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Abstract In this paper, an event-triggered neural network control method is proposed for autonomous

surface vehicles subject to uncertainties and input constraints over wireless network. An event-triggered

mechanism with three logic rules is employed to determine the wireless data transmission of states and

control inputs. An event-driven neural network is applied to approximate the uncertainties using aperiodic

sampled states. In addition, a predictor is employed to update the weights of neural network. An event-based

bounded kinetic control law is applied to address the actuator constraints. The advantage of the proposed

event-triggered neural network control approach is that the network traffic can be reduced while guaranteeing

system stability and speed following performance. The closed-loop control system is proved to be input-to-

state stable via cascade theory. The Zeno behavior can be avoided via the proposed event-triggered neural

network control approach. A simulation example is provided to demonstrate the effectiveness of the proposed

event-triggered neural network control approach for autonomous surface vehicles.
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1 Introduction

In the past decades, motion control problems of autonomous surface vehicles (ASVs) have attracted great

attention by numerous researchers [1,2]. Kinematic and kinetic controls are two fundamental problems in

motion control of ASVs. Specifically, the kinematic control occupies a pivotal role in trajectory tracking,

and the kinetic control plays a crucial role in driving ASVs to achieve a desired velocity. In the kinetic

of ASVs, there are some uncertainties caused by unmodelled dynamics, uncertain model parameters and

external disturbance [1, 2]. This brings challenges to controller design.

To solve the effects of uncertainties, a quantity of control approaches have been presented from pa-

pers [3–24]. In [3–11], neural networks (NNs) were used to approximate the uncertainties. In [12–15],

nonlinear disturbance observers were employed to approximate the uncertainties caused by unknown ex-

ternal disturbances. In [16–18], sliding model controls were developed to reduce the effects caused by

external disturbances. In [19, 20], fuzzy logic systems were employed to estimate the lumped unknown

functions. In [21–24], adaptive techniques were used to reject the model uncertainties and compensate

the effects of external disturbances. Nevertheless, the above systems work with periodic sampling and

controlling in these studies [3–24], known as periodic-triggered control systems. To guarantee the stability

*Corresponding author (email: dwangdl@gmail.com, zhpeng@dlmu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2679-5&domain=pdf&date_stamp=2020-3-14
https://doi.org/10.1007/s11432-019-2679-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2679-5
https://doi.org/10.1007/s11432-019-2679-5


Lv M G, et al. Sci China Inf Sci May 2020 Vol. 63 150205:2

and desired control performance, the periods of sampling and controlling are usually small, which will

cause a mass of data transmission and update.

Unlike the above control methods, an aperiodic control technique called event-triggered control is

presented in recent years [25–32]. The sampling and controlling of the systems only occur when the

predefined events are true in event-triggered controls, such that the two-way data transmissions can

be reduced. It takes advantages in reducing expense on communication resources, and thus has wide

application prospect in networked control systems. To reduce the network traffic, several event-triggered

control approaches have been developed in [25–32]. In [25,27], event-triggered adaptive control methods

were introduced to schedule data exchange dependent upon errors exceeding user-defined thresholds to

reduce wireless network utilization. In [26], an approximation-based event-triggered control method was

proposed for multi-input multi-output uncertain nonlinear continuous-time systems in affine form. In [28],

an event-triggered model predictive control method was proposed for continuous-time nonlinear systems.

In [29], a periodically event-triggered control method was introduced for linear systems to reduce the

number of transmissions. In [30], an observer-type event-triggered control protocol was proposed to

determine data transmissions. In [31], asynchronous event-triggered control algorithms were proposed

based on the triggering time sequences of all agents. In [32], a layered event-triggered consensus scheme

was proposed for multiagent systems with a multilayer structure. However, the event-triggered methods

are rarely applied on the control of ASVs.

Constraints widely exist in practical systems [3, 13, 14, 33–37]. The limited inputs of the motor and

rudder of ASV may cause the input constraints. In the controller design, ignoring constraints may reduce

system performance and controllability, and even result in instability in some cases. Hence, taking

constraints into consideration is necessary in practical systems. A number of methods were proposed to

solve the constraint problems of ASVs [3,13,34–37]. In [3,34], bounded feedback controllers were proposed

to solve input constraints. In [13,35,36], auxiliary systems were introduced to make compensation for the

saturation constraints of inputs. In [37], a smooth function was applied to deal with the input saturated

function.

Motivated by the studies above, this study takes uncertainties and input constraints into consideration

in the speed tracking problem of ASVs. An event-driven NN is employed to approximate the uncertainties

caused by unmodelled dynamics, external disturbance and uncertain model parameters. An event-based

bounded kinetic control law is employed to solve the input constraints. A predefined threshold-based

event-triggered mechanism is employed to determine the network transmissions. With the event-triggered

mechanism, the data transmissions between the controller and the ASV are aperiodic. The advantage of

the proposed approach is that the network traffic can be degraded while ensuring the system stability

and control performance. A simulation example is provided to illustrate the effectiveness of the presented

event-triggered NN control method.

Compared with previous studies in [2–11, 15–17, 19, 22, 25, 26], the contributions of this paper are

summarized below. Firstly, compared with the NN control approaches proposed in [3–9, 11], where the

systems work with fixed sampling and controlling period, the proposed control method updates the

vehicle states and control inputs aperiodically. Network transmissions occur only at triggering instants.

The instants are determined by the proposed event-triggered mechanism to degrade the network traffic.

Secondly, compared with the control methods presented in [2,16,17,19,22,25], where the input constraints

of ASV are neglected, the proposed method takes input constraints into consideration and presents a

saturated kinetic control law. The outputs of the controller are bounded, and the bound is known

as a priori by employing a saturated function and a projection operator. Thirdly, compared with the

presented controllers in [10, 26], where the estimation and control are coupled, the proposed controller

is formed with estimation subsystem and kinetic control subsystem. Thus, it is flexible to combine the

estimation method with other control methods. The resulting closed-loop control system is proved to be

input-to-state stable, and all error signals are proved to be uniformly ultimately bounded via Lyapunov

analysis.

The rest paper is organized as follows. Preliminaries and problem formulation are stated in Section 2.

The approximation of uncertainties, saturated kinetic control law design, event-triggered mechanism and
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zero order holds (ZOHs) are presented in Section 3. The stability of the resulting closed-loop control

system and Zeno behavior are analyzed in Section 4. An illustration of simulation is shown in Section 5.

The conclusion is given in Section 6.

2 Preliminaries and problem formulation

2.1 Preliminaries

(1) Notation: Throughout this paper, N denotes non-negative integer set. R, R+, Rn, Rn+, Rn×m denote

real set, positive real set, n× 1-dimensional column vectors, n × 1-dimensional positive column vectors,

the n×m-dimensional real matrices, respectively. (·)T denotes transform. ‖ ·‖F denotes Frobenius norm.

| · | denotes absolute values. ‖ · ‖ denotes 2-norm. diag{ai} denotes a block-diagonal matrix, where ai is

the ith diagonal element. λmax(A) and λmin(A) are the maximal and minimal eigenvalue of a matrix A,

respectively. Ā denotes the “not A” logic operator. ∧ denotes the “and” logic operator.

(2) NN: For a given continuous function f(ρ) : Rn → R, it can be approximated by an NN with an

ideal constant wight W ∈ R
n and a known activation function β(ρ) ∈ R

n as [6]

f(ρ) =WTβ(ρ) + εf (ρ), ρ ∈ Ω, (1)

where Ω denotes a compact set, and εf(ρ) denotes the approximation error. There exist positive constants

W ∗ ∈ R
+, β∗ ∈ R

+ and ε∗f ∈ R
+ such that ‖W‖F 6W ∗, ‖β(ρ)‖ 6 β∗ and ‖εf(ρ)‖ 6 ε∗f .

(3) Projection operator: Let ̺ : Rn → R denote a continuously differentiable convex function. It is

given by ̺(ζ) , (ζTζ − ζ2o )/(2εζζ
2
o + ε2ζ) with ζ ∈ R

n, where εζ ∈ R
+ denotes a projection tolerance

bound, and ζo ∈ R denotes a projection norm bound. The projection operator Proj : Rn × R
n → R

n is

defined as [38]

Proj(ζ, ξ) ,















ξ, if ̺(ζ) < 0,

ξ, if ̺(ζ) > 0 ∧ ▽̺(ζ)ξ 6 0,

ξ − (▽̺(ζ))T▽̺(ζ)
‖▽̺(ζ)‖2 ξ̺(ζ), if ̺(ζ) > 0 ∧ ▽̺(ζ)ξ > 0,

(2)

where ξ ∈ R
n and ▽̺(ζ) = [∂̺(ζ)/ζ1, . . . , ∂̺(ζ)/ζN ]T. According to the definition of the projection

operator, it renders

(ζ − ζ∗)T(Proj(ζ, ξ)− ξ) 6 0, (3)

where ζ∗ ∈ R
n denotes the true value of the parameter ζ.

2.2 Problem formulation

According to [1], the kinematics of ASVs as shown in Figure 1 can be expressed by

η̇ = J(ψ)ν, (4)

where η = [x, y, ψ]T ∈ R
3 denotes the earth-fixed position (x, y) and heading ψ; J(ψ) ∈ R

3×3 is the

transformation matrix between the body-fixed and earth-fixed reference frame; ν = [u, v, r]T ∈ R
3 denotes

the surge, sway and angular velocity in body-fixed frame.

The kinetics of ASVs can be represented by [1]

Mν̇ = τs − C(ν)ν −D(ν)ν + g(ν, η) + τw(t), (5)

with

J(ψ) =









j11 j12 0

j21 j22 0

0 0 j33









, M =









m11 0 0

0 m22 m23

0 m32 m33









, C(ν) =









0 0 c13

0 0 c23

c31 c32 0









, D(ν) =









d11 0 0

0 d22 d23

0 d32 d33









,
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Figure 1 (Color online) Reference frames.

j11 = cos(ψ), j22 = cos(ψ), j33 = 1, j12 = − sin(ψ), j21 = sin(ψ),

c13 = −m22ν − 0.6m23 − 0.6m32, c23 = m11u, c31 = −c13, c32 = −c23,

where M = MT ∈ R
3×3 is a known inertial matrix; C(ν) = −C(ν) ∈ R

3×3 is a centrifugal and coriolis

matrix; τs = [τus, τvs, τrs]
T ∈ R

3 denotes the control inputs for the ASV; D(ν) ∈ R
3×3 is a hydrodynamic

damping matrix; g(ν, η) represents the unmodeled dynamics including gravitational/buoyancy forces and

moments; τw = [τwu, τwv, τwr]
T ∈ R

3 denotes the bounded environmental forces.

In reality, the control input τs of the vehicle kinetics is constrained. Let the upper bound of con-

strained control input be τsmax = [τusmax, τvsmax , τrsmax]
T ∈ R

3+, and the lower bound be τsmin =

[τusmin, τvsmin , τrsmin]
T ∈ R

3+. The input constrain can be expressed as −τsmin 6 τs 6 τsmax.

The objective is to develop an event-triggered NN control method for the ASV with uncertainties and

input constraints to follow a given speed command. The speed command could be any guidance signals

generated by guidance systems at the kinematic level. The network traffic can be reduced by the proposed

method while guaranteeing the system performance and stability.

3 Saturated kinetic control law and event-triggered mechanism design

In this section, the estimation of ASV uncertainties, the kinetic control law and the event-triggered

mechanism are developed.

3.1 Estimation of uncertainties

The ASV kinetics (4) can be rewritten as

Mν̇ = τs + f(·), (6)

where f(·) = τw(t) − C(ν)ν + g(ν, η) −D(ν)ν. The unknown function f(·) = [fu(·), fv(·), fr(·)]T ∈ R
3

contains unmodelled dynamics, uncertain model parameters and external disturbance. Here, NN is

applied to approximate the unknown function f(·).
Moreover, recalling the NN function (1), fu(·) in f(·) can be expressed by using event-based state ϑus

as [26]

fu(·) =WT
u β(ϑu) + ε1(ϑu),

=WT
u β(ϑu)−WT

u β(ϑus) +WT
u β(ϑus) + ε1(ϑu),

=WT
u β(ϑus) +WT

u [β(ϑu)− β(ϑus)] + ε1(ϑu),

=WT
u β(ϑus) + εe1(ϑus, efu), (7)

where εe1(ϑus, efu) =WT
u [β(ϑus + efu)− β(ϑus)] + ε(ϑus + efu), and ϑus is given in (9). fv(·) and fr(·)

are similar to fu(·).
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Similar to [26], given bounded weights Wu, Wv and Wr ∈ R
n, and ε∗ei > 0 for i = 1, 2, 3, the unknown

function f(·) is approximated by using NN as














fu(·) =WT
u β(ϑus) + εe1(ϑus, efu),

fv(·) =WT
v β(ϑvs) + εe2(ϑvs, efv),

fr(·) =WT
r β(ϑrs) + εe3(ϑrs, efr),

(8)

where














ϑus = [1, us(t)− us(t− t∗p), τus(t)]
T,

ϑvs = [1, vs(t)− vs(t− t∗p), τvs(t)]
T,

ϑrs = [1, rs(t)− rs(t− t∗p), τrs(t)]
T

(9)

are input vectors; us, vs and rs are sampled vehicle states; t∗p represents the sample period; β(·) rep-

resents the bounded activation function; εei(·, ·) represents the event-driven NN reconstruction error;

εe = [εe1, εe2, εe3]
T ∈ R

3 satisfies |εei| 6 ε∗ei; efu = ϑu −ϑus, efv = ϑv −ϑvs and efr = ϑr −ϑrs are event

triggering errors, where














ϑu = [1, u(t)− u(t− t∗p), τu(t)]
T,

ϑv = [1, v(t)− v(t− t∗p), τv(t)]
T,

ϑr = [1, r(t)− r(t − t∗p), τr(t)]
T

(10)

are the input vectors of the NN function (1) without event-driven.

Using ν̂ = [û, v̂, r̂]T ∈ R
3 to denote the estimate of ν. To update the weights of NN, a predictor is

applied for the vehicle kinetics (6) as

M ˙̂ν = −F (ν̂ − νs) + τa + τs, (11)

where τa = [ŴT
u β(ϑus), Ŵ

T
v β(ϑvs), Ŵ

T
r β(ϑrs)]

T ∈ R
3; F = diag{k1, k2, k3} ∈ R

3×3 with k1, k2, and

k3 ∈ R
+ being positive constants is a control gain matrix; Ŵu, Ŵv, Ŵr are estimates of Wu,Wv,Wr,

respectively.

The update laws for Ŵu, Ŵv, Ŵr are designed as














˙̂
Wu(t) = −ΓuProj[Ŵu(t), β(ϑus)(û− us)],
˙̂
Wv(t) = −ΓvProj[Ŵv(t), β(ϑvs)(v̂ − vs)],
˙̂
Wr(t) = −ΓrProj[Ŵr(t), β(ϑrs)(r̂ − rs)],

(12)

where Γu, Γv and Γr ∈ R
+ denote adaptation gains. According to [38], the projection operation guaran-

tees that there exist positive constants W ∗
u , W

∗
v , W

∗
r , ǫ1, ǫ2 and ǫ3 ∈ R

+ satisfying














‖Ŵu(t)‖ 6 ǫ1 +W ∗
u ,

‖Ŵv(t)‖ 6 ǫ2 +W ∗
v ,

‖Ŵr(t)‖ 6 ǫ3 +W ∗
r .

(13)

Let W̃v = Ŵv −Wv, W̃r = Ŵr −Wr and W̃u = Ŵu −Wu denote the NN weights estimation errors.

Let ν̃ = ν̂ − ν denote the state estimation error. Let ν̃s = ν̂ − νs denote the velocity estimation error

after sampled, and ν̃e = ν − νs denote the event triggering error of vehicle states.

As a result, the error dynamics are given below:


































M ˙̃ν = −F ν̃s + τ̃a − εe

= −F ν̃ − F ν̃e + τ̃a − εe,
˙̃Wu = −ΓuProj[Ŵu, β(ϑus)(ũ + ũe)],
˙̃Wv = −ΓvProj[Ŵv, β(ϑvs)(ṽ + ṽe)],
˙̃Wr = −ΓrProj[Ŵr , β(ϑrs)(r̃ + r̃e)],

(14)
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where τ̃a = [W̃T
u β(ϑus), W̃

T
v β(ϑvs), W̃

T
r β(ϑrs)]

T.

3.2 Kinetic control law design

The desired velocity is represented by νr. Use e = ν−νr to denote a velocity tracking error and ê = ν̂−νr
to denote an estimated velocity tracking error. Taking the time derivative and using (11), ˙̂e is given by

M ˙̂e = τs + τa − F (ν̂ − νs). (15)

Then, a saturated kinetic control law is applied to stabilize ê as

τ = − Kê
√

‖ê‖2 +∆2
− τa, (16)

where τ = [τu, τv, τr]
T ∈ R

3 denotes the outputs vector of the designed controller; ∆ ∈ R
+ is a positive

constant; K = diag{k4, k5, k6} ∈ R
3×3 is a gain matrix with k4, k5 and k6 ∈ R

+ being positive constants.

Note that the control input of the ASV is τs, and the output of the controller is τ . τs equals to τ only

at the triggering instants, which will be analyzed in Subsection 3.3. Let τ̃e = τ − τs denote the event

triggering error of system control input. Substituting (16) into (15) and using ν̃ = ν̂− ν and ν̃e = ν− νs,

it leads to

M ˙̂e = − Kê
√

‖ê‖2 +∆2
− τ̃e − F (ν̂ − ν + ν − νs)

= − Kê
√

‖ê‖2 +∆2
− τ̃e − F ν̃ − F ν̃e. (17)

A main feature of the proposed kinetic control law (16) is that the output τ is bounded. The bound

of τ is known to a designer. With the condition

‖ê‖
√

‖ê‖2 +∆2
< 1, (18)

it follows that

‖τ‖ 6 K∗ + (W ∗ + ǫ)β∗, (19)

where ‖K‖F 6 K∗ with K∗ ∈ R
+, and ǫ ∈ R

+ is a positive constant.

3.3 Event-triggered mechanism design

In this subsection, an event-triggered mechanism is employed to reduce the network traffic. With the

mechanism, the sampling and controlling of the systems only occur when the predefined events are true,

such that the two-way data transmissions can be reduced. Three logic rules with predefined thresholds

are designed in the mechanism. To be specific, define a state threshold εν = [ενu, ενv, ενr]
T ∈ R

3+ to

determine whether to transmit the vehicle states, and a controller threshold ετ = [ετu, ετv, ετr]
T ∈ R

3+

to determine whether to transmit the control inputs. The logic rules are defined as [27]

R1 : ||νs(t)− ν(t)|| 6 εν , (20)

R2 : ||τs(t)− τ(t)|| 6 ετ , (21)

R3 : νs is transmitted to the controller. (22)

Specifically, with R1, R2 and R3 rules, the ASV sends its state data to the controller only when R̄1

is satisfied. The ith time instant of the state data transmission is expressed by a monotonic sequence

defined as {si}∞i=1 with si ∈ R
+. With this triggered state data, the new uncertainties are approximated

by the NNs, and the new control inputs of the ASV are computed by the controller using the presented

saturated kinetic control law and the approximated uncertainties.

Likewise, the controller sends its new feedback control input data to the ASV only when R̄2 ∧ R3 is

satisfied. The jth time instant of the control input data transmission is expressed by another monotonic

sequence defined as {rj}∞j=1 with rj ∈ R
+.
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Figure 2 Event-triggered NN kinetic control architecture.

3.4 Zero order holds

The designed event-triggered NN control structure is shown in Figure 2. ZOHs are applied to store the

previous transmitted signal till the next event is triggered. The ZOHs in this paper work in the following

way.

Let z(t) denote the current signal before transmitted and zs(ti) denote the last signal held by the ZOH

in t ∈ (ti, ti+1), where i = 1, . . . , n. Once an event is triggered at t = ti+1, the event-triggered mechanism

allows the current signal z(ti+1) to be transmitted through the wireless network. Once receiving z(t),

the last signal zs(ti) held by the ZOH is replaced by z(ti+1). Then z(ti+1) is held till the next event

triggered.

4 Stability and Zeno behavior analysis

In this section, the Zeno behavior and stability of the closed-loop system are analyzed. The closed-loop

system can be viewed as a system cascaded by the estimation error subsystem (14) and the velocity

tracking error subsystem (17). Firstly, the stability of the subsystem (14) is presented.

Lemma 1. The subsystem (14), regarded as a system with states being ν̃, W̃u, W̃v and W̃r, inputs

being ν̃e, εe, W̃u, W̃r and W̃v, is input-to-state stable.

Proof. Define a Lyapunov function V1 as

V1 =
1

2

{

ν̃TMν̃ + W̃T
u Γ−1

u W̃u + W̃T
v Γ−1

v W̃v + W̃T
r Γ−1

r W̃r

}

. (23)

Taking the time derivative and using (14), V̇1 is given by

V̇1 =− ν̃TF ν̃ − ν̃TF ν̃e − ν̃Tεe − W̃T
u β(ϑus)ũe − W̃T

v β(ϑvs)ṽe − W̃T
r β(ϑrs)r̃e. (24)

It satisfies

V̇1 6− λmin(F )||ν̃||2 − λmin(F )||W̃u||2 − λmin(F )||W̃v ||2 − λmin(F )||W̃r ||2 + λmax(F )||ν̃||||ν̃e||
+ ||ν̃||||εe||+ ||W̃u||||β(ϑus)|||ũe|+ λmin(F )||W̃u||2 + ||W̃v||||β(ϑvs)|||ṽe|+ λmin(F )||W̃v||2

+ ||W̃r ||||β(ϑrs)|||r̃e|+ λmin(F )||W̃r||2

6− λmin(F )||E1||2 + ||h1||||E1||, (25)
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where E1=[||ν̃||, ||W̃u||, ||W̃v||, ||W̃r||]T and h1 = [λmax(F )‖ν̃e‖ + ‖εe‖, ‖β(ϑus)‖|ũe| + λmin(F )‖W̃u‖,
‖β(ϑvs)‖|ṽe|+ λmin(F )‖W̃v‖, ‖β(ϑrs)‖|r̃e|+ λmin(F )‖W̃r‖]T.

Because

||E1|| >
λmax(F )||ν̃e||
θ1λmin(F )

+
||εe||

θ1λmin(F )
+

||β(ϑus)|||ũe|
θ1λmin(F )

+
||W̃u||
θ1

+
||β(ϑvs)|||ṽe|
θ1λmin(F )

+
||W̃v||
θ1

+
||β(ϑrs)|||r̃e|
θ1λmin(F )

+
||W̃r ||
θ1

>
||h1||

θ1λmin(F )
, (26)

it renders

V̇1 6− (1− θ1)λmin(F )||E1||2, (27)

where 0 < θ1 < 1.

As a result, the subsystem (14) is input-to-state stable, and

‖E1(t)‖ 6max{̟1(||E1(0)||, t), κ1(||ν̃e||) + κ2(||εe||) + κ3(|ũe|) + κ4(||W̃u||) + κ5(|ṽe|)
+ κ6(||W̃v||) + κ7(|r̃e|) + κ8(||W̃r||)}, (28)

where ̟1(·) denotes a KL function; κ1(·), κ2(·), κ3(·), κ4(·), κ5(·), κ6(·), κ7(·) and κ8(·) denote K
functions as follows:























































































































































κ1(s) =

√

λmax(S1)

λmin(S1)

λmax(F )s

θ1λmin(F )
,

κ2(s) =

√

λmax(S1)

λmin(S1)

s

θ1λmin(F )
,

κ3(s) =

√

λmax(S1)

λmin(S1)

‖β(ϑus)‖s
θ1λmin(F )

,

κ4(s) =

√

λmax(S1)

λmin(S1)

s

θ1
,

κ5(s) =

√

λmax(S1)

λmin(S1)

‖β(ϑvs)‖s
θ1λmin(F )

,

κ6(s) =

√

λmax(S1)

λmin(S1)

s

θ1
,

κ7(s) =

√

λmax(S1)

λmin(S1)

‖β(ϑrs)‖s
θ1λmin(F )

,

κ8(s) =

√

λmax(S1)

λmin(S1)

s

θ1
,

(29)

with S1 = diag{M,Γ−1
u ,Γ−1

v ,Γ−1
r }.

The projection operation [38] guarantees the boundenss of W̃ . Besides, the upper bounds are















‖W̃u‖ 6 2W ∗
u + ǫ1,

‖W̃v‖ 6 2W ∗
v + ǫ2,

‖W̃r‖ 6 2W ∗
r + ǫ3.

(30)

The stability of the velocity tracking error subsystem (17) is analyzed then.
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Lemma 2. The subsystem (17), regarded as a system with the state being ê, inputs being τ̃e, ν̃ and

ν̃e, is input-to-state stable.

Proof. Define a Lyapunov function as

V2 =
1

2
êTMê. (31)

Using (17), the time derivation of V̇2 is developed as

V̇2 =− êTMê
√

‖ê‖2 +∆2
− êTτ̃e − êTF ν̃ − êTF ν̃e. (32)

It satisfies

V̇2 6− λmin(K)
‖ê‖2

√

‖ê‖2 +∆2
+ ‖ê‖‖τ̃e‖+ λmax(F )‖ê‖‖ν̃‖+ λmax(F )‖ê‖‖ν̃e‖

6− λmin(K)‖E2‖2
√

‖E2‖2 +∆2
+ ‖h2‖‖E2‖, (33)

where E2 = ê, h2 = [‖τ̃e‖, λmax(F )‖ν̃‖, λmax(F )‖ν̃e‖]T.
Noting that

‖E2‖
√

‖E2‖2 +∆2
>

‖τ̃e‖
θ2λmin(K)

+
λmax(F )‖ν̃‖
θ2λmin(K)

+
λmax(F )‖ν̃e‖
θ2λmin(K)

>
||h2||

θ2λmin(K)
, (34)

it renders

V̇2 6 −(1− θ2)λmin(K)
‖E2‖2

√

‖E2‖2 +∆2
, (35)

where 0 < θ2 < 1.

It renders that subsystem (17) is input-to-state stable, and

‖E2(t)‖ 6max{̟2(‖E2(0)‖, t), κ9(‖τ̃e‖), κ10(‖ν̃‖), κ11(‖ν̃e‖)}, (36)

where ̟2 is a KL function; κ9(·), κ10(·) and κ11(·) denote K functions as follows:















































κ9(s) = µ−1

(√

λmax(M)

λmin(M)

s

θ2λmin(K)

)

,

κ10(s) = µ−1

(
√

λmax(M)

λmin(M)

λmax(F )s

θ2λmin(K)

)

,

κ11(s) = µ−1

(√

λmax(M)

λmin(M)

λmax(F )s

θ2λmin(K)

)

,

(37)

with µ(s) = s2/
√
s2 +∆2.

The stability of the system cascaded by (14) and (17) is presented as the following theorem.

Theorem 1. Considering the ASV kinetics being (6), the controller formed by (8), (11), (12), (16), and

the event-triggered rules being (20)–(22), the resulting closed-loop system cascaded by (14) and (17) is

input-to-state stable. Moreover, the errors e and ê are uniformly ultimately bounded.

Proof. From the user-defined event-triggered rules, it renders ‖ν̃e‖ 6 εν and ‖τ̃e‖ 6 ετ . It can be

obtained from Lemmas 1 and 2 that: subsystem (14) with states being ν̃, W̃u, W̃v, W̃r and inputs being

ν̃e, εe, W̃u, W̃v, W̃r is input-to-state stable; subsystem (17) with state being ê and inputs being τ̃e, ν̃, ν̃e
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is input-to-state stable. By Lemma C.4 [39], the cascade system with states being ν̃, W̃u, W̃v, W̃r and

inputs being ν̃e, εe, W̃u, W̃v, W̃r, τ̃e is input-to-state stable. Hence, there exist a KL function ̟ and a

K function κ, such that

‖E(t)‖ 6̟(‖E(0)‖, t) + κ(‖[ν̃e, εe, W̃u, W̃v, W̃r, τ̃e]‖), (38)

where E = [ν̃, W̃u, W̃v, W̃r, ê]
T. Note that ν̃e, εe, W̃u, W̃v, W̃r and τ̃e are bounded by εv, ε

∗
e, 2W

∗
u + ǫ1,

2W ∗
v + ǫ2, 2W

∗
r + ǫ3 and ετ , respectively. Then, the errors ν̃, W̃u, W̃v, W̃r and ê are all bounded.

Besides, because

‖e‖ = || − ν̃ + ê‖ 6 ‖ê‖+ ‖ν̃‖, (39)

the velocity tracking error e is uniformly ultimately bounded. The proof is completed.

Theorem 2 shows that there exist positive lower bounds for the least inter-event time, and it means

the Zeno behavior does not happen in the proposed event-triggered NN control method.

Let rim ∈ (si, si+1) be themth time instant when R̄2 is satisfied over (si, si+1) similarly to [27]. Because

{si}∞i=1 is a subsequence of {rj}∞j=1, then {rj}∞j=1 = {si}∞i=1

⋃{rim}∞,ni

i=1,m=1 holds, where ni ∈ N denotes

the number of violation times for R2 over (si, si+1).

Theorem 2. Consider the ASV kinetics given by (6), the saturated kinetic control law given by (16),

the estimator given by (11), the NN given by (8), the NN weights update law given by (12) and the

event-triggered rules given by (20)–(22). Let the ASV states be transmitted to the controller taking

place when R̄1 is satisfied. Let the control inputs be transmitted to the ASV taking place when R̄2 ∧R3

is satisfied. Then, there exist positive scalars αν = εν/~ν and ατ = ετ/~τ such that

si+1 − si > αν , ∀i ∈ N, (40)

rij+1 − rij > ατ , ∀j ∈ {0, . . . ,mi}, ∀i ∈ N, (41)

where

~ν >
||τs||+ ||f(·)||
λmin(M)

, (42)

~τ >
λmax(K)

√

‖ê‖2 +∆2
(|| ˙̂e||+ ||ê||2) + ||τ̇a||. (43)

Proof. The time derivation of ||νs(t)− ν(t)||, t ∈ (si, si+1), ∀i ∈ N is developed as

d

dt
||νs(t)− ν(t)|| 6 ||ν̇s(t)− ν̇(t)|| = ||ν̇(t)||

6
||τs||+ ||f(·)||
λmin(M)

. (44)

By Theorem 1, the entire closed-loop system is input-to-state stable. Therefore, there is an upper

bound for (44). The upper bound is denoted as ~ν . With the initial condition of the event-trigger

satisfying

lim
t→s+

i

||νs(t)− ν(t)|| = 0, (45)

one can get from (44) that

||νs(t)− ν(t)|| 6
∫ t

si

~νdι = ~ν(t− si). (46)

When R̄1 is satisfied, it renders limt→s
−

i+1

||νs(t)−ν(t)|| = εν , and it follows from (46) that si+1−si > αν .

Similarly, the time derivation of ||τs(t)− τ(t)||, t ∈ (rij , r
i
j+1), ∀j ∈ N is developed as

d

dt
||τs(t)− τ(t)|| 6 ||τ̇s(t)− τ̇ (t)|| = ||τ̇ (t)||
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Figure 3 (Color online) Command tracking performance. Figure 4 (Color online) Control inputs.

6
λmax(K)

√

‖ê‖2 +∆2
(|| ˙̂e||+ ||ê||2) + ||τ̇a||. (47)

By Theorem 1, the entire closed-loop system is input-to-state stable. Therefore, there is an upper

bound for (47). The upper bound is denoted as ~τ . With the initial condition of the event-trigger

satisfying

lim
t→r

i+

j

||τs(t)− τ(t)|| = 0, (48)

one can get from (47) that

||τs(t)− τ(t)|| 6
∫ t

ri
j

~τdι = ~τ (t− rij). (49)

When R̄2∧R3 is satisfied, it renders limt→r
i−

j+1

||τs(t)−τ(t)|| = ετ , and it follows from (49) that rij+1−rij >
ατ .

5 Simulation example

In the simulation section, an example is provided to evaluate the effectiveness of the presented event-

triggered NN control approach.

Let an ASV in [22] follow a time-varying speed command νr ∈ R
3. The parameters of the ASV

are m11 = 25.79, m22 = 33.81, m23 = m32 = 1.095, m33 = 2.75, d11 = 0.713 + 5.64u2 + 1.24|u|,
d22 = 0.8765 + 37.1|v| + 0.811|r|, d33 = 1.87 − 0.079|v| + 0.746|r|, d23 = 7.16 + 0.851|v| + 3.38|r|, and
d32 = 0.0324+3.88|v|+0.129|r|. The activation function β(ρ) of NN is chosen as β(ρ) = (1−e−ρ)/(1+e−ρ).

The controller parameters are chosen as Γu = 3.5, Γv = 5, Γr = 20, ∆ = 1, k1 = 20, k2 = 40, k3 = 10,

k4 = 3, k5 = 5, k6 = 1, ενu = 0.01, ενv = 0.005, ενr = 0.003, ετu = 0.01, ετv = 0.008, ετr = 0.008, and

t∗p = 0.01.

Simulation results are afforded from Figures 3–9. The speed commands following performance is drawn

in Figure 3. The speed commands are well followed although the ASV suffers from uncertain dynamics and

unknown kinetics. The vehicle states are estimated effectively by the predictor with aperiodic sampling

of data and the estimated uncertainties. The control inputs of the ASV are drawn in Figure 4. It
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Figure 5 (Color online) Approximation of uncertainties by NNs.
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Figure 6 (Color online) Events caused by the sampling

of vehicle states.

Figure 7 (Color online) Events caused by the updating

of control inputs.
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Figure 8 (Color online) Event-triggered times caused by

the sampling of vehicle states.

Figure 9 (Color online) Event-triggered times caused by

the updating of control inputs.

demonstrates that the control inputs are bounded within 2 N, 2.5 N and 1.5 Nm, respectively. The

uncertainties and the outputs of NNs are drawn in Figure 5. The uncertainties are efficiently approached
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by the NNs via aperiodic sampling of data. Figure 6 shows the events caused by the sampling of the

vehicle states. Figure 7 shows the events caused by the updating of control inputs. It can be observed

from Figures 6 and 7 that data transmissions are aperiodic. Moreover, there are many moments that no

events are triggered. Therefore, no data need to be transmitted over wireless network. Figure 8 shows

the triggered cumulative times of the vehicle states. Figure 9 shows the triggered cumulative times of

the control inputs. The cumulative times of u, v, r, τu, τv and τr are 153, 128, 325, 713, 1225 and 806,

respectively. Compared with the time-triggered system (the sample period is 0.01 s), which the trigger

cumulative times are 40000 for both vehicle states and control inputs, the trigger cumulative times are

reduced 96.9% at least, and it demonstrates that the developed event-triggered NN control method can

reduce the network traffic.

6 Conclusion

This paper presents an event-triggered NN control method for ASVs over wireless network. The uncer-

tainties are approximated efficiently by the NNs via aperiodic sampling of vehicle states. The bounded

kinetic control law is developed based on a saturation function and NNs. The event-triggered mechanism

is employed to reduce the network traffic. The two-way data transmissions are determined by the event-

triggered mechanism. The closed-loop system is proved to be input-to-state stable via cascade stability

analysis, and all error signals are proved to be uniformly ultimately bounded. Zeno behavior is proved

to be excluded. Simulation results show that the trigger times are reduced and the system stability and

speed following performance are guaranteed by using the proposed event-triggered NN control method.
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