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Dear editor,
Series elastic actuators (SEAs) have been deliber-
ately selected in collaborative robots intended for
safe physical interaction with humans or unstruc-
tured environments [1]. This passive mechanical
compliance guarantees an inertial decoupling be-
tween the link and actuator, thus decreasing ki-
netic energy involved in unexpected collisions with
environments [2]. SEAs are widely used in cooper-
ative industrial robots (Baxter robot), humanoid
robots (Valkyrie) and rehabilitation robots. Al-
though SEA can avoid damages of collisions with
humans or environments, only passive impedance
cannot achieve desired impedance due to the fixed
mechanical stiffness of SEA [3]. Therefore, it is
necessary to combine active impedance control al-
gorithm with passive mechanical compliance. For
achieving the accuracy of tracking the desired
model, SEA-driven robot’s dynamics can be de-
scribed using a flexible joint model. Consider-
ing there exist uncertainties of compliant robot’s
dynamics, various methods, i.e., iterative learn-
ing control [4], adaptive control [5, 6], uncertainty
and disturbance estimator (UDE) [7], are used to
address this issue and improve the tracking accu-
racy. In this study, we propose an adaptive active
impedance control combined with passive mechan-
ical impedance, and use neural networks (NNs) to

compensate for uncertainties of compliant robot’s
dynamics. Taking these into account, we propose
an online adaptive law to update NN weights and
a complete framework about adaptive impedance
control design. Simulations show the proposed
method can ensure that both the accuracy and
safety can be achieved. The contributions of this
study are summarized as follows: auxiliary vari-
ables are designed for Lyapunov stability analysis
and control design; and radial basis function neu-
ral networks (RBFNNs) are utilized to compensate
for uncertainties in dynamics to improve the accu-
racy when tracking a desired impedance model.

N-link SEA-driven robot’s dynamic model. In
dynamics described in (1), q ∈ R

n, ϑ ∈ R
n

denote the joint and motor angle, respectively.
Mc ∈ R

n×n, Cc ∈ R
n×n and Gc ∈ R

n denote
the inertia, Coriolis and centrifugal and gravity
matrices of robots. Mp ∈ R

n×n and Kp ∈ R
n×n

denote motor inertia and mechanical stiffness of
SEA. τ ∈ R

n denotes the input torque and τf ∈ R
n

denotes the external torque generated by humans
or environments.

Mcq̈ + Ccq̇ +Gc = Kp(ϑ− q)− τf ,

Mpϑ̈+Kp(ϑ− q) = τ.
(1)

Control design. In this study, the control design
is to achieve the following impedance relationship

*Corresponding author (email: weihe@ieee.org)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9631-7&domain=pdf&date_stamp=2020-2-25
https://doi.org/10.1007/s11432-018-9631-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9631-7
https://doi.org/10.1007/s11432-018-9631-7


Yu X B, et al. Sci China Inf Sci May 2020 Vol. 63 159207:2

for SEA-driven robot:

Md(q̈ − q̈d) +Dd(q − q̇d) +Kd(q − qd) = τf , (2)

where Md, Dd and Kd denote the desired inertia,
damping and stiffness matrices and qd denotes the
desired angle.

Step 1. Define auxiliary variables z and η. We
define variable ̟ as Mdë+Ddė+Kde− τf where
e = q − qd. We can see that if ̟ is converging to
zero, the target impedance model will be achieved.
To facilitate analysis, we define another impedance
error ω as ω = Lf̟ = ë + Ldė + Lke − Lfτf ,
where Lf = M−1

d , Ld = M−1
d Dd, Lk = M−1

d Kd.
We choose two positive matrices T and M as
T+M = Ld, Ṫ+TM = Lk and τ̇rl+Mτrl = Lfτf .
According to these, we rewrite ω as

ω = ë+ (T +M)ė+ (Ṫ + TM)e− τ̇rl −Mτrl.

(3)

And we define an auxiliary variable z and rewrite
(3) as

z = ė+ Te− τrl, ω = ż +Mz. (4)

When z converges to zero, we can conclude that
ż → 0 if its limit exists. We define an virtual state
variable matrix qr as

q̇r = q̇d − Te+ τrl, (5)

so z can be rewritten as

z = q̇ − q̇r. (6)

Therefore, if z → 0, then ̟ → 0. According to
above analysis, we also define an auxiliary variable
η about motor angle ϑ as

η = ϑ̇− ϑ̇r = ϑ̇− ϑ̇d + βϑϑ̃, (7)

where ϑ̃ = ϑ − ϑd, βϑ is the positive definite
matrix, ϑd denotes the desired motor angle, and
ϑr=ϑ̇d − βϑϑ̃.

Step 2. Construct Lyapunov function candi-
dates by using auxiliary variables z and η. Accord-
ing to (6) and (7), we construct Lyapunov function
candidates as follows:

V1 =
1

2
zTMcz +

1

2
ηTMpη

+
1

2

∫ t

0

(z − η)TdtKp

∫ t

0

(z − η)dt. (8)

Step 3. Controller design by using back-
stepping method. Differentiating (8) with respect
to time, we have

V̇1 = zTMcż +
1

2
zTṀcz + ηTMpη̇

+ (z − η)TKp

∫ t

0

(z − η)dt

= zT
(

Mcż + Ccz +Kp

∫ t

0

(z − η)dt

)

+ ηT
(

Mpη̇ −Kp

∫ t

0

(z − η)dt

)

. (9)

We divide (9) to two parts, and the first part can
be calculated as

Mcż + Ccz +Kp

∫ t

0

(z − η)dt = ζ1 +Kpϑd. (10)

Then we define Kpϑd as

Kpϑd = −K1z − ζ1, (11)

where K1 is the gain matrix, then we can get

V̇1 = −zTK1z + ηT
(

Mpη̇ −Kp

∫ t

0

(z − η)dt

)

= −zTK1z + ηTζ2. (12)

where we define

ζ2 = τ + ζ3. (13)

ζ1, ζ2 and ζ3 are defined as auxiliary variables. We
design the following controller:

τ = −K2η +Mp(ϑ̈d − βϑ
˙̃
ϑ)− z + τf +Gc

+Mc(q̈d − T ė+ τ̇rl) + Cc(q̇d − Te+ τrl),
(14)

where K2 denotes the gain matrix, and ϑd is de-
fined as

ϑd = K−1
p (−K1z + τf +Gc −Mc(−q̈d + T ė− τ̇rl)

−Kp

(

−qd − e(0) + ϑ̃(0) + βϑ

∫ t

0

(e− ϑ̃)dt

)

− Cc(−q̇d + Te− τrl)). (15)

We can see that under the controller (14) and de-
fine ϑd as (15), all error signals are bounded, z

and η converge to zero and ϑ̈d can be computed
from (15). The stability analysis is shown in Ap-
pendix A.

Step 4. Adaptive neural networks (NNs) to ap-
proximate uncertainties. Seen from (14) and (15),
there exist uncertainties about robot’s dynamics,
i.e., Mc, Cc and Gc are unknown. To solve this
problem, adaptive NN is employed to approximate
uncertainties in dynamics as follows:

χ∗T
M φM (Z) = Mc + ǫM ,

χ∗T
C φC(Z) = Cc + ǫC , (16)

χ∗T
G φG(Z) = Gc + ǫG,
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Figure 1 (Color online) The simulation results. (a) Position and position error; (b) external torque.

where χ∗
M , χ∗

C and χ∗
G are actual weights, ǫM , ǫC

and ǫG are approximation errors, φM (Z), φC(Z)
and φG(Z) are basis functions, Z denotes the in-
put of NN. χ̂M , χ̂C and χ̂G are estimates of NN
weights. χ̃M , χ̃C and χ̃G are estimation errors

which have the relationship ()∗ = (̂) − (̃). The
adaptation laws are designed as follows:

˙̂χM = −ΓM (φM (Z)Ȧη + σM χ̂M ),

˙̂χC = −ΓC(φC(Z)Aη + σC χ̂C), (17)

˙̂χG = −ΓG(φG(Z) + σGχ̂G),

where ΓM , ΓC and ΓG denote the positive definite
constant gain matrices, σM , σM and σM denote
small positive constants. A=q̇d − Te + τrl, so we
can rewrite (14) and (15) as follows:

τ =−K2η +Mp(ϑ̈d − βϑ
˙̃
ϑ)− z + τf + χ̂T

GφG(Z)

+χ̂T
MφM (Z)Ȧ+ χ̂T

CφC(Z)A−Kqsgn(η), (18)

ϑd =K−1
p

(

−K1z + τf +Gc + χ̂T
MφM (Z)Ȧ

+ χ̂T
CφC(Z)A−Kp

(

− qd − e(0) + ϑ̃(0)

+ βϑ

∫ t

0

(e − ϑ̃)dt

))

, (19)

where positive gain matrix Kq > ||ǫM Ȧ + ǫCA +
ǫG||, sgn(·) returns a vector with the signs of the
corresponding elements of the vector (·). Under
the RBFNN controller (18) and by defining (19),
we can achieve the control objective (2). And we
choose a Lyapunov candidates V2 as follows:

V2 =
1

2
zTMcz +

1

2
ηTMpη

+
1

2

∫ t

0

(z−η)TdtKp

∫ t

0

(z−η)dt+
1

2
χ̃T
MΓ−1

M χ̃M

+
1

2
χ̃T
CΓ

−1
C χ̃C +

1

2
χ̃T
GΓ

−1
G χ̃G. (20)

The stability analysis is shown in Appendix B.

Step 5. Simulation results. The simulation re-
sults are shown in Figure 1, and we can see that
the external force with SEA is smaller than the ex-
ternal force without SEA when physical collisions
occur. The simulation settings and processes are
described in Appendix C.
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