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Dear editor,
U-root-MUSIC [1] is one of the most popular uni-
tary direction of arrival (DOA) estimation meth-
ods [2], and its eigenvalue decomposition (EVD)
stage involves only real-valued (RV) arithmetic.
Recently, a version of RV-root-MUSIC, which al-
lows RV computations for both EVD and polyno-
mial rooting, was reported in [3]. Nevertheless,
the RV-root-MUSIC polynomial is of a high de-
gree 2(M − 1), which means it has unacceptably
high complexity with large arrays [4]. This study
focuses on further reducing the complexity of the
RV-root-MUSIC algorithm. This study’s contri-
butions are as follows: (1) we propose a variable
substitution technique to reduce the degree of the
RV-root-MUSIC polynomial to half its size with-
out sacrificing accuracy, and (2) we propose a new
low-degree root-MUSIC algorithm, which requires
only RV computations for fast DOA estimation.

Signal model. A standard signal model for DOA
estimation using a uniform linear array (ULA)
composed of M sensors is given by [2–4]

x(t) = As(t) + n(t), (1)

where x(t) ∈ C
M×1 is array output, s(t) ∈ C

L×1

is signal, n(t) ∈ CM×1 is additive white Gaus-
sian noise (AWGN), A ∈ CM×L is array manifold,
and L < M is the number of signals. Each col-
umn of A is known as a steering vector a(θl) ,
[1, ejωl , . . . , ej(M−1)ωl ]T, where θl, l ∈ [1, L] are un-
known DOAs, ωl , (2π/λ)d sin θl, λ is signal wave-
length, and d > λ/2 is array interspacing. The

EVD of the array covariance matrix

R , E{x(t)xH(t)} = ASAH + σ2
nI (2)

can be rewritten as

R = EsΛsE
H
s +EnΛnE

H
n , (3)

where S , E{s(t)sH(t)} is source covariance
matrix, σ2

n is AWGN power, and span(Es) and
span(En) are signal- and noise- subspaces, respec-
tively.

Proposed algorithm. According to [3], one can
exploit the intersection

span (En) , span(En) ∩ span(E∗
n) (4)

to obtain a real-coefficient polynomial

f(z) , pT(z−1)EnE
T
np(z), (5)

where p(z) , [1, z, . . . , zM−1]T, z , ejωl , and En

is a real noise matrix computed from the EVD of
Re(R) (real-part of R).

Observing that f(z) is of a high degree 2(M−1),
we denote the coefficient of zk in f(z) as ak, k ∈
[−(M − 1),M − 1], and from (5), we obtain that

ak =

M−k
∑

s=1

Pn(s, s+ k) =

M−k
∑

s=1

Pn(s+ k, s)

= a−k, k > 0, (6)

where Pn , EnE
T
n . Thus, we can write f(z) as

f(z) =
M−1
∑

k=0

ak(z
k + z−k). (7)
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Define a variable ξ and a function h(ξ, k) as

ξ , z + z−1, (8)

h(ξ, 0) = 1, h(ξ, k) , zk + z−k, k > 1, (9)

respectively. Clearly, for k = 1, we have h(ξ, 1) =
z + z−1 = ξ, and ∀k > 2, we have

h(ξ, k) = h(ξ, k − 1)ξ − h(ξ, k − 2). (10)

Using (10), we can determine the coefficients of
h(ξ, k) (k > 1) from the following matrix:

D =

















1 0 0 0 0 · · ·

1 −2 0 0 0 · · ·

1 −3 0 0 0 · · ·

1 −4 2 0 0 · · ·
...

...
...
...
...

















. (11)

The elements in D and the relationships among
these elements and coefficients of factors ξt, t ∈
[1, k] in h(ξ, k), k > 1 are subject to the following
rules:

(1) ∀i > 1, we have D(i, 1) ≡ 1. For i = 1, we
have D(1, j) = 0. ∀j > 2, when i = 2, we have

{

D(2, 2) = −2, (12-1)

D(2, j) = 0, j > 3. (12-2)

(2) ∀i > 3 and j > 2, elements in the i-th row
can be recursively computed by those in the (i−1)-
th and (i− 2)-th rows as

D(i, j) = D(i− 1, j)−D(i− 2, j − 1). (13)

(3) Elements in the i-th row provide the co-
efficients of factors ξt, t ∈ [1, k] in h(ξ, k), k >
1. More specifically, D(i, j) is the coefficient of
ξi−2(j−1). For example, D(6, 1), D(6, 2), D(6, 3),
and D(6, 4) are coefficients of ξ6, ξ4, ξ2, and ξ0 in
h(ξ, 6), respectively, and we have

h(ξ, 6) = z6 + z−6 = ξ6 − 6ξ4 + 9ξ2 − 2.

Using these rules, one can obtain h(ξ, k), ∀k > 1
immediately.

Inserting (9) into (7), we can transform f(z)
into a new polynomial as

f(z) =

M−1
∑

k=0

akh(ξ, k) =

M−1
∑

k=0

bkξ
k , h(ξ), (14)

where b0 = a0 and bk, k ∈ [1,M − 1] can be com-
puted by combining coefficients corresponding to
factors ξk in all h(ξ, k), ∀k > 1 as

bk = ak

[

D(k, 1) +
∑

i

∑

j

D(i, j)

]

, (15-1)

s.t. i− 2(j − 1) = k. (15-2)

As h(ξ, k) has degree k, h(ξ) has degree M − 1.
By rooting h(ξ), we obtain M − 1 roots ξk, k ∈
[1,M − 1]. Inserting each root into (8), we obtain

z + z−1 = ξk, k ∈ [1,M − 1]. (16)

The two roots of (16) are given by

zk =
ξk +

√

ξ2k − 4

2
, z∗k =

ξk −
√

ξ2k − 4

2
. (17)

According to [3], by selecting among the 2(M −
1) roots zk, z

∗
k, k ∈ [1,M − 1] for the 2L ones

zl, z
∗
l , l = 1 ∈ [1, L] that lie closest to the unit

circle, we can compute 2L possible DOAs as

θl=sin−1

(

λ

2πd
∠zl

)

, −θl=sin−1

(

λ

2πd
∠z∗l

)

. (18)

The L true DOAs can be selected among those 2L
possible ones by maximizing ‖aH(θ)Ra(θ)‖2F [3].

Summary & complexity analysis. Detailed steps
for implementing the proposed algorithm are sum-
marized in Algorithm 1. A comparison of primary
computational flops required by different methods
is shown in Figure 1(a), where O(M3) denotes
both flops of EVD on an M ×M real matrix and
those of rooting an M -degree real polynomial [5].
It can be seen clearly from Figure 1(a) that our
proposed technique is the most efficient one, and
it reduces complexity in the rooting stage by a fac-
tor of eight when compared to RV-root-MUSIC.

Algorithm 1 Low-degree root-MUSIC algorithm

Require: {x(t)}N
t=1

: N snapshots of received data.
Return: {θl}

L

l=1
: L signal DOAs.

1: Compute R = 1

N

∑
N

t=1
x(t)xH(t), perform EVD on

Re(R) to obtain the real matrix En;

2: Compute {bk}
M−1

k=0
by (15), obtain h(ξ) by (14);

3: Root h(ξ) for {ξk}
M−1

k=1
, get {zk, z

∗

k
}M−1

k=1
by (17);

4: Select among {zk , z
∗

k
}M−1

k=1
for {zk, z

∗

k
}L
k=1

by finding
the 2L ones that lie closest to the unit circle;

5: Compute the 2L possible DOAs {±θ}L
l=1

by (18), se-

lect among {±θ}L
l=1

for the L true DOAs {θl}
L

l=1
by

maximizing ‖aH(θ)Ra(θ)‖2
F
.

Simulation results. Simulations were performed
to gain more insights into the performance of the
proposed methods. First, as can be seen in Fig-
ure 1(b), we compared the root distributions of
RV-root-MUSIC and the proposed method, where
the rooting procedure in the proposed method is
considered as two separate steps ((14) and (17)).
It can be seen clearly from Figure 1(b) that for
M = 8 sensors, there are 2(M − 1) = 14 roots
for RV-root-MUSIC. Because (14) reduces the de-
gree by a half, it contains only M − 1 = 7 roots,
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Algorithm Flops in EVD Flops in rooting

Root-MUSIC [2] 4×O (M3)

O (M3)

O (M3)

O (M3)

32×O [(M−1)3]
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Figure 1 (Color online) (a) Comparison of primary computational flops; (b) roots distribution, 8 sensors ULA, SNR =
10 dB, 100 snapshots, 3 sources at 10◦, 20◦, and 30◦; (c) RMSE vs. the SNR, 11 sensors ULA, 100 snapshots, 3 sources at
20◦, 23◦, and 30◦; (d) simulation time vs. the number of sensors, ULA, 100 snapshots, 2 signals at 20◦ and 30◦.

and each of the 7 roots leads to a quadratic equa-
tion given by (16). By rooting these quadratic
equations, (17) gives exactly the same 14 roots as
RV-root-MUSIC, and this verifies the correctness
of our analysis.

Next, an shown in Figure 1(c), we investigated
the root mean square error (RMSE) performance
of our method compared to root-MUSIC [2], U-
root-MUSIC [1], and RV-root-MUSIC [3], where
the Cramér-Rao lower bound (CRLB) [6] was also
applied. It can be seen from Figure 1(c) that both
root-MUSIC and U-root-MUSIC slightly outper-
form RV-root-MUSIC and the proposed method.
However, such disparity is negligible and accept-
able because all four estimators gave satisfactory
RMSEs close to the CRLB. It can also be seen from
that the proposed technique provides the same
performance as RV-root-MUSIC with no sacrifice
of accuracy. This is because our method is based
on variable substitution without approximation.

Finally, as can be seen in Figure 1(d), we ex-
amined the computational efficiency of the pro-
posed method and compared it with root-MUSIC,
U-root-MUSIC, and RV-root-MUSIC, where effi-
ciency is equivalently evaluated in terms of CPU
times by running MATLAB codes in the same en-
vironment. It can be seen from Figure 1(d) that
with an obvious efficiency advantage, the proposed
technique costs much less CPU time than RV-
root-MUSIC, which matches our analysis in Fig-

ure 1(a).
Conclusion. We proposed a new algorithm,

which reduces the complexity of RV-root-MUSIC
by a factor of eight in the rooting step because it
constructs an equivalent polynomial with half the
degree. The new algorithm can provide similar
performance to RV-root-MUSIC because it intro-
duces no mathematical approximations.
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