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Abstract This paper solves the rotating consensus problem for a group of double-integrator agents with

event-based communication only. We propose a distributed event-based rotating consensus protocol, which

guarantees that a consensus regarding both position and velocity is achieved when all agents exhibit circular

motion around the same center. It is observed that overall less communication is required as the communi-

cation between agents is only needed at event times. Moreover, with the proposed event-based protocol, it

is proved that Zeno behavior can be strictly avoided for each agent. Numerical simulations show that this

event-based control law can efficiently solve the rotating consensus problem.
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1 Introduction

With the recent development of communication and computing technology, researchers are more interested

in the cooperative control of groups of autonomous agents. Presently, a lot of studies focus on the

consensus [1, 2], formation control [3–5], and flocking [6] problems.

Because the consensus problem is a typical cooperative control problem, it has paved the way for

research of other cooperative control problems, which requires the states of all agents converge to a

common value of interest. Pioneering researchers focused on the consensus problem of multi-agent systems

composed of single-integrator [1] or double-integrator [2, 7] agents. As an important extension of the

consensus problem, the objective of the formation control problem is to guarantee that all agents form

and maintain an arbitrary but specific formation through distributed control while in motion. Specifically,

Chen et al. [8] studied a class of collective circular motion problem for a group of nonholonomic vehicles

provided that the switching topologies among all the agents are jointly connected. It was shown that all

vehicles moved in a circle around the common center and were distributed within the circle in a specific

pattern. The authors in [9] studied the formation problem for a group of mobile robots modeled by

single-integrator agents with a moving target. Herein, all robots asymptotically reach a regular polygon

formation while surrounding the moving target as its centroid. Furthermore, Lin et al. [10] proposed a

distributed control law for a second-order multi-agent system modeled by complex systems in such a way

that all agents reach a consensus while rotating around a common center. This problem defined as the

rotating consensus control problem differs from the classical consensus problem in the sense that apart
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from achieving the consensus with respect to both position and velocity, the agents are also required to

move in a circular around a common center. Because the rotating consensus problem is a special case of

the collective circular formation problem, its study serves as the basis for solutions of cooperative control

of unmanned air vehicles (UAVs) flying in formation or problems pertaining to flight of satellites.

In engineering applications, owing to the limitation of agents’ power, the conventional high-frequency

sampling methods consume too much on-board energy. In [11, 12], the authors further discussed on

the event-based strategy in comparison with the periodic sampling strategy and established that event-

triggered sampling has a higher energy efficiency. Therefore, event-based strategies are adopted to reduce

the communication in multi-agent systems. Following the idea proposed in [11], the authors in [13,

14] studied the event-based consensus problem for a group of single-integrator and double-integrator

agents, respectively. For a group of agents with general linear dynamics, the leaderless consensus and the

leader-follower consensus problems were solved by the proposed event-based control protocols in [15,16],

respectively. It is proved that a controlled system can reach the consensus asymptotically when the

communication load is reduced significantly [13, 15]. Furthermore, to avoid that the distributed control

law depends on the global information of the graph, novel fully distributed event-triggered protocols were

proposed for linear multi-agent networks in [17]. As an important extension of the static event-triggered

control, a new dynamic event-triggered control approach was proposed to address the consensus problem

in [18]. Other related results on these topics can be found in [19–23].

In this paper, the rotating consensus problem is addressed by incorporating an event-based control

strategy. Each agent is in the complex plane and follows double-integrator dynamics. Three main

difficulties arise with this approach. First, the rotating consensus problem is more complicated than the

classical consensus problem because it requires all agents not only to achieve the consensus with respect

to both position and velocity but also move in a circle around a common center. Second, communication

between all agents is restricted to event times of itself or its neighbors only and the Zeno-free property of

the event-triggering mechanism should be guaranteed. Furthermore, the event-based rotating consensus

problem is considered in the complex plane making the design of control law and stability analysis more

challenging for complex systems. To overcome these difficulties, the theoretical analysis of the problem

includes three steps: (i) the original rotating consensus problem is converted to the stabilization problem

of the disagreement system and the resulting system matrix is shown to be Hurwitz; (ii) for the event-

triggering mechanism, it is shown that the disagreement vector converges to zero exponential through the

proof by contradiction, and the event-based control law can then be designed correspondingly; (iii) the

feasibility of the proposed event-based function is guaranteed by proving that Zeno behavior is strictly

avoided.

The rest of this paper is organized as follows: Section 2 briefly reviews some preliminaries of graph

theory; Section 3 defines the system models and problem studied; Section 4 presents the main event-

based consensus protocol; Section 5 provides a simulation example to compare event-based sampling

with periodic sampling; Section 6 draws conclusion and discusses future work.

2 Some preliminaries of graph theory

For convenience, we use the following notations:

Rn: the set of n dimensional real column vectors.

Cn: the set of n dimensional complex column vectors.

ℓ: index set {1, . . . , n}.
N : number of agents.

Ni: neighbor set of agent i.

1: [1, . . . , 1]T

j: the imaginary unit.

xT: transpose of x.

⊗: Kronecker product.
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‖ · ‖: Euclidean norm.

|Ni|: cardinality of a set Ni.

Re(·): real part of a complex number.

An undirected graph G(V , E) consists of a node set V = {v1, . . . , vn} and the edge set E ⊆ V × V .
The weighted adjacency matrix of G is defined by A = [aij ]N×N

, where aij = aji = 1, i, j ∈ ℓ if and

only if (i, j) ∈ E , otherwise aij = 0. Ni is defined as {vj ∈ V : (vi, vj) ∈ E}. The degree matrix of G is

D = diag {d1, d2, . . . , dn} where each diagonal element satisfies di = |Ni|. Then, the Laplacian matrix is

defined as L = D −A. A sequence of ordered edges from node vi to vj is called a path. If there exists a

path between any two nodes, the undirected G is called connected.

Lemma 1 ([24]). If the undirected graph G is connected, the following two properties hold:

(1) L always has a simple zero eigenvalue and its corresponding eigenvector is 1;

(2) The rest N − 1 eigenvalues are real and positive.

3 Problem formulation

Consider a group of n agents moving in a complex plane with the position and velocity denoted by

ri, vi ∈ C, respectively. Each agent can be regarded as a node and the information flow can be regarded

as an edge of an undirected graph G. Moreover, each agent is assumed to have the following dynamics:

ṙi = vi, v̇i = ui, (1)

where ui(t) ∈ C is the control input.

Remark 1. Complex systems are chosen to describe the agents’ dynamics owing to their obvious

physical meaning. For example, in our system, the position and velocity of each agent are both complex

numbers, which can be geometrically represented in the complex plane. In this case, all agents are moving

in a 2D plane, which coincides with the complex plane. Besides, in the complex plane, when a complex

number is multiplied by j, it is rotated by π/2 radians counterclockwise. Consequently, the circle center

of each agent can be expressed as ri(t)+w−1jvi(t), where w is a constant to be specified later. Note that

the stability analysis becomes more challenging when complex theory is involved.

This paper mainly focuses on the rotating consensus problem, which has been previously studied in [10].

Particularly, the rotating consensus problem is defined as follows.

Definition 1 ([10]). The multi-agent system (1) reaches a rotating consensus if

lim
t→+∞

[vi(t)− vm(t)] = 0, (2)

lim
t→+∞

[(

ri(t) + w−1jvi(t)
)

−
(

rm(t) + w−1jvm(t)
)]

= 0, (3)

lim
t→+∞

[v̇i(t)− jwvi(t)] = 0, (4)

where i,m ∈ ℓ. w is the constant angular velocity satisfying 0 < w < +∞. Without any loss of generality,

we can assume w to be 1.

Different from the control law in [10], where each agent needs continuous communication with other

agents, we incorporate an event-based control strategy to the control law, such that the communication is

only needed at the event times of the agent itself or its neighbors. Specifically, for agent i, the event-based

controller is given by

ui(t) = ui1(t) + ui2(t), (5)

where

ui1(t) = jvi(t),

and

ui2(t) = −
∑

m∈Ni

aim

[

vi
(

tik
)

− vm

(

tmk′(t)

)]

−
∑

m∈Ni

aim

[

ri
(

tik
)

+ jvi
(

tik
)

−
(

rm

(

tmk′(t)

)

+ jvm

(

tmk′(t)

))]

,
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where i ∈ l and k′(t) , argminl∈N:t>tm
l
{t− tml }. In other words, for each t ∈ [tik, t

i
k+1), the latest event

time of agent j is tj
k′(t). Hence, the ui2(t) is updated depending on the agent’s own event times or the

latest information received from its neighbors. For each agent, the event time sequence {tik} is defined

iteratively by

tik+1 = inf
{

t : t > tik, fi(t) > 0
}

, (6)

where the event-based function fi(t) is to be designed.

Remark 2. Note that the controller includes two parts. The first part of the control law involves

agent’s own velocity to guarantee that each agent revolves around the center of a circle. The second part

requires information from its neighbors only at event times. This information is used to guarantee that

the trajectories of all agents reach the rotating consensus.

This paper aims to find the distributed controller and event-based function, which determine the event

times so that the rotating consensus problem from Definition 1 can be solved. The following assumption

and lemma are needed to obtain the results.

Assumption 1. The undirected graph G is connected.

Lemma 2. Under Assumption 1, consider a linear system given by

ẋ(t) = Āx(t), x(0) = x0,

where Ā = diag {C − λ2D, . . . , C − λnD} , with C = [ j −j

0 0
], D = [ 0 0

−1 1 + j
] and λi, i = 2, . . . , n being the

nonzero eigenvalues of G satisfying 0 < λ2(G) 6 · · · 6 λn(G). Then, for t > t0, we can find positive

constants M > 0 and ρ > 0 such that
∥

∥

∥
eĀ(t−t0)

∥

∥

∥
6 Me−ρ(t−t0). (7)

Proof. To find the eigenvalues of Ā, we calculate the solutions to det(µI2n−2 − Ā) = 0, where µ is any

eigenvalue of Ā. The characteristic polynomial of matrix Ā is det(µI2n−2 − Ā) =
∏n

i=1 det(µI2 − C +

λiD) =
∏n

i=2(µ
2 + λi + λij − j)µ + λi). It follows from Lemma 4 of [10] that Ā is Hurwitz. Hence, all

eigenvalues of Ā have negative real parts. Thus, for all t > t0, we can find positive constants M > 0 and

ρ > 0, such that ‖eĀ(t−t0)‖ 6 Me−ρ(t−t0).

Remark 3. There exits an invertible matrix P such that Ā = P J̄P−1, where J̄ is in the Jordan nor-

mal form. In this case, it is easy to obtain that ‖eĀ(t−t0)‖ = ‖P eJ̄(t−t0)P−1‖ 6 ‖P‖‖P−1‖eJ̄(t−t0)‖.
Because Ā is Hurwitz, it can be shown that all eigenvalues of Ā have negative real parts, i.e., Re (µ1,2) =

Re(
−hi±

√
h2
i
−4λi

2 ) < 0, i ∈ ℓ where hi = λi+λij−j. Then, it follows that −ρ > maxi∈ℓ{Re(−hi±
√

h2
i
−4λi

2 )}
and M > ‖P−1‖‖P‖.

4 Main results

To design the event-based function, we define two measurement errors as follows:

εi(t) = ri
(

tik
)

− ri(t),

ei(t) = vi
(

tik
)

− vi(t), t ∈
[

tik, t
i
k+1

)

,
(8)

where εi(t) and ei(t) are the sampling-incurred measurement errors with respect to position and velocity,

respectively.

This definition of k′(t) implies that rm(tmk′(t)) = rm(t) + εm(t) and vm(tmk′(t)) = vm(t) + em(t). As a

result,

ui2 =−
∑

m∈Ni

aim [vi(t)− vm(t)]−
∑

m∈Ni

aim [ei(t)− em(t)]

−
∑

m∈Ni

aim [ri(t) + jvi(t)− (rm(t) + jvm(t))]−
∑

m∈Ni

aim [εi(t) + jei(t)− (εm(t) + jem(t))] .
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Define ci = ri(t)+jvi(t), ξi(t) = [ri(t), ci(t)]
T and ẽi(t) = [εi(t), εi(t) + jei(t)]

T , ∀i ∈ ℓ. Then, we define

ξ(t) = [ξ1(t), . . . , ξn(t)]
T
and ẽ(t) = [ẽT1 (t), . . . , ẽ

T
n (t)]

T. It follows from (1) and (5) that, the closed-loop

system can be written as

ξ̇(t) = (In ⊗A− L⊗B) ξ(t)− (L⊗B)ẽ(t), (9)

where A = [ j −j

0 0
] and B = [ 0 0

−1 1 + j
].

We define the disagreement vector as δ(t) = ξ(t)−1⊗
[

(α(t), α(t) + jβ(t)]T, where α(t) = 1
n

∑n
i=1 ri(t)

and β(t) = 1
n

∑n
i=1 vi(t). Then

(

1T ⊗ I2
)

δ(t) = 0 and the dynamics of the disagreement system are given

by

δ̇(t) = (In ⊗A− L⊗B) δ(t)− (L⊗B)ẽ(t). (10)

Remark 4. Note that α(t) and β(t) are used to represent the average values of all agents’ positions

and velocities, respectively. In this case, α(t) + jβ(t) is the average value of the centers of all agents’

circles. Because G is an undirected graph, then α̇(t) = β(t) and β̇(t) = j 1
n

∑n
i=1 vi(t) = jβ(t). It

can be obtained that α̇(t) + jβ̇(t) = 0. Then α(t) + jβ(t) is an invariant quantity, which equals to
1
n

∑n
i=1 ri(0)+ j 1

n

∑n
i=1 vi(0). In this case, α(t)+ jβ(t) is also known as the common center for all agents

if limt→+∞ δ(t) = 0.

Finally, the main results of this paper are described below.

Theorem 1. Under Assumption 1, consider multi-agent system (1) with control law (5). If the event

time sequence is determined by (6) with the following event-based function:

fi(t) = ‖ẽi(t)‖ − φ1

∥

∥

∥

∥

∥

∑

m∈Ni

aim

(

ri
(

tik
)

− rm

(

tmk′(t)

))

∥

∥

∥

∥

∥

− φ2

∥

∥

∥

∥

∥

∑

m∈Ni

aim

(

ri
(

tik
)

+ jvi
(

tik
)

−
(

rm

(

tmk′(t)

)

+ jvm

(

tmk′(t)

)))

∥

∥

∥

∥

∥

− e−λ(t−t0),

where ẽi(t) = [εi(t), εi(t) + jei(t)]
T
, 0 < λ < ρ and φ1, φ2 ∈ (0, ρ−λ

[M‖L⊗B‖+(ρ−λ)]
√
2N(d+N)

) with M,ρ

defined in Lemma 2 and d = maxi∈ℓ {|Ni|} , then multi-agent system (1) can reach the rotating consensus

with the common center at 1
n

∑n
i=1 ri(0) + j 1

n

∑n
i=1 vi(0).

Proof. Owing to the symmetry of L, there exists an orthogonal matrix W ∈ R
n×n whose first column

is 1√
n
, such that WTLW = J = diag {0, λ2, . . . , λn} where 0 < λ2 6 · · · 6 λn. It follows that

(W ⊗ I2)
T
δ̇(t) = (In ⊗A− J ⊗B) (W ⊗ I2)

T
δ(t)− (J ⊗B) (W ⊗ I2)

T
ẽ(t). (11)

Then, we define (W ⊗ I2)
T
δ(t) =

[

0, δ̄T(t)
]T

and (J ⊗ B) (W ⊗ I2)
T
ẽ(t) =

[

0, ēT(t)
]T

, where δ̄(t) ∈
C2n−2 and ē(t) ∈ C2n−2. Eq. (11) can now be transformed into the following system:

˙̄δ(t) = diag {A− λ2B, . . . , A− λnB} δ̄(t)− ē(t). (12)

Through direct calculation, we have

δ̄(t) = ediag{A−λ2B,...,A−λnB}(t−t0)δ̄ (t0)−
∫ t

t0

ē(τ)ediag{A−λ2B,...,A−λnB}(t−τ)dτ.

It follows from Lemma 2 that there exist positive constants M > 0 and ρ > 0 such that

∥

∥

∥
ediag{A−λ2B,...,A−λnB}(t−t0)

∥

∥

∥
6 Me−ρ(t−t0). (13)

Invoking (13) and given that ‖δ̃(t)‖ = ‖δ(t)‖, one can obtain

‖δ(t)‖ 6 Me−ρ(t−t0) ‖δ (t0)‖+M

∫ t

t0

e−ρ(t−τ)‖ē(τ)‖dτ
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6 Me−ρ(t−t0) ‖δ (t0)‖+M‖J ⊗B‖
∫ t

t0

e−ρ(t−τ)‖ẽ(τ)‖dτ, (14)

where ‖ē(τ)‖ 6 ‖J ⊗B‖ẽ(t)‖.
The event-based condition (6) enforces that

‖ẽi(t)‖ 6 φ1

∥

∥

∥

∥

∥

∑

m∈Ni

aim (ri(t)− rm(t))

∥

∥

∥

∥

∥

+ φ2

∥

∥

∥

∥

∥

∑

m∈Ni

aim (ri(t) + jvi(t)− (rm(t) + jvm(t)))

∥

∥

∥

∥

∥

+ φ1

∥

∥

∥

∥

∥

∑

m∈Ni

aim (εi(t)− εm(t))

∥

∥

∥

∥

∥

+ φ2

∥

∥

∥

∥

∥

∑

m∈Ni

aim (εi(t) + jei(t)− (εm(t) + jem(t)))

∥

∥

∥

∥

∥

+ e−λ(t−t0)

6
√
2φ

∥

∥

∥

∥

∥

∑

m∈Ni

aim (ξi(t)− ξm(t))

∥

∥

∥

∥

∥

+
√
2φ

∥

∥

∥

∥

∥

∑

m∈Ni

aim (ẽi(t)− ẽm(t))

∥

∥

∥

∥

∥

+ e−λ(t−t0)

=
√
2φ

∥

∥

∥

∥

∥

∑

m∈Ni

aim (δi(t)− δm(t))

∥

∥

∥

∥

∥

+
√
2φ

∥

∥

∥

∥

∥

∑

m∈Ni

aim (ẽi(t)− ẽm(t))

∥

∥

∥

∥

∥

+ e−λ(t−t0)

6
√
2φdi ‖δi(t)‖+

√
2φ

N
∑

m=1

aim ‖δm(t)‖+
√
2φdi ‖ẽi(t)‖ +

√
2φ

N
∑

m=1

aim ‖ẽm(t)‖+ e−λ(t−t0),

where φ = max {φ1, φ2} . Define a = maxi,m∈ℓ {aim} = 1 and d = maxi∈ℓ {di} with di = |Ni|. Denote

φ ∈ (0, ρ−λ

[M‖L⊗B‖+(ρ−λ)]
√
2N(d+N)

). Owing to λ ∈ (0, ρ), we obtain that ρ−λ

[M‖L⊗B‖+(ρ−λ)]
√
2N(d+N)

<
1√

2N(d+N)
. Then, it follows that

‖ẽ(t)‖ 6

√
2Nφ(d+N)‖δ(t)‖+Ne−λ(t−t0)

1−
√
2Nφ(d +N)

. (15)

Because ‖J ⊗B‖ = ‖L⊗B‖, it follows from (14) and (15) that

‖δ(t)‖ 6 Me−ρ(t−t0) ‖δ (t0)‖+Mc′
∫ t

t0

e−ρ(t−τ)‖δ(τ)‖dτ +Mα′
∫ t

t0

e−ρ(t−τ)−λ(τ−t0)dτ, (16)

where c′ =
√
2Nφ(d+N)‖L⊗B‖
1−

√
2Nφ(d+N)

and α′ = Nφ‖L⊗B‖
1−

√
2Nφ(d+N)

.

Because φ ∈ (0, 1
[M‖L⊗B‖+(ρ−λ)]

√
2N(d+N)

), then Mc′

ρ−λ
< 1. We can claim that

‖δ(t)‖ 6 Ze−λ(t−t0), t > t0, (17)

where Z = max{ Mα′

(ρ−λ)−Mc′
,M ‖δ (t0)‖}.

To prove (17), we first show that for any η > 1, the following inequality is true:

‖δ(t)‖ < ηZe−λ(t−t0) .
= v(t). (18)

Suppose (18) does not hold, there exists a t∗ > t0 such that ‖δ (t∗)‖ = v (t∗) and ‖δ(t)‖ < v(t) for

t ∈ (t0, t
∗). From (16) and (18) we have that

v (t∗) = ‖δ (t∗)‖ 6 ηM ‖δ (t0)‖ e−ρ(t∗−t0) +
ηM (Zc′ + α′)

ρ− λ

(

e−λ(t∗−t0) − e−ρ(t∗−t0)
)

. (19)

Case 1. Z = M ‖δ (t0)‖ , which means that ‖δ (t0)‖ > α′

−(Mc′−(ρ−λ)) , that is, [(ρ− λ)−Mc′] ‖δ (t0)‖ >

α′. Then, we obtain that ηM ‖δ (t0)‖ − ηM(Zc′+α′

ρ−λ
) > 0. Because e−λ(t∗−t0) − e−ρ(t∗−t0) > 0, inequality

(19) can be transformed into the following form:

v (t∗) = ‖δ (t∗)‖ 6 ηM ‖δ (t0)‖ e−ρ(t∗−t0) + ηM ‖δ (t0)‖
(

e−λ(t∗−t0) − e−ρ(t∗−t0)
)

.
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It implies that ‖δ (t∗)‖ < ηM ‖δ (t0)‖ e−λ(t∗−t0) = v (t∗).

Case 2. Z = Mα′

−(Mc′−(ρ−λ)) , which means that ‖δ (t0)‖ 6 α′

−(Mc′−(ρ−λ)) , that is, [(ρ− λ)−Mc′] ‖δ (t0)‖
6 α′. Then, we obtain that ηM ‖δ (t0)‖−ηM(Zc′+α′

ρ−λ
) 6 0. Because e−λ(t∗−t0)−e−ρ(t∗−t0) > 0, inequality

(19) can be transformed into the following form:

v (t∗) = ‖δ (t∗)‖ 6 ηM

(

Zc′ + α′

ρ− λ

)

e−ρ(t∗−t0) + ηM

(

Zc′ + α′

ρ− λ

)

(

e−λ(t∗−t0) − e−ρ(t∗−t0)
)

.

It implies that ‖δ (t∗)‖ < ηM(Zc′+α′

ρ−λ
)e−λ(t∗−t0) = v (t∗).

This contradiction shows that Eq. (17) holds for any η > 1. Therefore, letting η → 1, the inequality

(17) holds and δ(t) exponentially converges to zero. Then it follows that limt→+∞ ‖δ(t)‖ = 0. It means

that limt→+∞ [ri(t)− α(t)] = 0 and limt→+∞ [(ri(t) + jvi(t))− (α(t) + jβ(t))] = 0 for any i ∈ ℓ. Thus,

the multi-agent system (1) with protocol (5) reaches a rotating consensus.

To guarantee that the event-based control law can be implemented in practice, it is essential to exclude

Zeno behavior for each agent. Zeno behavior implies that the infinite number of events appears when the

time interval between the previous and the next event time goes to zero. To exclude Zeno behavior, we

summarize the following theorem.

Theorem 2. Under Assumption 1, consider a multi-agent system (1) with control law (5). If the event

time sequence is determined by (6) as given in Theorem 1, then for each agent Zeno behavior can be

strictly avoided.

Proof. First, we calculate the upper right hand Dini derivative. That is, D+ ‖ẽi(t)‖ over the interval

[tik, t
i
k+1):

D+ ‖ẽi(t)‖ 6
∥

∥ ˙̃ei(t)
∥

∥ =
∥

∥

∥
ξ̇i(t)

∥

∥

∥
=

∥

∥

∥
δ̇i(t)

∥

∥

∥
+

1

n

∥

∥

∥

∥

∥

n
∑

i=1

vi(0)

∥

∥

∥

∥

∥

6 ‖In ⊗A− L⊗B‖ ‖δ(t)‖+ ‖L⊗B‖ ‖ẽi(t)‖+
1

n

∥

∥

∥

∥

∥

n
∑

i=1

vi(0)

∥

∥

∥

∥

∥

.

Using (14) and (15), it follows that

D+ ‖ẽi(t)‖ 6 (ϕ1 + ϕ2) e
−λ(t−t0) + c,

where ϕ1 = ‖In ⊗A− L⊗B‖Z, ϕ2 =
√
2Nφ(d+N)Z+Ne−λ(t−t0)

1−
√
2Nφ(d+N)

and c = 1
n
‖∑n

i=1 vi(0)‖. Then, it can be

shown that

‖ẽi(t)‖ 6 (ϕ1 + ϕ2)
(

e−λ(tik−t0) − e−λ(t−t0)
)

+ c
(

tik+1 − tik
)

, t ∈
[

tik, t
i
k+1

)

.

If the event-based function is greater than zero, the next event occurs, which implies that

φ1

∥

∥

∥

∥

∥

∑

m∈Ni

aim

(

ri
(

tik
)

− rm

(

tmk′(t)

))

∥

∥

∥

∥

∥

+ e−λ(tik+1−t0)

+φ2

∥

∥

∥

∥

∥

∑

m∈Ni

aim

(

ri
(

tik
)

+ jvi
(

tik
)

−
(

rm

(

tmk′(t)

)

+ jvm

(

tmk′(t)

)))

∥

∥

∥

∥

∥

=
∥

∥ẽi
(

tik+1

)
∥

∥ 6 (ϕ1 + ϕ2)
(

e−λ(tik−t0) − e−λ(tik+1−t0)
)

+ c
(

tik+1 − tik
)

. (20)

Define T i
k+1 = tik+1 − tik and ĉ = ceλ(t

i

k
−t0). Using (20), we can obtain that

e−λT i

k+1 6 (ϕ1 + ϕ2)
(

1− e−λT i

k+1

)

+ ĉT i
k+1. (21)

Define f(x) = ĉx− (1 + ϕ1 + ϕ2) e
−λx+(ϕ1 + ϕ2); then it follows from (21) that f(x) > 0 should have

a positive solution. Given f ′(x) = ĉ + λ (1 + ϕ1 + ϕ2) e
−λx > 0, ∀x ∈ R, f(0) = − (1 + ϕ1 + ϕ2) < 0,

and that f(x) is monotonous, we can find that an x′ > 0 makes f (x′) > 0 hold. Therefore, T i
k > x′ > 0,

which implies that each individual agent will not exhibit Zeno behavior.
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Figure 1 The communication graph of the multi-agent system.

−8 −3 2 6
x-axis

−2

3

8

12

y
-a

x
is

Agent 1

Agent 2

Agent 3

Agent 4

Figure 2 (Color online) The trajectory of four agents with φ1 = 0.1 and φ2 = 0.05.
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Figure 3 (Color online) The evolution of γi(t) for all agents.

5 Numerical example

In this section, we carry out several numerical simulations to validate the effectiveness of our theoretical re-

sults. We assume that there are four agents moving in the plane, and their communication topology is de-

scribed by Figure 1. The initial conditions are arbitrarily chosen as follows: [r1(0), v1(0), . . . , r4(0), v4(0)] =

[3 + 4j, 1 + 2j, 1 + 2j, 3 + 5j, 1 + 4j, 2 + 4j, 4 + j, 1 + 7j].

According to Lemma 2, we choose ρ = 0.5 and M = 2.6 for this example. According to Theorem 1, the

design parameters can be selected as follows: λ = 0.05 < ρ = 0.5, φ1 = 0.1 and φ2 = 0.05 ∈ (0, 0.12). The

trajectories of all agents are shown in Figure 2, where x-axis and y-axis represent the real and imaginary

axes of the complex plane, respectively. Moreover, we denote γi(t) = ‖ri(t) + jvi(t)‖ − ‖α(t) + jβ(t)‖
as the disagreement with respect to the common center for each agent. The evolution of γi(t) with the

proposed control law is shown in Figure 3, which demonstrates that the rotating consensus is reached. For

comparison, the numbers of event times with the event-based control law and the periodic sampling control

law are illustrated in Figures 4 and 5, respectively. It is observed that after incorporating the event-based

control strategy, the multi-agent system still achieves the rotating consensus while the communication

load is significantly reduced.
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Figure 4 (Color online) The number of event times for all agents with φ1 = 0.1 and φ2 = 0.05.
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Figure 5 (Color online) The number of event times for all agents with sampling period τ = 0.001.

6 Conclusion

In this paper, we address the rotating consensus problem for the double-integrator multi-agent system

described by complex systems. We propose a distributed event-based law, which relies on the information

at the event times of the agent itself and its neighbors such that the communication load can be reduced.

Moreover, Zeno behavior is excluded for each agent. Future research will focus on the event-based rotating

consensus problem for multi-agent systems with switching topologies and time delay.
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