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Dear editor,
Frequent itemset mining (FIM) is important in
many data mining applications [1], such as web log
mining and trend analysis. However, if the data
are sensitive (e.g., web browsing history), directly
releasing frequent itemsets and their support may
breach user privacy. The protection of user pri-
vacy while obtaining statistical information is im-
portant. Differential privacy (DP) is a strong and
rigorous standard for privacy protection. In this
study, we focused on effectively discovering top-k
frequent itemsets under DP conditions. By adding
a carefully selected amount of noise, DP ensures
that the output of a computation is not sensitive
to any individual tuple, and thus, user’s privacy
can be protected. The amount of noise is deter-
mined by the privacy budget ǫ and the sensitivity.

Several studies [2–4] have recently begun to ad-
dress the issue of performing FIM while satisfying
DP. The sensitivity is the size of candidate fre-
quent itemsets, which is very large. According to
Laplace mechanism (LM) [5], a large magnitude of
noise must be added to the release result. To pro-
mote the utility of the release result, a potential
solution evaluated in previously published studies
was to decrease the dimension of long transactions
in a differentially private manner before releasing
it. For instance, Ref. [4] employed random sam-
pling to truncate long transactions before releasing
them. Random truncation may cause a significant
amount of information loss, which also affects its

utility. Ref. [2] proposed double standards to re-
duce the information loss associated with trunca-
tion. Ref. [3] proposed the splitting of long trans-
actions instead of truncating them to reduce in-
formation loss; however, despite reducing infor-
mation loss, they were relatively inefficient (De-
tailed related studies and comparison can be seen
in Appendixes C and F). For this reason, we aim
to design an effective scheme for FIM under DP
conditions.

Problem definition. FIM refers to finding a set
of patterns the support of which is greater than λ
(the support threshold, 0 < λ < 1). Top-k FIM is
designed to find k patterns the support of which
is among the top k in frequent itemsets. The top-
k FIM under DP conditions is defined as follows.
Let F̂Ik denote the private top-k frequent itemsets.
After adding a certain amount of noise that satis-
fies LM or exponential mechanism (EM) [6] to the
release process, the probability of outputting the
same result for any pair of neighboring databases
(D,D′) is bounded by exp(ǫ), which can be for-

malized as Pr(F̂Ik|D)

Pr(F̂Ik|D′)
6 exp(ǫ).

The overall scheme. Our scheme comprises two
processes: the first is splitting the transaction us-
ing count estimation, and the second is releasing
based on weighted reservoir sampling and EM. To
achieve ǫ-differential privacy, ǫ is divided between
the two processes: ǫ1 = α · ǫ (0 < α < 1) is used to
split the transaction, and ǫ2 = (1−α) · ǫ is used to
genetate the private release. Our scheme satisfies
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ǫ = ǫ1 + ǫ2 differential privacy.
Transaction splitting via count estimation. In

this study, we employed count estimation (CE)
to improve the efficiency of transaction spitting,
which scans the database only once, and consumes
only a small amount of preprocessing time. First
the definition of CE is provided as follows.

Definition 1 (Count estimation). For an n-
itemset e (n > 2), a set of its subsets S(e), a set
of its m-subsets Sm(e) and a set of counts for its
m-subsets SC

m(e) are formally defined as follows:
• S(e) = {β|∀β s.t. β ∈ 2e − e and β 6= φ}.
• Sm(e) = {β|∀β s.t. β ∈ S(e) and |β| = m}.
• SC

m(e) = {C(β)|∀β s.t. β ∈ Sm(e)}, C(β) rep-
resents the count of β that appeared in the trans-
actions.

When all items of e appear together in as many
transactions as possible, the count of e is at its
maximum. When all items of e appear exclusively
in as many transactions as possible, the count of e
is at its minimum. Based on this observation, the
definitions used for count estimation are defined
as follows. The maximum possible count of e is

Cmax(e) = min(SC
n−1(e)). (1)

For two (n − 1)-subset e1 and e2, e = e1 ∪ e2,
the minimum possible count of e can be estimated

Cmin(e)=





max(0, C(e1)+C(e2)−C(e1∩e2)),

if e1 ∩ e2 6= φ;

max(0, C(e1)+C(e2)−|D|),

if e1 ∩ e2 = φ.

(2)

Next, the method for privately splitting long
transactions is described.

Privately calculating F̂ and P̂ . First, short
transactions are scanned, and the frequent 1-
itemsets F̂ and 2-itemsets P̂ are calculated. Then,
these are used in the privately splitting process. In
this process, LM noise was added to the support
of each itemset in F̂ and P̂ . The budget allocated
here is ǫ1, and ǫ1 is divided into the two calcu-
lations of F̂ and P̂ evenly. Each calculation is
allocated to ǫ1/2. The sensitivity of the calcula-
tion of i-itemsets is Ci

lopt
. According to LM, the

noise added to the support of each itemset of F̂ is
Lap(2·lopt/ǫ1), and the noise added to the support

of each itemset of P̂ is Lap(2 · C2
lopt

/ǫ1).
Privately estimating the frequent patterns of a

transaction. Based on the noise count of itemsets
in F̂ and P̂ , the frequent patterns (denote by CS)
of each long transaction ti is estimated. First, be-
cause F̂ and P̂ denote the frequent itemsets with
lengths less than 2, CS is initialized with F̂ and
P̂ . Then, the CS information is used to estimate

the frequent patterns of ti, the length of which is
greater than 2. Checking all the candidate pat-
terns of ti is extremely inefficient. It is not nec-
essary to estimate a pattern the length of which
is greater than δ (δ is the maximal length of the
true top-k frequent patterns), because it does not
affect the results that are released. Therefore, if
|e| is greater than 2 and less than δ, its maximum
possible count Cmax(e) is estimated based on its
(|e| − 1) frequent patterns in CS according to (1).
If Cmax(e) is greater than λ, e can be identified
as a frequent pattern. Its minimum possible count
is then estimated based on (2). Then (e, Cmax(e),
Cmin(e)) is taken as an element, and added to CS.

Privately splitting a long transaction. When
splitting a long transaction, if two frequent item-
sets always appear together in each transaction,
they should be split into one short transaction to
minimize the information loss. The process of gen-
erating a short transaction involves finding an op-
timal short transaction ttemp in the current trans-
action ti. To measure whether a short transaction
is optimal, the weight of e is defined as follows:

f(e)·weight = γCmax(e) + (1− γ)Cmin(e), (3)

where γ (0 < γ < 1) is a coefficient that can be
used to adjust the proportion of the two estimated
values.

Problem 1 (Finding an optimal short transac-
tion). Given a long transaction ti and its esti-
mated frequent itemsets CS, finding an optimal
short transaction ttemp can be achieved using



Objective: ttemp ∧MAX(f(ttemp)·weight);

Constraints: (1) ttemp ⊆ ti ∧ |ttemp| 6 lopt;

(2) f(ttemp)·weight

=
∑

Xj∈CS∧Xj⊆ttemp

(f(Xj)·weight).

Finding an optimal short transaction is equiva-
lent to finding a short transaction with the max-
imum weight in the current ti and that satisfies
the above constraints. This problem is a Knap-
sack problem, which is a typical NP-Hard prob-
lem. A greedy strategy is applied: by repeatedly
finding the pattern with the largest weight both
in ti and CS, and adding it to ttemp until all the
items of ti are allocated. When finding the pattern
with largest weight, the information loss must be
reduced. Therefore, the following strategy was de-
veloped: for each e in CS, we confirmed the num-
ber p of intersecting elements of ttemp and e. If
p was found to be greater than 0, we increased
the weight of e using (4), and selected a pattern e
based on its updated weight. p is the number of in-
tersecting elements of ttemp and e. f(e)·weight/|e|
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is the average weight:

f(e)·weight=f(e)·weight+(f(e)·weight/|e|)·p.(4)

Information loss analysis of transaction split-
ting. Splitting may cause information loss, be-
cause the support of some itemsets decreased after
splitting. Suppose the length of a long transaction
t is l (l > lopt) and t contains an i-itemset X .
The length constraint on a transaction is lopt. Let
a = l−⌊l/lopt⌋ be the number of items in the short
transaction with a length smaller than lopt. After
splitting the transaction, the probability that X
remains in ⌈l/lopt⌉ short transactions is as follows:

Prsplit(i,l)(X)=





⌊l/lopt⌋
(

l−i
lopt−i

)
(

l
lopt

) , if a<i;

⌊l/lopt⌋
(

l−i
lopt−i

)
(

l
lopt

) +

(
l−i
a−i

)
(
l
a

) , if a6 i.

Theorem 1 (Information loss). The remaining
information rate of i-itemset X after splitting is

Rm(X) =

lopt∑

k=i

fk∑n
j=1 fj

+
n∑

k=lopt+1

fk∑n
j=1 fj

· Prsplit(i,l)(X). (5)

Detailed analysis can be seen in Appendix B.

Release based on weighted reservoir sampling

and EM. Based on the split database, a scheme
was designed to privately release frequent itemsets
by combining weighted reservoir sampling with an
EM. When using EM, for each possible element e
in the algorithm’s output domain, a quality func-
tion allocates a certain weight to e. The higher the
weight for e, the more likely e is to be selected
as output. The sampling method used in EM is
weighted random sampling. By using this method,
the sampling set must be traversed twice. If the
sampling set is large or the number of elements
is uncertain, it is impossible or inefficient to em-
ploy this approach. In this case, weighted reser-
voir sampling, which is characterized by traversing
the sampling set only once and using an auxiliary
memory to store a valid k sample element at any
moment, can be used. This auxiliary memory is
called the reservoir.

According to EM, it is necessary to define a
quality function to determine the sampling weights
of e as follows:

e.score = exp

(
ǫ′ · Cr(e)

2k

)
. (6)

The privacy budget allocated here is ǫ′ = ǫ2/2k.
Cr(e) is the updated support of e after offsetting

the information loss. Additionally, it is necessary
to combine EM with weighted reservoir sampling
to promote efficiency. The weighted reservoir sam-
pling method used in our scheme is defined in [7].
The sampling weight of e in our scheme is defined

e.sw = r1/e.score. (7)

Based on the weight in (7), the noisy top-k fre-
quent patterns are selected by traversing the fre-
quent patterns set only once using reservoir sam-
pling method. Before releasing the result patterns
in the reservoir, we perturb the support of each re-
sult pattern with LM noise. The magnitude of the
added noise here can be expressed as Lap(2k/ǫ′).
Detailed algorithms are described in Appendix A.

Conclusion. Our scheme can promote the effi-
ciency of FIM under DP conditions. Extensive ex-
periments indicated that our scheme outperforms
other state-of-the-art methods. Detailed privacy
analysis and experiments are listed in Appen-
dixes D–E.
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