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Appendix A Generation method of Lévy vector

In the HQPSO algorithm, the Lévy vector is generated using the Mantegna rule with Lévy distribution characteristics. In
the Mantegna rule, the step length s is designed as follows:
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§=—. (A1)
v[?
where,u ~ V(0,02) ,v ~ N(0,02), 0y, and o, are defined as follows:
r(1+8)sin(%E)  \°
oy = : (A2)
L1+ p)/2)B208-1)/2

where,3 = 1.5. A three-dimensional(3D) figure of the Lévy flight process is shown in Figure Al.

oo B N W b~ O

Y -10 -10 T

Figure A1 3D figure of Lévy flight process.

The figure shows that frequently small steps and occasional large steps occur alternately during the process of Lévy
flight, which helps the algorithm jump out of local minima.
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Appendix B Curve of ¢(t) with the increasing number of iterations ((The maximum iter-
ation number is 1000).

0.8

0.6

(v

0.4

0.2

0 200 400 600 800 1000
Iteration

Figure B1 Curve of 9 (¢).

Appendix C Experimental results and statistical analysis of HQPSO algorithm and other
comparison algorithms.

Appendix C.1 Benchmark functions

To evaluate the performance of HQPSO and compare it with QPSO-based evolutionary (i.e., QPSO [1],DIR-QPSO [2],HC-
QPSO [4],and ESH-CQPSO [5]) and other recently improved evolutionary algorithms(i.e., SLPSOA [9], LGWO [10], E-
BA [11],and NoCuSa [12]), the benchmark functions listed in Table C1 were tested using the above algorithms. The
functions are divided into three classes: fi1 to f7 are unimodal functions, fg to fi3 are multimodal functions, and f14 to fig
are rotated and shifted functions. The corresponding dimensions D, range, global minimum values fop¢, and acceptance
values of the functions are also listed in Table C1 as well.

Table C1 Benchmark functions

Name Function D Range fopt Acceptance
Shpere fiz) =P 22 30 [-100,100)° 0 10-6
DeJongF4 fo(x) =2 ixt 30 [-10,10]P 0 10—
Sum Square fa(@) =R ia? 30 [-100,100]° 0 106
Schwefel 2.21 fa(z) = max(abs(z)) 30 [-100,100]° 0 106
Schwefel 2.22 f5(@) =32 o + IR, |2l 30 [-10,101° 0 1010
Zakharov fo@) =2 22+ 32 0.5ia? + 2 | 0.5iz) 30 [-10,10° 0 10-6
Rosenbrock fr(@) =P [ [100(zi11 — )2 + (x5 — 1)?] 30 [-100,100]° 0 28
Ackley fs(x) = —20 exp(—é\ /1/ 22’;1 z?) — exp(% Zz’;l cos(2mz;)) +20+e 30 [-32,32)P 0 10~
Schwefel fo(z) = 418.9829D — "0 a; sin(|w¢\%) 30 [-500,5001P” 0 2500
Alpin fio(z) = SR | abs(x; sinz; +0.14) 30 [-50,501° 0 1
Rastrigin fii(z) = X2 (a2 — 10 cos(272;) 4 10) 30 [-5.12,5.12]P 0 10~
Griewank fr2(@) = 305 2 22 + [T, cos(xi/vi) + 1 30 [—600,600/° 0 106
Michalewicz fia(z) = SR | sin(x;) sin(iz? /7)20 30 [0, 7P - —18
Shifted fua(@) = S iz — Vi)? 30 [-100,100° 0 1079
Sum Square
Shifted fis(@) = SR [100(yit1 — vi)? + (v — 1)?] + 390, 30 [-100,100]° 300 490
Rosenbrock i =x; — Vi
Shifted fie(z) = 2 (v2 - 10 cgs(Qnyi) + 10), 50 [5.12,5.127 0 106
Rastrigin Yi =T — &
Rotated frr(x) = 055 o2y v2 + T12, cos(yi/ Vi) + 1, 30 [-600,600° 0 10-6
Griewank where y = Mxz,M is an orthogonal matrix
Rotated fis(z) = Zz’;l(yf — 10cos(27y;) + 10), 30 [£5.12,5.12° 0 10-6

Rastrigin where y = Mx,M is an orthogonal matrix
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Appendix C.2 Comparisons with other QPSOs

Appendix C.2.1  Parameter settings of HQPSO and other QPSOs

The parameter settings of HQPSO and other QSPOs are given in Table C2, where the parameter settings of the comparison
algorithms are based on the suggestions in the corresponding references.

Table C2 Parameters settings of algorithms used in the comparisons

Algorithm Reference Parameters
QPSO Ref.[1] Amaz = 1, amin = 0.5
DIR-QPSO Ref.[2] Amaz = 1, min = 0.5, Ng1 = N2
HCQPSO Ref.[4] Amaz = 1, @min = 0.5
ESH-CQPSO Ref.[5] Amaz = 1, @min = 0.5
HQPSO Present A=3,L=10

Appendix C.2.2  Population diversity analysis of HQPSO and QPSO

To illustrate the details of the population diversity in QPSO and HQPSO, we take two two-dimensional(2D) test functions
as an example. One is the unimodal Sphere function (f2), and the other is the multimodal Griewank function (f12, where
the space range is [—10, 10]). Firstly, we obverse the population diversity of QPSO and HQPSO through the distributions
of the points during the search process. For the two minimization problems, the population size is 30 and the number of
maximum iterations is 1000 for both algorithms. The distributions of the points during the search process are observed and
shown in Figure C1.
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Figure C1 Comparison of distributions between QPSO and HQPSO algorithms.

It can be seen from Figure C1 that HDPSO produces a wider range of points than that of QPSO. Therefore, HQPSO
has stronger abilities to lead the swarm escape from local minima.

Second, we use a diversity measure [8]to analyze the changes in diversity during the QPSO and HPSO search process.
In this letter, the diversity measure is a new distance to best point measure defined as follows:

(C1)
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where M denotes population size; Xmaz and X,;n the are upper and lower limits of the search spaces, respectively; D
denotes problem dimension; z;; is the value of the jth dimension of the ith individual, and z? is the value of the jth
dimension of the current best point. A low divs value indicates that the swarm has clustered in a small region. Conversely,
a high divs value indicates that the swarm has scattered over in a wide region. Hence, the diversity could be considered
together with the problem and the search process of the algorithm. In this test , for the QPSO and HQPSO algorithms, the
population size N is 50, problem dimension is 30 and the number of maximum iterations is 1000.The change in diversity
during the search process is recorded in Figure C2.
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Figure C2 Diversity comparison between QPSO and HQPSO algorithms.

Figure C2 shows that the diversity of QPSO decreases rapidly with increasing iteration number, so the algorithm can
very easily fall into local minima. The diversity of HQPSO can be maintained at a certain level, except in the later stages
of the search process, and it has stronger abilities to lead swarm escape from local minima. In the later stages, the rapidly
decreasing diversity beneficial for enhancing the convergence precision of HQPSO.

Appendix C.2.3  Experimental results and discussion

In this subsection, the proposed HQPSO is compared with QPSO, DIR-QPSO, HCQPSO, and ESH-CQPSO. For fair
comparison, all algorithms were tested using the same population size M = 50 and the same maximum number of iterations
T = 1000. In each trial, each algorithm was run 30 times independently on each test function.

1. Comparisons of convergence precision

The comparison results of convergence precision between HQPSO and other QPSOs are listed in Table C3, where ” Mean”
indicates the average of best fitness values averaged over 30 runs. ”Std. Dev” denotes the standard deviation. The best
values are highlighted in bold font. From the results in Table C3, we can draw the following conclusions:

(1) In the case of the unimodal functions, HQPSO and ESH-CQPSO could obtain the global best solution of f2 in each
trial. On functions other than fa, HQPSO outperformed the other algorithms. QPSO performed badly on all unimodal
functions, and loses in fg and f7. As for f7, only HQPSO achieved satisfactory performance. To sum up, HQPSO performed
better than the other algorithms on the selected unimodal functions.

(2) As for multimodal functions, HQPSO, HCQPSO, and ESH-CPQSO can obtain the global best solution on fij.
DIR-QPSO, HQPSO, HCQPSO, and ESH-CPQSO can obtain the global best solution on fi12. As for f7, fi0, and fi3, the
best performance was achieved by HQPSO. As for fg, the best performance was achieved by DIR-QPSO, ESH-CQPSO,
and HQPSO, and their best values, worst values, mean values, and standard deviations reached 8.8817e-016, 8.8817e-016,
8.8817e-016, and 0, respectively. As for fo, HQPSO lost only to DIR-QPSO in terms of Best and mean values, and its
performance was considerably better than that of the other algorithms. Therefore, we can conclude that HQPSO has better
performance than the other algorithms on the selected multimodal functions.

(3) On the rotated and shifted functions, HQPSO performed satisfactorily on fi4 to fig and lost out only to ESH-
CQPSO on f17. From Table C3, the best Std.Dev was achieved by HQPSO on all test functions except fi7. The lower
Std.Dev illustrates that HQPSO has better stability. Meanwhile, convergence comparisons of all the algorithms are shown
graphically in Figure C3. These comparisons confirm the results presented in Table C3.

From Table C3, the best Std.Dev is achieved by HQPSO on all test functions except fi7. The lower Std.Dev illustrates
that HQPSO is of better stability. Meanwhile, the convergence comparisons of all algorithms are graphically shown in
Figure C3 . It confirms the results in Table C3.

2. Comparisons on convergence speed

In solving real-world problems, fitness evaluation (FE) time overwhelms the algorithm overhead. Hence, for comparing
convergence speed, the mean FE(FEs) required to reach an acceptable accuracy level would be considerably more interesting
than CPU time [6]. In this letter, the FEs required to arrive at acceptable solutions in the successful runs are listed in
Table C4. The best result is shown in bold font. If an algorithm can not reach its acceptable value in the search process,
its FEs is denoted by ” x”.
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Table C3 Statistical results on test functions

Algorithm  Statistics fi f2 f3 fa fs fe
Best 7.8660e-069 9.2646e-115 3.4242e-068 5.7739e-022 8.3403e-040 6.7463e-010
QPSO Worst 8.6563e-065 6.0899e-107 5.2459e-060 2.5132e-019 3.2618e-038 9.2301e-006
Mean 4.4739¢e-065 9.1765e-108 4.7531e-063 3.7184e-020 7.7575e-039 1.8392e-006
Std.Dev 5.0442e-130 4.2097e-214 6.4574e-126 5.4133e-039 1.2058e-076 6.4335e-012
Best 3.6258e-162 1.4535e-323 8.2134e-196 1.6902e-086 7.1579e-100 1.4245e-161
DIR-QPSO Worst 1.1534e-121 7.0284e-258 7.4245e-104 1.9809e-070 2.2965e-078 4.2981e-125
Mean 1.1543e-122 6.0315e-259 6.3532e-132 2.0627e-071 2.0917e-079 5.7302e-132
Std.Dev 5.8404e-243 0 7.3760e-238 3.5387e-141 4.7929e-157 3.2421e-261
Best 1.2953e-184 1.5363e-311 3.3224e-183 1.1059e-146 7.1333e-082 3.4294e-301
HOQPSO Worst 6.4249e-156 1.7571e-309 4.5324e-150 5.4612e-093 7.1482e-072 4.5204e-202
Mean 6.4249e-157 1.0123e-310 3.5356e-151 4.9697e-094 6.5098e-073 3.5294e-203
Std.Dev 4.1279e-312 0 2.5363e-300 2.7108e-186 4.6436e-144 0
Best 3.7912e-216 0 4.2243e-207 1.4883e-105 2.0712e-120 2.3572e-218
ESH.CQPSO Worst 3.8951e-178 0 3.6743e-168 4.6182e-082 1.1572e-101 1.1435e-168
Mean 3.8951e-179 0 3.6352e-169 4.1992e-082 1.0731e-102 2.3452e-169
Std.Dev 0 0 0 1.9388e-162 1.2127e-203 2.0471e-317
Best 1.3035e-309 0 0 7.0380e-150 3.4242e-227 0
HQPSO Worst 4.8932e-230 0 3.5643e-237 4.8441e-106 4.2542e-163 3.5631e-215
Mean 4.9061e-231 0 3.4234e-238 4.4055e-107 3.2424e-171 4.5674e-241
Std.Dev 0 0 0 2.1331e-212 2.9174e-336 0
ks fs Jo fio fi1 f12
Best 28.08669 8.8547e-016 8.6889¢+003 5.97397 5.4352 9.3196e-006
QPSO Worst 28.3092 4.4408e-015 9.3076e+003 73.3201 1.3246e+-002 0.0231
Mean 28.1614 4.1179e-015 8.9635e+003 18.3914 32.2323 0.01153
Std.Dev 0.0038 1.1474e-030 5.2643e+004 3.5620e+002 1.6436e+003  2.6579e-004
Best 27.2546 8.8817e-016 3.8182e-004 7.6479e-006 2.4225 0
DIR-QPSO Worst 27.6334 8.8817e-016  3.7949e+003 0.7000 9.5354e+001 0
Mean 27.4395 8.8817e-016 1.1686e+003 0.1083 21.6896 0
Std.Dev 0.0168 0 2.0859¢e+006 0.0644 1.9342e+003 0
Best 26.5518 4.4408-015 7.4634e+003 0.3000 0 0
HOQPSO Worst 26.8177 7.9936e-015 8.5963e+003 11.3000 0 0
Mean 26.6965 6.0557e-015 8.1559e+003 3.7916 0 0
Std.Dev 0.0077 3.4423e-030 1.2726e+005 8.9990 0 0
Best 9.9025e-014 8.8817e-016 3.9583e+003 0.2000 0 0
ESH-CQPSO Worst 22.86823 8.8817e-016 5.2797e+003 4.7000 0 0
Mean 2.0789 8.8817e-016 4.5014e+003 1.8833 0 0
Std.Dev 47.5413 0 2.0521e+005 1.8815 0 0
Best 4.4674e-018 8.8817e-016 1.6367e+003 4.7220e-006 0 0
HQPSO Worst 2.0489e-009 8.8817e-016 2.3065e+003 4.5278e-004 0 0
Mean 2.5250e-010 8.8817e-016 1.9470e+003 1.4736e-004 0 0
Std.Dev  4.0164e-019 0 4.0381e+004 1.3962e-008 0 0
fi3 f1a fi5 fie fi7 fis
Best -20.6514 1.5538e-008 4.1480e+002 9.5448 2.0144e-011 16.1655
QPSO Worst -12.5972 3.2287e-006 1.1922e+003 41.2121 0.0467 32.9471
Mean -15.0762 4.6135e-007 6.4062e+002 26.3916 0.0139 23.9673
Std.Dev 7.9384 8.7674e-013 1.1197e+005 73.6934 2.9293e-004 21.0433
Best -20.9575 1.7543e-007 4.0439e+002 19.8995 5.5178e-014 3.1942e-004
DIR-QPSO Worst -13.5859 9.2656e-006 4.1726e+002 43.7786 2.0838e-013 0.0011
Mean -18.5097 1.4439e-006 4.0714e+002 26.7981 1.1562e-013 5.9164e-004
Std.Dev 4.3585 6.8737e-012 13.1782 36.8351 2.0960e-027 5.4644e-008
HOQPSO Best -15.3225 4.3099e-008 4.1982e+002 0.0353 1.2741e-009 0.0055
Worst, -9.5057 2.7781e-007 4.9759e+002 3.01185 2.9893e-007 0.0195
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Algorithm  Statistics fi3 f1a fis fi6 fi7 fis
Mean -11.4797 1.0232e-007 4.4284e+002 1.3936 4.2209e-008 0.0106
Std.Dev 2.6859 4.7773e-015 4.8276e+002 0.8775 6.7702e-015 9.7929e-006
Best -20.5971 5.0467e-004 4.0242e+002 0.0188 0 0.0112
ESH.CQPSO ‘Worst -18.0571 0.0033 5.2325e+002 0.0648 0 0.0556
Mean -19.0912 0.0015 4.2604e+002 0.0383 0 0.0321
Std.Dev 0.8222 5.6207e-0076 1.3187e+4-003 1.6321e-004 0 1.6129e-004
Best -21.5724 1.8009e-011 4.0038e+002 2.1232e-013 0 4.5474e-013
HQPSO ‘Worst -18.6207 1.1681e-009 4.1159e+002 4.6361e-010 2.2204e-016 6.7643e-012
Mean -20.5760 2.6934e-010 4.0652e+002 7.6537e-011 3.7007e-017 1.6029e-012
Std.Dev 0.6765 1.6578e-019 8.2104 2.3526e-022 5.2291e-033 2.7202e-024
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Figure C3 Comparisons of convergence speed.

1000

From the results in Table C4, the convergence speed of the improved QPSO algorithms is significantly better than that
of QPSO. DIR-QPSO has the best convergence speed on f1,f2,f3,f4,f5, f8, fo, and fi2. HQPSO has the best convergence
speed on f7, fio, fi1, f13, fi4, fi5, fie, f17, and fig. HCQPSO has the best convergence speed only on fg. HQPSO
successfully reached the acceptance value on all test functions, DIR-QPSO lost in f1, fi2, fie, and fig, and HCQPSO lost
in fi1, fi2, fie, and fig. QPSO had the worst performance in the comparison algorithms, and its success rate on all test
functions was only 67%. The most interesting result was that HQPSO converged faster on multimodal, shifted, and rotated

functions; thus, DIR-QPSO has better convergence speed on unimodal functions.

In real-world problems, multimodal,

shifted, and rotated functions are more common, so HQPSO is more suitable for solving real-world optimization problems.

Table C4 Statistical results of FEs on test functions

Algorithm f1 fa f3 fa fs fe fr fs fo
QPSO 25246 22811 25413 25004 26334 31647 X 29524 X
DIR-QPSO 3414 2263 3645 3424 3346 9147 48051 3435 6061
HCQPSO 3607 3341 4157 3864 4327 4645 47775 16566 X
ESH-CQPSO 8352 4342 8962 10057 4711 11611 19534 9252 X
HQPSO 7643 4118 8014 8433 4432 10323 14439 8948 39547
f1o fin f12 fi3 f1a fis fi6 fi7 fis
QPSO X X X X X 47109 X X X
DIR-QPSO 21824 X 4213 29613 X 34333 X 44102 X
HCQPSO X 8322 4542 X 48217 43404 X 37632 X
ESH-CQPSO X 3314 10150 29441 X 46301 X 31229 X
HQPSO 10137 3071 9264 26642 42338 33639 260570 10233 20341

3. Comparison on other indicators
To further illustrate the superiority of the proposed HQPSO algorithm, comparison results of success rate (SR, the
percentage of successful runs in which acceptable solutions are obtained), ”w/t/l” and ranking performances (ranking by
mean value listed in table C3) among HQPSO and the other compared algorithms are listed in Table C5. Here, SR stands
for the probability that the tested algorithm has successfully reached the acceptance value for each tested function, and
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?w/t/” means that the HQPSO wins against w algorithms, ties with ¢ algorithms, and loses against [ algorithms, compared
to other QPSO algorithms.

Table C5 Statistical results of SR, "w/t/l1” and ranking performance

Algorithm f1 fo f3 fa f5 fe f7 fs fo
SR(%) 100 100 100 100 100 63 0 100 0
QPSO w/t/l 0/0/4 0/0/4  0/0/4  0/0/4  0/0/4 0/0/4 0/0/4 1/0/3  0/0/4
Rank 5 5 5 5 5 5 5 4 5
SR(%) 100 100 100 100 100 100 100 100 80
DIR-QPSO  w/t/l  2/0/1  1/0/3 3/0/1 3/0/1  2/0/2  3/0/1 1/0/3  2/0/2  4/0/0
Rank 4 4 2 2 3 2 4 3 1
SR(%) 100 100 100 100 100 100 100 0 0
HCQPSO w/t/l 0/0/3 2/0/2  2/0/2 1/0/3 1/0/3 1/0/3  2/0/2  0/0/4  1/0/3
Rank 3 3 3 4 4 4 3 5 4
SR (%) 100 100 100 100 100 100 100 100 0
ESH-CQPSO  w/t/l  1/0/2 3/1/0 1/0/3 2/0/2  3/0/1  2/0/2 3/0/1 3/1/0  2/0/2
Rank 2 1 4 3 2 3 2 1 3
SR(%) 100 100 100 100 100 100 100 100 100
HQPSO w/t/l  4/0/0  3/1/0  4/0/0  4/0/0  4/0/0  4/0/0  4/0/0  3/1/0  3/0/1
Rank 1 1 1 1 1 1 1 1 2
f10 fin f12 f13 f14 fis f16 fi7 f1s
SR(%) 0 43 0 0 73 40 0 80 0
QPSO w/t/l 0/0/4 0/0/4  0/0/4  0/4/0  2/0/2  0/0/4 1/0/3 0/0/4  0/0/4
Rank 5 5 5 4 3 5 4 5 5
SR(%) 100 83 100 50 53 100 0 100 0
DIR-QPSO  w/t/l  3/0/1 1/0/3 1/3/0  2/0/2 1/0/3 3/0/1  0/0/4  2/0/2  3/0/1
Rank 2 4 1 3 4 2 5 3 2
SR(%) 0 100 100 0 100 93 0 100 0
HCQPSO w/t/l 1/0/3  2/2/0  1/3/0  0/0/4  3/0/1  1/0/3  2/2/0  1/0/3  2/0/2
Rank 4 1 1 5 2 4 3 4 3
SR(%) 0 100 100 100 0 7 0 100 0
ESH-CQPSO  w/t/l  2/0/2 2/2/0 1/3/0  3/0/1 0/0/4 2/0/2 3/1/0  4/0/0  1/0/3
Rank 3 1 1 2 5 3 2 1 4
SR (%) 100 100 100 100 100 100 100 100 100
HQPSO w/t/l  4/0/0  2/2/0  1/3/0  4/0/0  4/0/0  4/0/0  4/0/0  3/0/1  4/0/0
Rank 1 1 1 1 1 1 1 1 2

Form table C5, HQPSO has a 100% success rate on all test functions. HQPSO has rank ”1” on all test functions, except
fo and fo17. As forfg and fg917, HQPSO lost only against DIR-QPSO and ESH-CQPSO, respectively. TableC6 provides an
overall comparison among all QPSOs. The total rank and final rank of each comparison algorithm are listed in TableC6.

Table C6 Total and final rank of each comparison algorithm

Rank Algoritm
QPSO DIR-QPSO HCQPSO ESH-CQPSO HQPSO
Total rank 85 51 60 42 20
Final rank 5 3 4 2 1

From the results presented in Table C6, HQBPSO achieved the lowest total rank, that is, ”720”, and the best final rank,
that is, 71”. This indicates that HQPSO is superior in terms of overall performance on all test functions than the other
algorithms. We can obviously observe that the total rank value of HQPSO is considerably less than that of the other
algorithms. This indicates that the overall performance of HQPSO is considerably better than that of the other algorithms.

Appendix C.3 Comparisons with other recently improved evolutionary algorithms

To further illustrate the superiority of the proposed HQPSO algorithm, we compare it with the other recently improved
evolutionary algorithms listed in Table C7.
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Table C7 Comparison algorithms and their parameters settings

Algorithm Reference year parameters
SLPSOA Ref.[9] 2017 M =10,aa=0.1,G=5
LGWO Ref.[10] 2017 ap=2,8~U(0,1),p ~U(0,1),
EBA Ref.[11] 2017 ro = 0.1, Ao = 0.95, frin = 0, frmaz = 2, Limitl = 0.8, Limit2 = 0.5
NoCuSa Ref.[12] 2017 pa=03a=11,=17,6=1.6
HQPSO Present — A=3,L=10

These algorithms include scatter learning particle swarm optimization algorithm (SLPSOA) [9], grey wolf optimization
algorithm with Lvy flight (LGWO) [10], enhanced bat algorithm with mutation operator (EBA) [11], and nonhomogeneous
cuckoo search algorithm based on quantum Mechanism (NoCuSa) [12]. For a fair comparison, all algorithms were tested
using the same population size M = 50, except NoCuSa (NoCuSa evaluates fitness twice per iteration, and the population
size M = 25), and the same maximum number of iterations 7' = 1000. In each trial, each algorithm was run 30 times
independently, and the dimension of each selected function was 40. The acceptance value of f13 was -24, and the other

selected functions are listed based on their acceptance values in TableCl1.

Table C8 Comparison results with other evolutionary algorithms

Algorithm  Statistics f1 f3 fs f7 fo f11
Mean 3.4524e-036 1.5309e-041 1.0391e-63 0.8371 21.4562 7.3928e-06
SLPSOA Std.Dev 1.4292e-071 3.3940e-080 3.8374e-122 0.2109 4.2983 4.5729e-10
FEs 21409 23502 11093 15072 27832 10352
Mean 2.3442¢-028 5.3492e-032 5.4534e-e41 12.3343 2.9203e+003 0.1235
LGWO Std.Dev 1.3424e-41 3.4933e-056 3.2040e-78 3.2349 4.4245e+005 1.0134
FEs 9327 8429 12764 15357 X X
Mean 2.3031e-201 5.3924e-223 0 6.3456 2.6434e+003 0
EBA Std.Dev 0 0 0 1.4029 1.4535e4-005 0
FEs 8164 8915 4319 13641 X 4165
Mean 3.0931e-136 3.0493e-153 3.9284e-114 4.2134 3.3294e+003 4.5920e-006
NoCuSa Std.Dev 1.3423e-270 5.3824e-301 1.9238e-225 1.2904 6.3123e+005 1.3947e-011
FEs 9103 8130 8279 16837 X 9712
Mean 2.4713e-227 7.5374e-261 3.9204e-151 1.7886e-08 2.2465e+003 0
HQPSO Std.Dev 0 0 1.1037e-300 8.6573e-017 4.0483e+004 0
FEs 8148 8313 4764 14952 41546 4354
f13 f1a f1s fie fir fis
Mean -24.2943 1.4829e-007 4.1984e+002 1.2938e-007 3.4342e-007 1.6464e-010
SLPSOA Std.Dev 1.2901 2.1947e-013 17.3903 3.2298e-011 1.3985e-014 6.3019e-020
FEs 41094 48293 34013 27439 15432 23410
Mean -17.4452 4.5367e-007 4.3436e+002 4.4214 2.3552e-011 0.1343
LGWO Std.Dev 4.2983 1.3940e-012 17.4354 2.4512 1.3435e-010 1.1372
FEs X 45354 37548 X 13563 X
Mean -9.3247 4.9204e-008 4.6453e+002 9.3942 1.3944e-014 3.4920e-009
EBA Std.Dev 0.9345 7.3534e-015 15.7453 4.6361 2.3492e-027 1.0293e-015
FEs X 45635 35245 X 11204 23532
Mean -25.4521 2.3903e-007 4.8214e+002 5.2942 7.3054e-08 1.3948e-007
NoCuSa Std.Dev 2.4124 1.4920e-014 23.4209 2.2391 1.3428e-015 5.2304e-013
FEs 43357 47292 41045 X 13871 23492
Mean -25.6128 4.3491e-09 4.1703e+002 7.2014e-010 1.5829e-016 9.4903e-012
HQPSO Std.Dev 2.3620 6.4920e-017 12.9203 1.4830e-020 3.5929e-031 1.0949e-023
FEs 39463 45564 33902 26305 10552 20737

Form Table C8, HQPSO and SLPSOA have 100% success rate on all selected functions. LGWO loses on f9, fi1, fi3,
fi6, and fig; EBA loses on f9, fi3, and fi16; And NoCuSa loses on f9 and fi6. HQPSO achieved the best performance of
convergence precision on f1, f2, fr, and f13 to fis, and achieved the best convergence speed on all test functions except
f3, fs, fo, and f11. HQPSO has the most promising performance among these algorithms on the selected functions.
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Figure C4 Statistical results of HQPSO on high-dimensional functions.

Appendix C.3.1 Adaptability of HQPSO to high-dimensional functions

In this subsection, the adaptability of HQPSO to high-dimensional functions is shown in Figure C4. In Figure C4, all selected
functions were tested using the same population size M = 50 and the same maximum number of iterations 7" = 2000. For
all selected functions, fa2, f1, and fg are unimodal functions; fs, fio0, and fi2 are multimodal functions; and f14, f16, and
f1s are rotated and shifted functions. To better illustrate the adaptability of HQPSO to high-dimensional functions, five
different dimensions (i.e., 50, 60, 70, 80, and 100) are considered for each test function. In each trial, HQPSO was run 30
times independently on each dimension of the test functions. Each boxplot in Figure C4 shows the statistical results of the
best fitness values achieved by HQPSO.

Figure C4 shows that HQPSO successfully achieves the acceptance value listed in Table C1 on all selected test functions,
except fio, fia and fig. The most interesting result is that the statistical results of each test function worsen with
increasing dimensions, exceptfs. For the maximum number of iteration 7" = 5000, the statistical results of fio, f14, and
f16 are shown in Figure C5. Figure C5 shows that HQPSO successfully achieves the acceptance value on f19, f14, and fig
when T' = 5000. Therefore, we can conclude that it will become increasingly difficult for HQPSO to obtain the optimal
solution with increasing dimensions, and the problem can be solved by increasing the number of iterations.

From the comparison results of all test algorithms and the adaptability of the HQPO algorithm on high-dimensional
functions, we can conclude that the proposed HQPO performed better than the other algorithms. It had better convergence
precision, speed and stability, and could complete the optimization of complex high-dimensional functions.
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Figure C5 Statistical results of fi0, fi4, and f16(T = 5000).

Appendix D Parameters settings of HQPSO, Gupta function and its parameters for Au
cluster.

The parameters of the HQPSO algorithm were set as follows: search range [—5, 5], population size M = 100, max iteration

number 7' = 10°, A = 0.001, and L = 30.

The equation of the Gupta potential function is as follows:

s 7

v=%" ZAmHﬁhmw¢Zémwwf—n (D1)
i i) 0 i) ¢

where, r;; is the distance of the ith and jth atoms; For Au cluster, A = 0.1156eV, p = 16.980, ¢ = 2.691, £ = 2.289¢V and

ro = 2.714[8].

Appendix E  Energy comparison results achieved using HQPSO and the current best
value [8].
Table E1 Energy comparisons of Au (n = 12 — 30) clusters

No. n FEa Eb

1 12 -38.92256917465254 -38.92256917
2 13 -42.55493083681036 -42.55493084
3 14 -45.95827566086828 -45.95827566
4 15 -49.50545131022577 -49.50545129
5 16 -53.05765637989333 -53.05765637
6 17 -56.54939854621972 -56.54939854
7 18 -60.01051500664349 -60.01051500
8 19 -63.43510905636050 -63.43510905
9 20 -66.86962079634721 -66.86962080
10 21 -70.35745012379466 -70.35745012
11 22 -73.92076803655492 -73.92076803
12 23 -77.47804456077746 -77.47804456
13 24 -81.00593616084861 -81.00593615
14 25 -84.43636253003858 -84.43636252
15 26 -87.93389515032121 -87.93389515
16 27 -91.50188836846107 -91.50188836
17 28 -95.03354850404784 -95.03354849
18 29 -98.62039883108864 -98.62039882
19 30 -102.2182980311356 -102.21829802

Ea, achieved by HQPSO. Eb, the current best value listed in literature 8.
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