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Dear editor,
It is well-known that the stability should first
be considered in system analysis and synthesis.
Since Lyapunov first initiated his stability theory
regarding ordinary differential equations (ODEs)
in 1892, Lyapunov’s stability theory has been
an important research topic in both mathemat-
ics and control theory. Specifically, Lyapunov’s
second method was soon generalized to the study
of the stability of stochastic differential equa-
tions (SDEs) from ODEs [1–3]. Unfortunately,
to date, although deterministic difference equa-
tions have been systematically investigated, there
are few systematic monographs on the stability of
discrete-time stochastic difference systems corre-
sponding to [1,2], which are regarding the stability
of continuous-time Itô systems.

Along with the development of computer tech-
nology, the computational speed of computers has
increased, and thus studies on difference systems
or difference equations have becomes more impor-
tant, the reasons for which are as follows. First,
it is often very difficult to solve most nonlinear
ODEs or SDEs analytically, and hence, numeri-
cal solutions to ODEs and SDEs should be found,
which requires to turn a continuous system into a
discrete system, e.g., [4]. Second, many real engi-
neering problems can be modeled through discrete-
time difference equations [5], that is, discrete sys-
tems are important models in their own right. In

recent years, discrete-time stochastic systems have
attracted the attention of many researchers. For
example, in [6], the discrete stochastic LaSalle-
type invariance principle was obtained. However,
it seems that few results have been reported on the
stochastic stability of the following general nonlin-
ear discrete stochastic system:

xk+1 = Fk(xk, ωk), Fk(0, ·) ≡ 0. (1)

Moreover, even for some special nonlinear dis-
crete stochastic systems such as affine systems,
most stability criteria were given through a condi-
tional mathematical expectation [7, 8], which are
difficult to verify in practical computations.

Among the various definitions of stochastic sta-
bility, the stability in probability is the most fun-
damental. Although for general continuous-time
Itô systems, a well-known result on the stability in
probability was given early on [1, 2] by construct-
ing a positive definite Lyapunov function V (t, x),
which satisfies LV (t, x) 6 0, to date, however
there remain no efficient criteria regarding the sta-
bility in probability of the general discrete-time
stochastic system (1). In this study, we apply the
discrete martingale theory and generalized Cheby-
shev’s inequality to establish a useful theorem for
stability in probability of system (1), which is a
discrete version of the corresponding result in [1,2].

Preliminaries. Consider the following discrete-
time nonlinear stochastic difference system:
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xk+1 = Fk(xk, ωk),

Fk(0, y)≡0, ∀y∈Rl, k∈N := {0, 1, 2, . . .},

x0 ∈ Rn,

(2)

where x0 is the deterministic initial state,
{xk}k∈N is the Rn-valued state variable se-
quence, and {ωk}k∈N is an independent Rl-
valued random variable sequence, which is de-
fined on a given completely filtered probability
space (Ω,F , {Fk}k∈N ,P), where Fk := σ(ωs, s =
0, 1, . . . , k − 1), F0 = {φ,Ω}. Fk : Rn ×Rl 7→ Rn

is a continuous function for each k ∈ N . For
the system (2), we define its solution sequence as
{x0,x0

k }k∈N or {xk}k∈N for simplicity with the ini-
tial value (0, x0). We first introduce Definition 1
for the system (2).

Definition 1 (Stability in probability [1,2]). We
call the trivial solution xk ≡ 0 of the stochastic
difference system (2) to be stable in probability, if
for any ε > 0, the following holds:

lim
x0→0

P

(

sup
k>0

‖xk‖ > ε

)

= 0. (3)

Associated with system (2), we define the fol-
lowing:

∆Vk(x) := EVk+1(Fk(x, ωk))− Vk(x), (4)

where E indicates the mathematical expectation.
Note that ∆Vk(x) only contains a mathemati-
cal expectation of ωk, which is easily verified as
∆Vk(x) 6 0 or not. In many previous references,
∆Vk(xk) is often used instead of ∆Vk(x) to judge
the stability of stochastic difference systems. How-
ever, it is difficult to test ∆Vk(xk) 6 0 because
the mathematical expectation of the state xk is
involved in ∆Vk(xk).

Lemma 1 is a generalized version of Chebyshev’s
inequality [1].

Lemma 1 (Generalized Chebyshev’s inequality
[1]). Assume Vk(x) is a nonnegative function on
N ×Rn, and ηk(ω) is a stochastic process satisfy-
ing EVk(ηk(ω)) < ∞. Then

P{|ηk(ω)| > r} 6
EVk(ηk(ω))

infj∈N ,x∈Dc
r
Vj(x)

,

where Dc
r is the complement set of Dr, and Dr :=

{x ∈ Rn : ‖x‖ < r}.

Lemma 2. If {Vk(x)}k∈N is a positive defi-
nite Lyapunov function sequence on N ×Rn with
V0(x0) < ∞, ∆Vk(x) 6 0, then {Vk(xk),Fk}k∈N

is a super-martingale, i.e.,

E|Vk(xk)| = EVk(xk) < ∞,

E [Vk+1(xk+1)|Fk] 6 Vk(xk), a.s..

Proof. Based on ∆Vk(x) 6 0 for (k, x) ∈ N×Rn,
it follows from ∆Vk(xk) 6 0 a.s., which yields the
following:

E∆Vk(xk) = EVk+1(Fk(xk, ωk))− EVk(xk)

= EVk+1(xk+1)− EVk(xk) 6 0,

and accordingly,

EVk+1(xk+1) 6 EVk(xk) 6 · · · 6 V0(x0) < ∞. (5)

In addition, based on the definition of Fk, xk

is Fk-measurable, and ωk is independent of Fk for
all k ∈ N . Under the condition of ∆Vk(x) 6 0,
through Lemma 2.1 of [6], we also have

E [Vk+1(xk+1)|Fk]− Vk(xk)

= E [Vk+1(Fk(xk, ωk))− Vk(xk)|Fk]

= E [Vk+1(Fk(x, ωk))− Vk(x)]
∣

∣

x=xk

= ∆Vk(x)
∣

∣

x=xk

6 0, a.s..

Hence,

E [Vk+1(xk+1)|Fk] 6 Vk(xk), a.s.. (6)

Combining (5) and (6) shows that {Vk(xk),
Fk}k∈N is a nonnegative super-martingale.

The following Doob’s stopping time theorem
can be found in Theorem 5.3.3 of [9].

Lemma 3 ([9]). Suppose that {Xk,Fk}k∈N is a
super-martingale, which dominates a regular mar-
tingale {E(Y |Fk),Fk}k∈N , E|Y | < ∞. Assuming
that σ and τ are two stopping times, σ 6 τ a.s.,
then

E(Xτ |Fσ) 6 Xσ, a.s..

Main results.

Theorem 1. If there exists a positive definite
Lyapunov sequence {Vk(x)}k∈N onN×Rn, where
Vk(x) is a continuous function for k ∈ N and
V0(x0) < ∞, which satisfies

∆Vk(x) = EVk+1(Fk(x, ωk))− Vk(x) 6 0, (7)

then the system (2) is stable in probability.
Proof. Let ε > 0 be a sufficiently small number,
Dε := {x ∈ Rn : ‖x‖ < ε}, which is the neighbor-
hood of the original point. Set

Vε := inf
x∈Dc

ε
, k∈N

Vk(x).

Because {Vk(x)}k∈N is a positive definite and
continuous function sequence on N ×Rn, we have
Vε > 0. Define τDε

as the first exit time from
Dε, that is, τDε

= inf{k : xk /∈ Dε}. Based
on Lemma 2, {Vk(xk),Fk}k∈N is a nonnegative
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super-martingale, which dominates a zero regular
martingale. Hence, through Lemma 3,

E [VτDε
∧k(xτDε

∧k)|F0] 6 V0(x0), a.s.,

which leads to

E [VτDε
∧k(xτDε

∧k)] 6 V0(x0). (8)

Combing (8) with Lemma 1 yields the following:

P

(

ω : sup
06i6k

‖xi‖ > ε

)

= P
(

ω : ‖xτDε
∧k‖ > ε

)

6
E [VτDε

∧k(xτDε
∧k)]

Vε

6
V0(x0)

Vε

. (9)

Taking k → ∞ in (9), it follows that

P

(

ω : sup
k>0

‖xk‖ > ε

)

6
V0(x0)

Vε

.

Considering that V0(0) = 0, and V0(x) is a con-
tinuous function, we thus have

lim
x0→0

P

(

ω : sup
k>0

‖xk‖ > ε

)

6 lim
x0→0

V0(x0)

Vε

= 0.

Theorem 1 is therefore proved.

Remark 1. Compared with existing researches
on the stability of discrete stochastic systems, such
as in [7], the contributions of this study are mainly
reflected in the following two aspects. (i) The sys-
tem (2) is more general than the model in [7].
(ii) The conditions in Theorem 1 are indepen-
dent of the mathematical expectation or condi-
tional mathematical expectation of the state xk.
Thus, it is more practical than Theorem 3.1 of [7].

Remark 2. The condition (7) in Theorem 1 can
be weakened following the line of Theorem 3.1 and
Remark 3.2 of [7].

Example 1. In system (2), we consider a one-
dimensional stochastic time-invariant difference
system

xk+1 = e−|xk|xkω
4
k, x0 ∈ R, (10)

where {ωk}k∈N is an independent random variable
sequence with Eω4

k = 1. We set Vk(x) = V (x) =
|x|, and thus

∆Vk(x) = EVk+1(Fk(x, ωk))− Vk(x)

= e−|x||x| − |x| 6 0, ∀x ∈ R.

Hence, through Theorem 1, the system (10) is
stable in probability.

Conclusion. In this study, based on the general-
ized Chebyshev’s inequality and Doob’s stopping
time theorem, we proved a new theorem on the
stability in probability, which is applicable because
our given criterion does not contain a mathemat-
ical expectation of the state xk, but only a math-
ematical expectation of ωk. We believe that, fol-
lowing the line of Theorem 1, we are in a position
to show other stability results of general discrete-
time stochastic difference systems.
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