
SCIENCE CHINA
Information Sciences

May 2020, Vol. 63 150206:1–150206:12

https://doi.org/10.1007/s11432-019-2694-y

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Advanced Techniques for Event-Triggered Control and Estimation

Event-triggered hybrid impulsive control for

synchronization of memristive neural networks

Yijun ZHANG* & Yuangui BAO

Automation School, Nanjing University of Science and Technology, Nanjing 210094, China

Received 15 June 2019/Accepted 16 September 2019/Published online 27 March 2020

Abstract This paper is concerned with the complete synchronization of memristive neural networks

(MNNs) with time-varying delays. An event-triggered hybrid state feedback and impulsive controller is

designed to save the limited system communication resources, and parameter mismatch is considered in the

control design process. Based on the Lyapunov functional approach and the comparison principle for impul-

sive systems, a sufficient synchronization criterion is developed to derive the master MNN and response MNN.

Additionally, under the event-triggered mechanism there exists a positive lower bound for inter-execution

time, which implies the avoidance of Zeno behavior. Finally, a numerical example is provided to demonstrate

the effectiveness of the proposed synchronization design methods.
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1 Introduction

In 1971, based on physical symmetry arguments, Chua [1] proposed a new two-terminal circuit element

named as a memristor. A physical model of the memristor was first presented by Strukov et al. [2] in

2008. One of the distinctive properties of the memristor is that its value, i.e., memristance, relates to

the quantity of charge passing through it. This property enables memristor device to possess a memory

function [3]. In biological neural networks, synapses among the neurons have the characteristic of long-

term memory. Typically, the connection weights of existing artificial neural networks are realized by

resistors that cannot implement a memory function. For better understanding of the working behavior

of the human brain, a new type of artificial neural network, namely, a memristive neural network (MNN)

has been constructed. On the other hand, time delays exist inevitably in artificial neural networks. In

recent years, considerable attention has been paid to the stability of delayed neural networks (see [4–6]

and the references therein).

Synchronization of neural networks has attracted the attention of scholars from different fields owing

to its various applications from signal processing to secure communication. Significant effort has been di-

rected to investigate the synchronization of neural networks and various control methods such as state or

output feedback control [7,8], intermittent control [9], adaptive control [10], and impulsive control [11,12]

have been proposed. Among the aforementioned control methods, the impulsive control strategy seems

the most effective strategy to deal with systems that cannot endure continuous control input such as the

saving rate regulation of a bank [13]. Besides, it only requires small control gains and acts at certain
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discrete instants, thereby reducing the amount of transmitted information and control costs [14]. Consid-

ering the advantages of the impulsive control strategy, the issue of impulsive synchronization of MNNs has

been wildly studied [15–19]. In [15], by utilizing the distributed impulsive control method, the synchro-

nization problem for a class of MNNs with stochastic disturbance has been extensively studied. Hybrid

impulsive and state feedback controllers [16] have been designed to ensure the dynamics of a response

MNN synchronized with the master. Under parameter mismatch conditions, the quasi-synchronization

problem of heterogeneous dynamic networks via distributed impulsive control has been well studied [13].

Recently, the event-triggered control (ETC) strategy has received significant research attention owing to

its superior performance in saving computation resources and network bandwidth [20–22]. The main idea

of the ETC strategy is that the triggering instants only occur if a certain predefined condition is violated.

In [23], the event-triggered scheduler is utilized to relax the execution requirements while guaranteeing

the desired performance compared with the time-triggered approach. In [24], the self-triggered control

strategy is used to determine the next triggering instant, and the stability of a closed-loop system is also

discussed. A type of discrete event-triggered controller has been proposed in [25], and ETC systems have

been modeled as time-delayed systems. Since then, the ETC strategy has been extensively applied to

research for synchronization [26–30] and state estimation [31–33]. A dynamic ETC approach [29] has

been adopted to study the synchronization of discrete complex dynamical networks with time delays.

A hybrid triggered scheme has been proposed in [32], and state estimation of neural networks under

quantization effect and cyber-attacks has been well studied.

Considering the advantages of the impulsive control method and the ETC strategy, we combine the two

strategies and propose the event-triggered impulsive control (ETIC) method. The main idea of the ETIC

method is that the impulsive time sequences are the same as the event-triggering instants, which are deter-

mined by specific triggered conditions. Compared to the traditional impulsive control method [22,34,35],

the ETIC strategy can reduce the communication burden and save the communication resources. In

addition, the ETIC strategy has been applied to improve the performance of differential evolution [36].

However, few studies have investigated the ETIC method [37–39]. In [37], the distributed ETIC strat-

egy is proposed, and the leader-following consensus of multi-agent systems is discussed. Based on the

event-based impulsive control method, the problem for the stabilization of continuous-time systems has

been studied in [38]. Quasi-synchronization of delayed MNNs under event-triggered and self-triggered

impulsive control methods has been studied [39]. The connection weights of MNNs depend on the sys-

tem states; therefore, the weight matrices may differ given different initial conditions. In other words,

it is not reasonable to assume that different MNNs have the same initial conditions. Thus, parameter

mismatch will occur between different MNNs. MNNs synchronization can be considered as the syn-

chronization of a class of heterogenous systems. Existing ETIC methods [37–39] can only guarantee

the quasi-synchronization of MNNs. Therefore, an event-triggered hybrid state feedback and impulsive

controller is required to ensure the complete synchronization of MNNs.

This paper primarily focuses on complete synchronization of MNNs via event-triggered hybrid state

feedback and impulsive control. The primarily contributions of this study can be summarized as follows.

(1) Previously proposed ETIC methods [37–39] cannot be used to achieve complete synchronization of

MNNs. To solve the problem, a new type of event-triggered hybrid state feedback and impulsive control

method is proposed. (2) Compared to a previously proposed state feedback controller [30] that can

achieve complete synchronization of MNNs, the proposed controller is theoretically more logical and

easier to implement in practice. (3) Based on the Lyapunov functional method and the comparison

principle for impulsive systems, we derive a sufficient criterion to guarantee the complete synchronization

of MNNs. In addition, the Zeno behavior is excluded.

The remainder of this paper is organized as follows. In Section 2, some assumptions, definitions,

and lemmas are presented. In addition, the design of the event-triggered hybrid impulsive controller is

described. In Section 3, some sufficient criteria to ensure the exponential synchronization are derived by

using Lyapunov method. In Section 4, a numerical example is provided to demonstrate the accuracy of

the derived results. Conclusion and suggestions for future work are presented in Section 5.

Notations. R denotes the set of all real numbers. R
n denotes n-dimension Euclidean space. N =
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{0, 1, 2, 3, . . .}. For vector x = (x1, x2, . . . , xn)
T or a real matrix A = (arm)n×n, |x|=(|x1|, |x2|, . . . , |xn|)

T,

|A| = (|arm|)n×n, ‖x‖1 =
∑n

r=1 |xr| and ‖A‖1 = max16m6n

∑n
r=1 |arm|. For a real symmetric matrix P ,

P > 0 (P > 0) indicates that matrix P is positive semi-definite (positive definite). The function sign(·)

is a signum function. Matrix I represents the identity matrix. Let τ > 0, and C([−τ, 0];Rn) denotes the

set of all continuous functions from [−τ, 0] to R
n.

2 Problem formulations

Consider the following MNN with time-varying delays for r = 1, 2, . . . , n:

ẋr(t) = −crxr(t) +

n∑

m=1

arm(xr(t))fr(xr(t)) +

n∑

m=1

brm(xr(t))fr(xr(t− τr(t))), (1)

where xr(t) denotes the state of the rth neuron, cr > 0 is the self-inhibition of the rth neuron, τr(t) is the

time-varying delay satisfying 0 < τr(t) < τ with τ is a positive constant, fr(·) is the neuron activation

function, and arm(xr(t)) and brm(xr(t)) are the memristive and delayed memristive connection weights,

respectively. Here, the memristive connection weights satisfy the following conditions:

arm(xr(t)) =

{
ârm, |xr(t)| 6 Tr,

ǎrm, |xr(t)| > Tr,

brm(xr(t)) =

{
b̂rm, |xr(t)| 6 Tr,

b̌rm, |xr(t)| > Tr,

where Tr > 0, ârm, ǎrm, b̂rm and b̌rm are given constants. The initial condition of system (1) is defined

as xr(t) = ψr(t), t ∈ [−τ, 0], where ψr(t) ∈ C([−τ, 0];R).

Definition 1 ([40]). For the system dx
dt = f(x), x ∈ R

n, with discontinuous right-hand sides, a set-valued

map is defined as

ψ(x) = ∩δ>0 ∩µ(N)=0 co[f(B(x, δ))\N ],

where co[E] is the closure of the convex hull of set E, B(x, δ) = {y : ‖y − x‖ 6 δ}, and µ(N) is the

Lebesgue measure of set N . A solution in Filippov’s sense of the Cauchy problem for this system with

initial condition x(0) = x0 is an absolutely continuous function x(t), t ∈ [0, T ], that satisfies x(0) = x0

and differential inclusion: dx
dt ∈ ψ(x), for a.e. t ∈ [0, T ].

According to Definition 1, it follows from system (1) that

ẋr(t) ∈ −crxr(t) +

n∑

m=1

co[arm(xr(t))]fr(xr(t)) +

n∑

m=1

co[brm(xr(t))]fr(xr(t− τr(t))). (2)

Equivalently, there exist measurable functions ārm(t) ∈ co[arm(xr(t))] and b̄rm(t) ∈ co[brm(xr(t))] such

that

ẋr(t) = −crxr(t) +

n∑

m=1

ārm(t)fr(xr(t)) +

n∑

m=1

b̄rm(t)fr(xr(t− τr(t))). (3)

Here, let system (1) be the master system. The response system is described as

ẏr(t) = −cryr(t) +

n∑

m=1

arm(yr(t))fr(yr(t)) +

n∑

m=1

brm(yr(t))fr(yr(t− τr(t))) + ur(t), (4)

where yr(t) denotes the state of the rth neuron and ur(t) is the control to be designed. The initial

condition is defined as yr(t) = ψ̃r(t), t ∈ [−τ, 0], where ψ̃r(t) ∈ C([−τ, 0];R).
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Similar to the above discussion, there exist measurable functions àrm(t) ∈ co[arm(yr(t))] and b̀rm(t) ∈

co[brm(yr(t))] such that

ẏr(t) = −cryr(t) +

n∑

m=1

àrm(t)fr(yr(t)) +

n∑

m=1

b̀rm(t)fr(yr(t− τr(t))) + ur(t). (5)

By defining synchronization error ǫr(t) = yr(t)− xr(t), the error system is written as

ǫ̇i(t) = −crǫr(t) +

n∑

m=1

[àrm(t)fr(yr(t))− ārm(t)fr(xr(t))]

+

n∑

m=1

[b̀rm(t)fr(yr(t− τr(t))) − b̄rm(t)fr(xr(t− τr(t)))] + ur(t). (6)

The event-triggered hybrid state feedback and impulsive controller ur(t) is designed as

ur(t) = −k1ǫr(tk)− k2 sign(ǫr(tk)) +

+∞∑

k=0

dkǫr(t)δ(t− t−k+1), t ∈ [tk, tk+1), k ∈ N, (7)

where dk is the impulsive control gain, dk 6= 0, k1 > 0 and k2 > 0 are the state feedback control gains,

time sequence {tk} denotes the event-triggering instants satisfying 0 = t0 < t1 < t2 < · · · < tk < · · · , and

δ(·) is the Dirac delta function.

By substituting the controller ur(t) into the error system (6), integrating both sides from tk+1 − h to

tk+1 + h, and letting h→ 0+, we obtain

ǫr(t
+
k+1)− ǫr(t

−
k+1) = lim

h→0+

∫ tk+1+h

tk+1−h

+∞∑

k=0

dkǫr(t)δ(t− t−k+1)dt = dk+1ǫr(t
−
k+1),

where ǫr(t
+
k+1) = limh→0+ ǫr(tk+1 + h) and ǫr(t

−
k+1) = limh→0+ ǫr(tk+1 − h). Without loss of generality,

we assume ǫr(t
+
k+1) = ǫr(tk+1), which implies that ǫr(t) is continuous from the right side.

The system (6) with controller ur(t) is rewritten as




ǫ̇r(t) = −crǫr(t) +

n∑

m=1

[àrm(t)fr(yr(t)) − ārm(t)fr(xr(t))]

+

n∑

m=1

[b̀rm(t)fr(yr(t− τr(t))) − b̄rm(t)fr(xr(t− τr(t)))]

−k1ǫr(tk)− k2 sign(ǫr(tk)), t ∈ [tk, tk+1),

ǫr(tk+1) = (1 + dk+1)ǫr(t
−
k+1).

(8)

By rearrange (8) into matrix form, we obtain





ǫ̇(t) = −Cǫ(t) +A2(t)f(y(t))−A1(t)f(x(t)) +B2(t)f(y(t− τ(t))) −B1(t)f(x(t − τ(t)))

−k1ǫ(tk)− k2 sign(ǫ(tk)), t ∈ [tk, tk+1),

ǫ(tk+1) = (1 + dk+1)ǫ(t
−
k+1),

(9)

where ǫ(t) = (ǫ1(t), ǫ2(t), . . . , ǫn(t))
T, A1(t) = [ārm(t)]n×n, A2(t) = [àrm(t)]n×n, B1(t) = [b̄rm(t)]n×n,

B2(t) = [b̀rm(t)]n×n, f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))
T, f(y(t)) = (f1(y1(t)), f2(y2(t)), . . . ,

fn(yn(t)))
T, and sign(ǫ(tk)) = (sign(ǫ1(tk)), sign(ǫ2(tk)), . . . , sign(ǫn(tk)))

T. The initial condition is

ǫ(t) = φ(t) = ψ(t)− ψ̃(t), t ∈ [−τ, 0], with ψ(t) = (ψ1(t), ψ2(t), . . . , ψn(t)) and ψ̃(t) = (ψ̃1(t), ψ̃2(t), . . . ,

ψ̃n(t)).

Remark 1. Note that the mathematical model description provided here is similar to common impulsive

systems. However, differing from impulsive time sequences, which are periodic in [15–19], the impulsive

time sequences herein are event-triggering instants determined by the predefined event-triggered condi-

tion. Therefore, the communication burden can be reduced, and limited communication resources can be

utilized effectively.
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Throughout this paper, we define ãrm = max{|ârm|, |ǎrm|}, b̃rm = max{|b̂rm|, |b̌rm|}, Ã = [ãrm]n×n

and B̃ = [̃brm]n×n.

We define E(t) = k1ǫ(tk)+ k2 sign(ǫ(tk))− k1ǫ(t)− k2 sign(ǫ(t)), t ∈ [tk, tk+1), where ǫ(t) is the current

error state and ǫ(tk) represents the last transmitted error state. The event-triggered condition is designed

as

tk+1 = {t > tk|‖E(t)‖1 > σk1‖ǫ(t)‖1 + nσk2}, (10)

where σ ∈ (0, 1) is a constant to be designed.

The following definitions, assumption, and lemma are required to derive the main result.

Definition 2 ([41]). For (t, x(t)) ∈ [tk−1, tk)× R
n, we define

D+V (t, x(t)) = lim
h→0+

1

h
{V (t+ h, x(t+ h))− V (t, x(t))}.

Definition 3. The trivial solution of error system (9) is considered globally exponentially stable; in

other words, Eqs. (1) and (4) are synchronized exponentially, if there exist positive constants M > 1,

λ > 0 such that

‖ǫ(t)‖1 6M‖φ(s)‖τe
−λ(t−t0), t > t0,

where ‖φ(s)‖τ = ‖ψ(s)− ψ̃(s)‖τ = supt0−τ6s6t0
‖ψ(s)− ψ̃(s)‖1.

Assumption 1. Assume that the neuron activation function fr(·) is continuous and bounded, i.e.,

|fr(·)| 6Mr, and that there exist constants lr such that

|fr(s1)− fr(s2)| 6 lr|s1 − s2|,

where r = 1, 2, . . . , n and s1, s2 ∈ R.

Lemma 1 ([42]). Let 0 6 τ(t), τ1(t), τ2(t), . . . , τm(t) 6 τ̃ ,

F (t, u, u1, · · ·um) : R+ ×

m+1︷ ︸︸ ︷
R× · · ·R → R

be nondecreasing in ui for each fixed (t, u, u1, . . . , ui−1, ui+1, um), i = 1, 2, . . .m and Ik(u) : R → R be

nondecreasing in u. Assume that u(t), v(t) satisfy

{
D+u(t) 6 F (t, u(t), u(t− τ1), . . . , u(t− τm(t))), t > 0,

u(t+k ) 6 Ik(u(tk)), k ∈ N,
{
D+v(t) > F (t, v(t), v(t − τ1), . . . , v(t− τm(t))), t > 0,

v(t+k ) > Ik(v(tk)), k ∈ N.

Then u(t) 6 v(t), for −τ̃ 6 t 6 0, implies that u(t) 6 v(t), for t > 0.

The primary goal of this paper is to design a hybrid impulsive controller to achieve complete synchro-

nization between the master MNN (1) and response MNN (4).

3 Main results

Here, we provide a sufficient criterion to guarantee that error system (9) is globally stable such that

synchronization of systems (1) and (4) can be realized.

Theorem 1. Under Assumption 1 and the event-triggered mechanism (10), error system (9) is globally

exponentially stable, if the following conditions are satisfied:

n∑

r=1

̟r 6 (1− nσ)k2, (11)
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and

α+
lnµ

ρ
+
β

µ
< 0, (12)

where α = −cmin − k1 + lmax‖Ã‖1 + σk1, β = lmax‖B̃‖1, µ = maxk∈N{|1 + dk|} ∈ (0, 1), cmin =

min{cr, r = 1, 2, . . . , n}, lmax = min{lr, r = 1, 2, . . . , n}, ̟r =
∑n

m=1(|ârm − ǎrm| + |b̂rm − b̌rm|)Mm,

ρ = maxk∈N{tk+1 − tk}, and λ > 0 is a solution of βeλτ + (α+ lnµ
ρ

+ λ)µ = 0.

Proof. We construct the following Lyapunov function:

V (t) = ‖ǫ(t)‖1.

When t ∈ [tk, tk+1), by taking the derivative of V (t) along system (9), we obtain

D+V (t) = signT(ǫ(t))[−Cǫ(t) +A2(t)f(y(t))−A1(t)f(x(t)) +B2(t)f(y(t− τ(t)))

−B1(t)f(x(t − τ(t))) − E(t)− k1ǫ(t)− k2 sign(ǫ(t))]

6 −(cmin + k1)‖ǫ(t)‖1 + signT(ǫ(t))[A2(t)(f(y(t)) − f(x(t)))

+B2(t)(f(y(t− τ(t))) − f(x(t− τ(t)))) + (A2(t)−A1(t))f(x(t))

+(B2(t)−B1(t))f(y(t− τ(t))) − E(t)− k2 sign(ǫ(t))]. (13)

Then, it is easy to obtain

signT(ǫ(t))A2(t)(f(y(t)) − f(x(t))) 6 lmax‖Ã‖1‖ǫ(t)‖1, (14)

and

signT(ǫ(t))B2(t)(f(y(t− τ(t))) − f(x(t− τ(t)))) 6 lmax‖B̃‖1‖ǫ(t− τ(t))‖1. (15)

According to Assumption 1, we have

signT(ǫ(t))[(A2(t)−A1(t))f(x(t)) + (B2(t)−B1(t))f(y(t− τ(t)))]

6

n∑

r=1

n∑

m=1

(|ârm − ǎrm|+ |b̂rm − b̌rm|)Mm =

n∑

r=1

̟r. (16)

Under the event-triggered mechanism (10), for t ∈ [tk, tk+1), we obtain

− signT(ǫ(t))E(t) 6 ‖E(t)‖1 < σk1‖ǫ(t)‖1 + nσk2. (17)

Considering (13)–(17), we obtain

D+V (t) 6 (−cmin − k1 + lmax‖Ã‖1 + σk1)‖ǫ(t)‖1 + lmax‖B̃‖1‖ǫ(t− τ(t))‖1

= αV (t) + βV (t− τ(t)). (18)

When t = tk+1,

V (tk+1) = ‖ǫ(tk+1)‖1 = |1 + dk+1|‖ǫ(t
−
k+1)‖1 6 µV (t−k+1). (19)

For any ε > 0, let ν(t) be a unique solution of impulsive delay system:






ν̇(t) = αν(t) + βν(t− τ(t)) + ε, t 6= tk,

ν(t+k ) = µν(t−k ), t = tk,

ν(t) = ‖φ(t)‖τ , −τ 6 t 6 0.

(20)

According to Lemma 1, V (t) 6 ν(t); thus, for −τ 6 t 6 0, there exists

0 6 V (t) 6 ν(t), t > 0.
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According to formula for the variation of parameters, we obtain

ν(t) = W (t, 0)ν(0) +

∫ t

0

W (t, s)× [βν(s− τ(s)) + ε]ds,

where W (t, s) (t > 0, s > 0) is the Cauchy matrix of linear system:

{
ω̇(t) = αω(t), t 6= tk,

ω(t+k ) = µω(t−k ), t = tk.

According to the representation of the Cauchy matrix, we obtain

W (t, s) = eα(t−s)
∏

s<tk6t

µ 6 eα(t−s)µ
t−s
ρ

−1 =
1

µ
e(α+

lnµ
ρ

)(t−s), t > s > 0. (21)

Therefore,

ν(t) 6
1

µ
e(α+

lnµ
ρ

)t‖φ(0)‖1 +

∫ t

0

1

µ
e(α+

lnµ
ρ

)(t−s)[βν(s− τ(s)) + ε]ds

6 γe(α+
lnµ
ρ

)t +

∫ t

0

e(α+
lnµ
ρ

)(t−s)

[
β

µ
ν(s− τ(s)) +

ε

µ

]
ds, (22)

where γ = 1
µ
‖φ(t)‖τ .

Let η(t) = βeλτ + (α + lnµ
ρ

+ λ)µ. Because η(0) = β + (α + lnµ
ρ
)µ < 0, η(∞) > 0 and η̇(t) > 0, we

obtain that βeλτ + (α+ lnµ
ρ

+ λ)µ = 0 has a unique solution λ > 0.

According to (12), ǫ > 0 and λ > 0, for −τ 6 t 6 0, it is obvious that we can obtain

ν(t) 6
1

µ
‖φ(t)‖1 < γe−λt +

ε

−(α+ lnµ
ρ
)µ− β

. (23)

Next, we prove

ν(t) < γe−λt +
ε

−(α+ lnµ
ρ
)µ− β

, t > 0. (24)

If Eq. (24) is not true, there exists a t∗ > 0 such that

ν(t∗) > γe−λt∗ +
ε

−(α+ lnµ
ρ
)µ− β

, (25)

and

ν(t) < γe−λt +
ε

−(α+ lnµ
ρ
)µ− β

, t < t∗. (26)

According to (22) and (26), we have

ν(t∗) 6 γe(α+
lnµ
ρ

)t∗ +

∫ t∗

0

e(α+
lnµ
ρ

)(t∗−s)

[
β

µ
ν(s− τ(s)) +

ε

µ

]
ds

< e(α+
lnµ
ρ

)t∗

{
γ +

ε

−(α+ lnµ
ρ
)µ− β

+

∫ t∗

0

e−(α+ lnµ
ρ

)s

[
β

µ
ν(s− τ(s)) +

ǫ

µ

]
ds

}

< e(α+
lnµ
ρ

)t∗

{
γ +

ε

−(α+ lnµ
ρ
)µ− β

+

∫ t∗

0

e−(α+ lnµ
ρ

)s

[
β

µ

(
γe−λ(s−τ(s))

+
ε

−(α+ lnµ
ρ
)µ− β

)
+
ε

µ

]
ds

}
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6 γe−λt∗ +
ε

−(α+ lnµ
ρ
)µ− β

. (27)

It is obvious that Eq. (27) contradicts (25) and thus Eq. (24) holds. By letting ε→ 0, we obtain

V (t) 6 ν(t) 6 γe−λt, t > 0. (28)

In addition, we obtain

‖ǫ(t)‖1 6
1

µ
‖φ(t)‖τ e

−λt, t > 0. (29)

Because µ = maxk∈N{|1 + dk|} ∈ (0, 1), from Definition 3, we conclude that error system (9) is globally

exponential stable, i.e., the response system (4) is globally synchronized with master system (1). This

completes the proof.

Remark 2. Eq. (11) shows a co-design approach between the controller gain and event-triggered

mechanism, which is often used to select control gain k2 and event-triggering parameter σ. From (11),

once the parameters of the MNNs and event-triggered scheme are determined, k2 can be selected easily.

Remark 3. Because the connection weight matrices A2(t), A1(t), B2(t), and B1(t) are related to

system states, A2(t) 6= A1(t) and B2(t) 6= B1(t) occur when selecting different initial conditions. Thus,

the mismatched terms (A2(t)−A1(t))f(x(t)) and (B2(t)−B1(t))f(y(t− τ(t))) do not equal zero. Here,

the primary difficulty in achieving complete synchronization between systems (4) and (1) lies in dealing

with the mismatched terms. Only the quasi-synchronization of MNNs can be guarantee by utilizing

ETIC methods [37–39]. Inspired by [16, 17, 30], we adopt the sign term −k2 sign(e(tk)) to compensate

the mismatched terms, which is not used in existing event-triggered hybrid impulsive controllers [38,39].

Moreover, the proposed event-triggered hybrid state feedback and impulsive control method can also be

used to study the complete synchronization of heterogenous dynamic networks [13].

Remark 4. Note that |1 + dk| in Theorem 1 must satisfy 0 < |1 + dk| < 1 which is beneficial to

synchronization control. The impulse sequence with |1 + dk| = 1 means there is no action for error

system (9) at moment tk. When |1 + dk| > 1, the term |1 + dk|e(tk) can be considered as impulsive

disturbance that degrades the stability of error system (9). Thus, the proposed method may be used to

deal with ETC of systems with impulsive effects.

Remark 5. Differing from the switched systems under time-dependent switching [27], MNNs can be

considered as types of state-dependent switching systems because the connection weights relate to the

system states. Ref. [28] considers the event-based synchronization of uncertain systems, in which the

parameter uncertainties are always identical for the master and slave systems. In addition, the weights

matrices of the master system (1) and response system (4) are not the same before synchronization is

realized. Therefore, compared to previous results [27,28], the research in this study is more complicated.

Theorem 2. Considering error system (9) with controller (7), under event-triggered mechanism (10),

the Zeno behavior can be excluded for system (9).

Proof. In the following proof, we assume ǫ(t) 6= 0, because ǫ(t) = 0 implies that synchronization has

been achieved. For t ∈ [tk, tk+1),

D+‖E(t)‖1 6 ‖Ė(t)‖1 = k1‖ǫ̇(t)‖1

= k1‖ − Cǫ(t) +A2(t)f(y(t)) −A1(t)f(x(t)) +B2(t)f(y(t− τ(t)))

−B1(t)f(x(t − τ(t))) − k1ǫ(tk)− k2 sign(ǫ(tk))‖1

6 k1‖C‖1‖ǫ(t)‖1 + 2k1(‖Ã‖1 + ‖B̃‖1)‖M‖1 + k21‖ǫ(tk)‖1 + nk1k2, (30)

where M = (M1,M2, . . . ,Mn)
T. Considering the definition of E(t), we have

k1‖C‖1‖ǫ(t)‖1 = ‖C‖1‖k1ǫ(t)‖1

= ‖C‖1‖k1ǫ(t) + k2 sign(ǫ(t))− k1ǫ(tk)− k2 sign(ǫ(tk))− k2 sign(ǫ(t)) + k1ǫ(tk) + k2 sign(ǫ(tk))‖1
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6 ‖C‖1(‖ − E(t)‖1 + ‖ − k2 sign(ǫ(t))‖1 + ‖k1ǫ(tk)‖1 + ‖k2 sign(ǫ(tk))‖1)

6 ‖C‖1‖E(t)‖1 + k1‖C‖1‖ǫ(tk)‖1 + 2nk2‖C‖1. (31)

By combining (30) and (31), we obtain

D+‖E(t)‖1 6 ‖C‖1‖E(t)‖1 + ω, (32)

where ω = 2k1(‖Ã‖1+‖B̃‖1)‖M‖1+(k21+k1‖C‖1)‖ǫ(tk)‖1+nk1k2+2nk2‖C‖1. Noting that ‖E(tk)‖1 = 0,

we obtain

‖E(t)‖1 6
ω

‖C‖1
(e‖C‖1(t−tk) − 1), t ∈ [tk, tk+1). (33)

From the event-triggered condition (10), we obtain

‖E(tk+1)‖1 > σk1‖ǫ(tk+1)‖1 + nσk2 > nσk2. (34)

By combining (33) and (34), we obtain

nσk2 6 ‖E(tk+1)‖1 6
ω

‖C‖1
(e‖C‖1(tk+1−tk) − 1), (35)

which implies

tk+1 − tk >
1

‖C‖1
ln

(
nσk2‖C‖1

ω
+ 1

)
> 0. (36)

Thus, we conclude that error system (9) can avoid Zeno behavior.

4 Numerical example

Here, a numerical example is discussed to demonstrate the effectiveness of the previous theoretical results.

Example 1. Consider the following MNN as a master system [39]:

ẋr(t) = −crxr(t) +

n∑

l=1

arm(xr(t))fr(xr(t)) + brm(xr(t))fr(xr(t− τr(t))), r = 1, 2, (37)

where c1 = c2 = 1, a11(x1(t)) = 1.75, a22(x2(t)) = 2.85, b11(x1(t)) = −1.6, b22(x2(t)) = −2.38,

a12(x1(t)) =

{
2.9, |x1(t)| 6 2,

2.8, |x1(t)| > 2,
a21(x2(t)) =

{
−2.9, |x2(t)| 6 2,

−2.8, |x2(t)| > 2,

b12(x1(t)) =

{
−0.08, |x1(t)| 6 2,

−0.11, |x1(t)| > 2,
b21(x2(t)) =

{
−0.11, |x2(t)| 6 2,

−0.1, |x2(t)| > 2,

τ1(t) = et

et+1 , τ2(t) = 0.75 − 0.5 sin(t), f(x(t)) = [tanh(x1(t)), tanh(x2(t))]
T. Figure 1 shows the phase

trajectory of system (37) with initial value x(0) = [2.3,−1]T.

The response system is represented as

ẏr(t) = −cryr(t) +
n∑

l=1

arm(yr(t))fr(yr(t)) + brm(yr(t))fr(yr(t− τr(t))) + ur(t), r = 1, 2, (38)

where the parameters are the same as system (37).

It is obvious to see that fr(xr(t)) (r = 1, 2) satisfy Assumption 1 with lr = 1 and Mr = 1 (r = 1, 2).

Considering the definitions of Ã and B̃, we obtain

Ã =

(
1.75 2.9

2.9 2.85

)
, B̃ =

(
1.6 0.11

0.11 2.38

)
.
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Figure 1 (Color online) Phase trajectory of system (37)

with initial condition x(0) = [2.3,−1]T.

Figure 2 (Color online) Dynamic behaviors of states x(t)

and y(t) in systems (37) and (38).
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Figure 3 (Color online) Dynamic behaviors of errors be-

tween systems (37) and (38).

Figure 4 (Color online) Triggering release instants and

execution intervals.

Owing to ̟1 = 0.13, ̟2 = 0.11, we select k2 = 0.4. In addition, σ = 0.2, dk = −0.1 (k ∈ N), ρ = 0.5

and k1 = 9.2 are selected. Note that we can evaluate whether the conditions in Theorem 1 are satisfied,

which implies that synchronization between the master MNN (37) and response MNN (38) is realized.

Next, we provide simulation results. Here, the initiation values of systems (37) and (38) are x(t) =

[2.3,−1]T and y(t) = [−1.5, 2]T, respectively. Figure 2 shows the state curves of systems (37) and (38).

And Figure 3 shows the dynamic of the error system. As shown in Figure 3, the error state curves

converge to zero, which means that synchronization between systems (37) and (38) is realized. Figure 4

shows the release instants. As can be seen, fewer signals are transmitted.

Remark 6. The system parameters selected in Example 1 are the same as the numerical example

in [39]. Under the event-triggered impulsive controller (7) given in [39], quasi-synchronization can be

realized. Controller (7) designed in the current paper can achieve the complete synchronization of MNNs.

Figure 3 shows that the synchronization errors converge to zero, which demonstrates the effectiveness of

the designed controller (7) here.

5 Conclusion

In this paper, the issue for the synchronization of MNNs is investigated. Compared with existing results,
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a new kind of event-triggered hybrid impulsive controller is designed to guarantee the complete synchro-

nization of MNNs. By using the Lyapunov functional method, a synchronization criterion is given to

guarantee the synchronization between the master MNN and the response. The Zeno behaviour can be

excluded and the theoretical analysis is provided. A numerical example is given to show the effectiveness

of derived results.

Note that the results for the proposed event-triggered hybrid impulsive synchronization control design

may be applicable to finite-time [43,44], dynamic event-triggered transmission [45] and networked signal

transmission [46, 47] cases, which will be the focus of future work.
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