obstacle for deployment. Therefore, interpretability is a paramount quality if ML-based applications are

to be applied in practice [93].

• Few-shot training scheme. In the training phase, the training datasets need to be large enough

so that the whole feature space is explored, thus ensuring the accuracy of the ML-based model [94].

However, the datasets, especially these from real systems, are not always easy to obtain. Probe lightpaths

can be applied but the additional cost cannot be avoided. Therefore, the smaller-sized dataset is more

preferable to help model accommodate new situations different from training environment. However,

current ML methods are data-hungry and some naive approaches like retraining would overfit. Therefore,

it is challenging to deploy ML engine to heterogenoues situations where fast adaptation with only few

data is critical. To alleviate the overfitting, many training techniques like fine-tuning, transfer learning

and data augmentation can be utilized to improve the performance.

• Robustness. In practical systems, many parameters such as the launch power, fiber length and

noise figure of the EDFA are not ideally accurate. Since the ML-based applications are trained with ac-

curate inputs and outputs, the generalization ability of them may show some deficiencies when parameter

uncertainty exists. The uncertain inputs may limit these applications to be transferrable to other het-

erogeneous systems. Therefore, the robustness of these applications is of great significance for practical

deployment. For future investigations, techniques such as data augmentation and ensemble learning may

provide a promising way to enhance the robustness.

• Implementation architecture. A large traffic volume can be propagated through the existing

infrastructure in a short time. Consequently, the burden of the center controller may be too high.

Therefore, some functions such as the data pre-processing and data monitoring are moved out from the

controller and implemented on a local chip [95]. Some distribution training algorithms have also been

put forward to alleviate the burden of the center controller [96]. However, further researches are still

needed for a scalable deployment of ML-algorithms. Unlike the situation mentioned above, the ML-based

failure management are lack of real data. This is because the current design of optical link tends to adopt

an ultraconservative way to ensure the QoT, which limits the number of datasets that can be obtained.

The current research usually adopts a synthetic simulator to generate data to train the ML algorithms

offline [24]. However, owing to the difference between simulation and practical system, the offline trained

ML-based failure management system may give wrong alarms and an adaption or self-learning mechanism

is necessary. In [24], an adaption method is proposed to address this problem. However, how to ensure

the accuracy of the failure management system is still relatively unexplored.

6 Conclusion

To satisfy increasing requirements of capacity and reliability for next generation optical networks, we

survey four typical applications aided by AI techniques in optical networks. They are low-margin design,

power optimization, RWA, failure management. The adoption of ML techniques significantly improves the

performance of these applications in increasing the capacity and reliability. Finally, based on the current

related researches, we discuss the challenges and possible research directions of ML-based approaches in

optical networks.
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