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Appendix A Close-loop stability analysis under controller (14):

We construct Lyapunov function candidates as follows

1 1 1ot '
1= 5ZTMCZ + ETITMPW + 3 / (z— n)Tdth/ (z —m)dt. (A1)
0 0

Differentiating (??) with respect to time, we have

. 1 . t
Vi =2" M.z + 5ZTMCZ + 0T Mpi + (2 — n)TKp/ (z —m)dt
0
t t
= (Mot + ozt Ky [ (o= )dt) o (Myi = Ky [ (= n)a) (A2)
0 0
We divide (??) to two parts, and the first part can be calculated as

t ~

t ~ ~
Mcz"+Ccz+Kp/ (z—n)dt:Mc(c'j—ijd+Té—7'—Tl)+Cc(zj—qd+Te—TTl)+Kp(e—19—e(0)+79(0)+579/ (e — B)dt)).
0 0

(A3)
According to the robot’s dynamic model (1), we obtain
Mcq+ch+Gc 7Kp(ﬁ7q)+7-f =0. (A4)
Substituting (??) to (?7?), we obtain
t
Moi+ Coz + K, / (2 = n)dt = Mo(—ig + Té — #12) + Ce(—da + Te — 1)
0
~ t ~
+ Ky = da = e(0) + 3(0) + 8y [ (e~ D)de) G — 1y, (A5)
0
Then we rewrite (?7) as
t
Mz + Cez + Kp/ (z = n)dt = C1 + Kpdy. (A6)
0
We define K94 as
Kpdq = —K1z — (1, (AT)
where
~ t ~
G =—7f = Ge+ Mc(—Gag + Té — 7)) + Ce(—da + Te — 1) + Kp(—qa — €(0) + ¥(0) + 519/ (e — D)dt)). (A8)
0
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So ¥4 can be defined as follows

~ t ~
dg = K;l(—Klz-f—Tf + Ge —Mc(—(id+Té—7Lrl) — Ce(—qq +Te — 1) —Kp(—qd —6(0)-&-79(0)-’-,819/ (e—ﬁ)dt)).
0

Substituting (??) to (??), we writte (??) as
¢
Vi = —2TKiz 4+ 0T (Mpi — Kp/ (z—n)dt) = —2T K12+ 17 ¢,
0
where (2 = Mpn — Kp fg (z — n)dt, and we rewrite (2 as follows

Co = Mp1 — Kp /Ot(z —m)dt = My(d — Ja + Bd) — Kp(e — D — e(0) +9(0) + B /Ot(e —d)dt)).
According to SEA’s dynamic model (1), we have
Mpd 4+ Kp(9 — q) = 7.
We define
C2 =7+ (3 =—Kan,

where

t

G = My(—Ba + ByD) — Kp(—aa+Va — e(0) +9(0) + By /0 (e — B)dt)).

We design the controller 7 according to (??) and (??) as follows

T=—Kon+ Mp(1.9.d — ,81915) — 2+ 7f + Ge+ Mc(Gg — Té+ 1) + Ce(ga — Te + 7).
We can obtain (??) as follows

V1 = —zTK1z — 77TK27’] < 0.

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

Therefore, we can conclude that t — 0, z and n will converge to zero, and error signals e and 9 will converge to zero.

Appendix B Close-loop stability analysis under controller (18):
We construct Lyapunov function candidates V2 as follows
1 5 17 1 [t - t 1 g Topq. 1 g
Va= gz Mozt on Mpn+ o | (2 =m)7dtKp | (2 =m)dt + SxpTh X + SXoT'e Xo + 5xale Xe-
0 0
According to the proof of Appendix A, we can conclude that one part Vgp of Va can be obtained as
Vap = —zT K1z + 07 (1 + (3)
=—2TKiz+ 7]T(’T + Mp(_l‘éd + 51919) +z—715—Ge— M.A — C:A),

where A=¢4 — Te + 7,1, and by differentiating (??) with respect to time, we have

V2 = 7ZTK1Z =+ nT(T + Mp(f'lyd + 131915) +z—7F— Ge — MCA — CCA) + F]T/II)Z’IA})A(M + Fal)zg)lcc + Félf(g;{c.

Substituting NN controller (18) into (??), we have
Vo = =T K1z + 0" (=Kan + Mp(da — Bo9) — 2 + 75 + X&ba(Z) + Xirom(2)A+ xEbc(2) A
+Mp(=Fq + Bol) + 2 — 7p — Ge — McA — CeA) + Ty Xk +To'XExe + T xéxa-
According to (16), we can rewrite (??) as follows
Vo =— 2T K1z + 0" (=Ko + Mp(9q — Bod) — 2 + 75 + XGba(2) + Xirom (2) A+ XEbc(2)A
+ My(—=G4 + Bo9) + 2 — 7p — Ge — McA — CoA) + T3 x5 % + T k& ke + Tat Xexe
=—2TKiz 40T (~Kon+ x590c(Z2) + XL om (2)A + %L pc(Z2)A — Ge — M A — C.A)
+ Do X b +To XExe + Tg' Xaxa
=— 27Kz + 07 (—Kan — Kgsgn(n) + e A+ ecA+eq — X7 dm(Z2)A — xFoc(2)A — X ¢6(2)
+XG6906(2) + 1M (2)A + Ebc(2)A) + T3 Khrxar + Ta' XExe + T kExa
=—2TKiz+n" (=K2n — Kgsgn(n) + B+ fmom (2)A + Rovc(Z2)A + Xada(2))

—1- & —1~T .4 —1~T ~
+ T x5 + T xERe + T xExa,

(B1)

(B2)

(B3)

(B5)
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A two-link SEA-driven
robot

Figure C1 A 2-DOF SEA-driven rotary robot

where B = ey A + ec A+ eg, and Ky > ||B||. Substituting (17) to (??), we obtain
Vo = —2" K12z — 0" Kon+ 0" (B — Kgsgn(n)) + Xardm (2)A + Xcdc(2)A+ Xada(2))
—Xaém(Z2)An — Xbbc(2)An — XE¢a(Z) — XaomXm — XEooXe — XGoaRa:- (B6)

Thus, we can obtain that

. OM T - oC T oG
Vo < —2TK1z — nT Kon — TXEXM - 7X€XC -

Then we can conlude that variables z and 7 are bounded and satisfy conditions as follows

~T ~ 1 * * * ® ®
X6Xe + 5 (OmXAf Xir +oexE X T oexd xe)- (BY)

OM - oC - (el ~
Ak 12117 + Ak [nl|* + - [[vec(xar)||* + THVGC(XC)H2 + 7\|VGC(X£)||2
oM X oc ofe!
< THVQC(XIVI)HQ + 7||\"3‘3(><E*)||2 + 7||VGC(XE)H27 (B8)

where A\g, and Ag, are the minimal eigenvalues of K1 and Ko, respectively. vec(-) stands for the column vectorization
operation. They follow that z and 1 can be made arbitrarily small by choosing sufficiently large Ax, and Ag,. They
will converge to zero for ops, oc and og are all zero. The above inequality can be proved by contradiction: assuming
the above inequality is invalid yields Va2 < 0 and thus Va decreases iteratively. This indicates that ||z||, ||7]], ||vec(Xaz)ll,
[[vec(Xc)|| and ||vec(Xa)|| (and thus the left-hand side of the above inequality) become even smaller, which contradicts the
hypothesis.

Appendix C Simulation settings and results

We consider a 2-DOF SEA-driven rotary robot, mi,mg and l1,l2 denote the mass and length of links 1,2 respectively,
where m1=2.0kg, m2=0.85kg, {1=1.40m, l2=1.24m. The initial position is set as [0.85m;0.1m], and the desired trajectory
is given as [(0.1sin(t) + cos(t))m;sin(0.2¢)m]. When robot’s end-effector is tracking the desired trajectory, there is a wall
at y = 0.4m and robot will collide with the wall shown in Figure ?7. The centers of RBFNNs are chosen in the region of
[—1,1] x [=1,1] x [=1,1] x [=1,1] x [=1,1] x [=1,1] x [=1,1] x [~1, 1], the NN node is chosen as 28, the initial value of the
NN weight is set as 0. I'ps, I'c and ' are selected as [100, 0; 0, 100], and opr=0c=0c=0.02. The gain matrices K; and
K> are chosen as [30,0;0,30] and [40, 0;0,40]. We suppose that the stiffness parameter of the wall is 500 N/m, the SEA
inertia matrix M), is set as [1, 0; 0, 1], the stiffness matrix is set as [60, 0; 0, 60], the desired stiffness in impedance control is
set as 20 N/m. We consider two situations that the robot with SEA and without SEA has collisions with the wall. Figure 1
shows the position and the position error of the end-effector in task space, and it also shows that the interaction force with
SEA is smaller than the robot without SEA at the beginning of collisions. Therefore, we can conclude that the external
force with SEA is smaller than the external force without SEA when physical collisions occur at the first time, and both
of them can achieve the desired impedance relationship between force and state error by our proposed adaptive impedance
control.
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