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Abstract Management of resources is a constant topic in industrial systems. How to use minimum com-

munication resources is of particular interest for control and estimation of networked systems. It raises

the question for researchers in the field: how often should one update control and estimation? One of the

most intelligent approaches is to trigger updates by events. In the literature, event-triggered control and

estimation have been widely studied in the last decade. On one hand, events should be triggered sufficiently

frequent to maintain system performance; on the other hand, the possibility of Zeno behavior caused by

infinite frequency should be avoided. This review aims at revisiting some existing triggering techniques in a

unified formulation, separated from system dynamics and control and estimation strategies. It brings read-

ers better understanding of triggering mechanisms, the underlying technical challenges, and some promising

future research topics.
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1 Introduction

Greek philosopher Zeno of Elea (490–430 BC) devised a set of philosophical problems, called Zeno’s

paradoxes, contrary to the evidence of one’s senses. One of the paradoxes is “Achilles and the Tortoise”.

Achilles allows the tortoise a head start of 100 meters in a footrace. Suppose that Achilles and the tortoise

run at the speeds of 10 m and 1 m per second, respectively. After 10 s, Achilles will have run 100 m to

the tortoise’s starting point. Meanwhile, the tortoise has run 10 m. It will then take Achilles further 1 s

to run that distance, by which time the tortoise will have advanced farther. Whenever Achilles arrives

somewhere the tortoise has been, he still has some distance to go before he can even reach the tortoise.

It concludes that Achilles can never overtake the tortoise [1].

Let us put the story in modern control language with y(t) and u(t) being the position and velocity of

Achilles, at time t, respectively, which satisfy

ẏ(t) = u(t), y(0) = −100, (1)

and

u(t) = 10. (2)
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So, Achilles’ trajectory is simply given by y(t) = −100 + 10t. Let the tortoise’s trajectory be Y(t) = t.

On one hand, at the finite time T = 100/9 s, one has y(T )−Y(T ) = 0 which means that Achilles catches

the tortoise. On the other hand, we define the time sequence tk, k = 0, 1, 2, . . ., with t0 = 0 and

tk+1 = tk +
Y(tk)− y(tk)

10
. (3)

It means that at tk+1 Achilles arrives at the point where the tortoise has been at tk, which is called an

event. Simple calculation gives tk = (100/9)(1 − 0.1k) < T . Therefore, within the finite time T , one

can observe infinite events with k → ∞. In the paradox, Zeno ambiguously used infinite events to define

‘never’ that is contrary to one’s sense of finite time. Today, for a triggered control system, an event is not

just for observation, but to trigger a control action u(t). In a triggering mechanism, without a strictly

positive lower bound for inter-event intervals, an infinite number of events may occur in a finite time

period, called Zeno behavior.

The concept of event has been widely applied in modern industries, especially, in networked control

systems. When events occur, it is unavoidable to analyze their frequency, especially, to exclude Zeno

behavior. The introduction of event into control systems can be traced back to the relevant early re-

search using sampled-data control. In practical applications such as multi-robot systems, electrical power

systems, natural gas systems, chemical processes, and manufacturing processes, a control task is usually

executed in a remote platform via a network. Sampled-data control, or called time-triggered control, is

capable of handling this scenario thanks to the well established sampled-data theory (e.g., [2]). However,

the sampled-data control approach may sample redundant data owing to the fixed sampling period, which

results in waste of network bandwidth and even congestion of communication channels. As a consequence,

stability, reliability, and other desired performance of a control system will be degraded owing to the ef-

fects such as network-induced delays and packet loss [3, 4]. Readers can refer to more discussion about

sampled-data control (e.g., [5]). How to design a suitable controller that not only guarantees desired

system performance but also makes use of limited network resources is of significant interest to control

researchers and engineers.

The disadvantage of sampled-data control motivates the concept of event-triggered control and esti-

mation that acts “when necessary” rather than at prescribed periods. A triggering mechanism is firstly

introduced to schedule the network resources in [6]. The main idea is that whether the current state is

transmitted to update the control input depends on whether the designed measurement error exceeds the

predefined triggering condition associated with the system state or output or the triggering time. That

is to say, if the triggering condition is activated, called occurrence of an event, the state is transferred to

update the control action.

State estimation is regarded as the fundamental issue in the study of control systems because it

allows a system to acquire as accurate as possible the knowledge of the system’s full state and then

make informed control decisions. However, estimation is challenging because the system state is often

partially measurable and accessible in practice. This is particularly true when some unwanted signals, e.g.,

unknown disturbance and noise, enter into the system and/or system measurements. These unwanted

signals, however, have no significant meaning to the understanding of the system. Furthermore, they

may even result in inaccuracies to the outcome of control tasks when a controller is designed based on

state estimates.

Over the past decade, research on event-triggered control and estimation has attracted increasing

attention and many results have been developed. In particular, overview of event-triggered control and

estimation in networked systems using different triggering mechanisms can be found in some recent

survey papers [7–10]. Not surprisingly, Zeno behavior is a critical issue in event-triggered control and

estimation research and it is also the main theme of this survey paper. In this study, we aim to give a

unified problem formulation and revisit the existing triggering techniques within the formulation. It will

bring readers better understanding of triggering mechanisms that determine how often one should update

control and estimation. On one hand, events should be triggered sufficiently frequent to maintain system

performance; on the other hand, the possibility of Zeno behavior caused by infinite frequency should be
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avoided.

2 Triggering techniques for control of linear networked systems

2.1 A unified problem formulation

We first give a unified problem formulation for event-triggered control systems and then specialize it to

linear networked systems in the subsequent subsections. For this purpose, we consider a general control

system described by the following equations:

ẋ(t) = f(x(t), u(t), w(t)), (4)

y(t) = h(x(t)), (5)

where x(t) is the state, u(t) the input, y(t) the measurement output, and w(t) the system uncertainty.

It is assumed that the control objective can be achieved by a continuous-time controller:

u(t) = k(y(t),Y(t)), (6)

where Y(t) is the measurement from the external, e.g., network. A typical control objective is to drive

the system trajectory to asymptotically approach a steady-state target xd(t), i.e.,

lim
t→∞

‖x(t)− xd(t)‖ = 0. (7)

It includes a traditional stabilization/regulation problem if xd(t) is pre-specified, as well as a collabo-

rative control problem (e.g., consensus, synchronization, formation) in a networked scenario if xd(t) is

collaboratively determined by the entities of the network.

An event-triggered controller aims to replace the controller (6) by

u(t) = k(y(tk),Y(tk)), t ∈ [tk, tk+1) (8)

for a time sequence tk, k ∈ S, corresponding to occurrence of specified events while maintaining the

control objective. More specifically, denote the set S = {0, 1, . . . , k∗} for a finite integer k∗ or S = Z+

where Z+ is the set of non-negative integers. The time sequence satisfies t0 = 0 and tk < tk+1. If S is a

finite set, we let tk∗+1 = ∞ for complement of notation.

On one hand, the more frequent the events are, the closer is the event-triggered controller (8) to its

continuous version (6). So, it is more likely that the control objective can be maintained. On the other

hand, over frequent events bring high cost. In particular, Zeno behavior of infinite frequency of events

must be avoided. The main effort in the filed is devoted to answer the question: how often should one

update control? It hence pushes the development of triggering techniques.

Let us define a so-called event signal that is used to trigger an event:

z(t) = ζ(y(t),Y(t)). (9)

An event-triggering mechanism is formulated in determining the tk sequence, that is,

tk+1 = E(tk, z(t : tk, tk+1)), (10)

where z(t : tk, tk+1) is defined as the time function z(t), t ∈ [tk, tk+1) and E is an operator of its arguments.

Such an event-triggering mechanism requires continuously monitoring the signal z(t), which may further

require continuous communication. The disadvantage of continuous communication is obvious, which in

general contradicts the philosophy of event-triggered control. Then, a special case is called a self-triggering

mechanism where

tk+1 = E(tk, z(tk)) (11)
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and thus the event instant tk+1 is precomputed at tk.

In many situations, it is impractical to continuously monitor the signal z(t) in applying the event-

triggering mechanism (10) or to design a self-triggering mechanism (11). A more typical approach is to

introduce a broadcast action. A conceivable scenario is that two actions are executed at the triggering

instant tk: (i) the controller (8) is implemented; and (ii) the event signal:

zb(t) = z(tk), t ∈ [tk, tk+1) (12)

at the instant is broadcasted. Vice verse, the system also receives the event signal broadcasted by the

other entities in the network, denoted as Zb(t). It is worth mentioning that the triggering instant for

Zb(t) is determined by other entities, not necessarily tk. Therefore, an event-triggering mechanism is

given by

tk+1 = E(tk, y(t : tk, tk+1), z(tk),Z
b(t : tk, tk+1)), (13)

or especially,

tk+1 = E(tk, z(tk),Z
b(t : tk, tk+1)). (14)

This mechanism does not continuously monitor the signal z(t), so it is sometimes called self-triggering

in literature. However, we prefer not to call so as the event instant tk+1 cannot be precomputed at tk,

but depends on receiving the external broadcast Zb(t : tk, tk+1). Also, Eq. (13) requires continuously

monitoring its own output y(t) although not relying on communication.

In the subsequent sections, we will survey the existing development of triggering techniques in the

aforementioned framework. For this purpose, let us first summarize a fundamental criterion in designing

these triggering techniques using a simple example. Let

p = φ(k,Y), κ(p) = k(y,Y), (15)

and

e(t) = p(tk)− p(t), t ∈ [tk, tk+1) (16)

with e(tk) = 0. Then, the controller (8) can be rewritten as

u(t) = κ(p(tk)) = κ(p(t) + e(t)). (17)

With e(t) = 0, the controller reduces to the continuous-time one. A typical control design approach is

to make the closed-loop system with (8) have the desired control objective, but with perturbation by

e(t) in a certain sense. Then, using the small gain philosophy, the closed-loop system can eventually

maintain the desired objective if the triggering mechanism guarantees the criterion ‖e(t)‖ 6 β(‖p(t)‖) for

a specified gain function β. The criterion is assured by the event-triggering (10) of the particular form,

with z(t) = p(t),

tk+1 = inf
t>tk

{‖e(t)‖ = β(‖p(t)‖)}. (18)

This small gain philosophy is used in triggering mechanism design and different variations will be discussed

in the subsequent subsections, with emphasis on exclusion of Zeno behavior.

2.2 A fundamental tradeoff

Even though the development of triggering techniques for consensus of linear multi-agent systems (MASs)

is pretty mature, a complete solution is still inadequate for some fundamental technical bottlenecks. First

of all, an MAS can be modeled as

ξ̇i(t) = Aξi(t) +Bµi(t), i = 1, . . . , N. (19)
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Let us consider the control of agent i in the aforementioned framework with y = x = ξi, u = µi, and

Y = col(ξs1 , ξs2 , . . . , ξsℓ), where 1 6 s1 < s2 < · · · < sℓ 6 N and {s1, s2, . . . , sN} = Ni. Here, Ni

represents the set of neighbors of agent i.

Let us take the early study [11] as an example to explain how a triggering mechanism is designed for

a linear MAS. Define the composite measurement of agent i as

p(t) = φ(y(t),Y(t)) =
∑

j∈Ni

aij(ξi(t)− ξj(t)), (20)

for some weights aij . Then, one has

e(t) =
∑

j∈Ni

aij {[ξi(tk)− ξi(t)]− [ξj(tk)− ξj(t)]} , t ∈ [tk, tk+1). (21)

A component of e(t) is also defined as follows:

ǫ(t) = ξi(tk)− ξi(t), t ∈ [tk, tk+1). (22)

A variation of (18) is directly constructed as follows:

tk+1 = inf
t>tk

{‖ǫ(t)‖ = σ‖p(t)‖}, (23)

that is of the event-triggering form (10) with the event signal z(t) = col(y(t), p(t)). The constant σ rep-

resents a linear gain function. This mechanism requires continuous communication between neighboring

agents for continuously monitoring/measuring its neighbors’ states to detect the event using p(t). This

issue can be resolved by a self-triggered mechanism in this study. However, another issue is the possible

occurrence of Zeno behavior. It is noted that ǫ(tk) = 0 and it takes tk+1 − tk for ǫ(t) to change from 0

to σ‖p(t)‖. So the inter-event interval can be roughly characterized by the lower bound of

‖p(t)‖

d‖ǫ(t)‖/dt
(24)

with the denominator being the change rate of ‖ǫ(t)‖. Obviously, this inter-event interval may be zero

when the agent i has already reached the control objective with p(t) = 0 while d‖ǫ(t)‖/dt = d‖ξi(t)‖/dt 6=

0, resulting Zeno behavior. Similar studies can be found in [12,13]. Alternatively, when ‖ǫ(tk)/p(tk)‖ = 0,

it takes tk+1 − tk for ‖ǫ(tk)/p(tk)‖ to change from 0 to σ. So the inter-event interval can also be roughly

characterized by the reciprocal of the upper bound of

d‖ǫ(t)/p(t)‖

dt
. (25)

In the previous example, Zeno behavior occurs when p(t) = 0. So, to avoid Zeno behavior, one simple

idea is to trigger an event whenever ‖e(t)‖ in the criterion (18) deviates by a specified constant threshold

δ > 0, that is,

tk+1 = inf
t>tk

{‖e(t)‖ = δ}. (26)

The idea of using a constant threshold to trigger an event can be found in the early study, e.g., [14]. Zeno

behavior can be avoided by noting that a positive lower boundary of tk+1 − tk, characterized by

δ

d‖e(t)‖/dt
, (27)

exists if d‖e(t)‖/dt is bounded by proper control design. However, the controller (17) with the triggering

mechanism (26) instead of (18) cannot achieve the asymptotic control objective (7) but the following

practical version:

lim sup
t→∞

‖x(t)− xd(t)‖ 6 ∆, (28)
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for a constant ∆ > 0.

In other words, the idea of using a constant threshold is able to exclude Zeno behavior, but makes the

system state converge to a ball centered at the target, not asymptotically to the target. This observation

can be summarized as a fundamental tradeoff in the development of event-triggered control. There is

tradeoff between the lower bound of the inter-event intervals (reciprocal of event frequency) and the

steady-state control error. A smaller control error ∆ may require a smaller threshold δ that results in

smaller inter-event intervals owing to (27).

While a pure constant threshold is used in [14] in determining an event, a similar idea of inclusion of

a constant threshold in a state dependent event function can be found in [15]. The adopted criterion is

the mix of (18) and (26), that is,

tk+1 = inf
t>tk

{‖e(t)‖ = β(‖p(t)‖) + δ}. (29)

It is not surprising to see that the control objective is obtained in the practical sense of (28), while Zeno

behavior is excluded.

The tradeoff has also been demonstrated in other studies on event-triggered control of MASs, using

different strategies of adding a threshold in an event function for excluding Zeno behavior. For instance,

consensus of first-order integrators is studied in [16] while that of general linear MASs in [17]. In partic-

ular, for the MAS (19) studied in [17], p(t) is defined by (20) and e(t) by (21). Let ε(t) be the composite

vector of the element of e(t) as follows:

ε(t) = col(ǫ1(t), ǫ2(t)),

ε1(t) = y(tk)− y(t), (30)

ε2(t) = Y(tk)− Y(t), t ∈ [tk, tk+1).

Then, an event-triggering mechanism of the form (10) with z(t) = col(y(t),Y(t)) can be directly con-

structed as follows:

tk+1 = inf
t>tk

{‖ε(t)‖ = σ‖p(t)‖+ δ}, (31)

for a constant δ > 0. As a result, practical consensus is achieved in the sense of (28) for xd(t) being the

agreed trajectory for all the agents, while Zeno behavior is avoided.

The implementation of the triggering mechanism (31) requires continuous communication for moni-

toring Y(t). A more conservative triggering function is also constructed in the same paper, relying on

broadcast of neighbors’ inputs. Specifically, the event-triggering mechanism takes the form (13) with

z(t) = col(y(t), p(t)) and Zb = col(µb
s1
, µb

s2
, . . . , µb

sℓ
), that is,

tk+1 = inf
t>tk

{‖ε1(t)‖+ ρ(t,Zb) = σ‖p(tk)‖+ δ}, (32)

where ρ is an explicitly precomputed function and µb
j (t) is the input of the neighbor j, broadcasted at its

own triggering instant, not necessarily tk. In this mechanism, the agent needs to continuously monitor its

own state y(t), not relying on communication though, and receive the broadcast Zb from the neighbors.

With either (31) or (32), Zeno behavior is excluded but the tradeoff implies the existence of consensus

error ∆ in (28). The size of consensus error is adjustable by choosing suitable design parameters according

to some explicit formula developed in a recent study [18].

2.3 Is there a free lunch?

Both exclusion of Zeno behavior and asymptotic control accuracy are desirable in an event-triggered

control scenario, albeit restricted by the aforementioned tradeoff. Researchers have put great efforts to

seek a method to achieve both without paying additional cost. Such a solution that solves the tradeoff

without any extra cost is like a free lunch that has yet to be cooked in the existing literature, to the best

of our knowledge.
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Some results are claimed in literature, but there may exist flaws in the technical development. For

instance, a technical flaw in proving exclusion of Zeno behavior in [19] is pointed out in [20]. We also

believe that an incorrect statement may exist in the proof of [21], where a clear-cut result on consensus

of a general linear MAS is developed. In particular, a triggering mechanism like (18) is used in the study,

with the notation introduced in this study. Then, it is clear that the inter-event interval can be roughly

characterized by

‖p(t)‖

d‖e(t)‖/dt
. (33)

It is noted that d‖e(t)‖/dt depends on ξ̇i(t) and ξ̇j(t), or alternatively, on p(t) and µj(t). So, Eq. (33)

can be rewritten as

‖p(t)‖

‖p(t)‖+
∑

j∈Ni
‖µj(t)‖

, (34)

whose lower bound is unlikely to determine as µj(t), the input to its neighbors, is independent of p(t).

It seems that the proof given in [21] confuses limk→∞ p(tk) = 0 and p(tk) = 0 and makes the wrong

assumption that

p(t) = 0, ṗ(t) = 0, (35)

which relates the upper bound of
∑

j∈Ni
‖µj(t)‖ to p(tk); e.g., Eq. (40) of [21]. As a result, the lower

bound of (34) is explicitly calculated.

The development in [22] follows the similar paradigm where an error may also exist in the proof. A

triggering mechanism similar to (23) is used in the study and the inter-event interval can be roughly

characterized by (25). Again, it is unlikely to determine the upper bound of (25), that is the change rate

of ‖ei(t)/zi(t)‖ using the notation given in [22], because żi(t) depends on the states and inputs to the

neighbors. However, the change rate of ‖e(t)/z(t)‖ of the whole network is used instead in the proof. A

gap exists between the change rate of ‖ei(t)/zi(t)‖ and that of ‖e(t)/z(t)‖.

2.4 Costs of different approaches

Next, let us revisit various approaches in achieving the two targets of exclusion of Zeno behavior and

asymptotic control performance, at different additional costs.

(1) The cost of the first approach is using a synchronous clock mechanism. For example, in [23], the

control input for an agent is updated both at its own event time as well as that of its neighbors, which

results in a synchronous triggering clock for all the agents. In [24], during a certain time interval, an

agent receives new information from the broadcast of a neighbor and then immediately broadcasts its own

state, assuming no time-delay in information broadcasting. It also results in a synchronous broadcasting

clock for a set of connected agents. Specifically, the following triggering mechanism:

tk+1 = inf
t>tk

{‖ǫ(t)‖ = σ‖pb(t)‖} (36)

is used in [24] where

pb(t) =
∑

j∈Ni

aij(ξ
b
i (t)− ξbj (t)). (37)

It is of the form (13) with z(t) = y(t) and Zb = col(ξbs1 , ξ
b
s2
, . . . , ξbsℓ) where ξ

b
j is the state of the neighbor

j, broadcasted at its own triggering instant, not necessarily tk. Three cases are discussed in the setting.

(i) If an agent does not receive any broadcast after tk, it means that ξbj (t) = ξj(tk) is a constant. It

together with the fact that ξbi (t) = ξi(tk) is a constant, implies that ‖pb(t)‖ and hence d‖ǫ(t)‖/dt are

constants. Then, the inter-event interval can be lower bounded by a finite value:

‖pb(t)‖

d‖ǫ(t)‖/dt
. (38)
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(ii) If an agent does not receive any broadcast until tk + δ for a fixed constant δ, then the inter-event

interval is lower bounded by either (38) or δ, excluding Zeno behavior. (iii) If an agent receives a

broadcast within (tk, tk + δ], it immediately broadcasts its own state. This synchronous broadcasting

operation guarantees that no agent will broadcast its state by infinite times in a finite interval, excluding

Zeno behavior.

(2) The idea of inclusion of a constant threshold in an event function has been discussed in [14, 15].

From (26) and (29), the non-zero constant threshold sets the lower bound of inter-event intervals, thus

excluding Zeno behavior, but results in a certain steady-state control error. An extension of this idea is

to replace the constant threshold by a time-dependent function illustrated as follows:

tk+1 = inf
t>tk

{‖e(t)‖ = g(t)}, (39)

where g(t) is a positive time-dependent function and it decreases to zero with time. On one hand,

g(t) > 0 for all t sets the lower bound of inter-event intervals; on the other hand, limt→∞ g(t) = 0, drives

the steady-state control error to zero. This approach is used in [25] for the state independent triggering

case where g(t) = c exp(−αt) with c, α > 0, under the condition that the system states should converge

faster than the time-dependent function decreases. Thus, a positive lower bound of the inter-event interval

is guaranteed depending on the agent’s upper bounded control input which relies on time and the initial

states. Another variation can be found in [26] where g(t) = αβl, t ∈ [lh, (l + 1)h), for a specified time

period h > 0 and two parameters α > 0 and 0 < β < 1.

One cost of this approach is that the time-dependent function makes the closed-loop system non-

autonomous and the lower bound of the inter-event intervals relies on time or the initial states. The

application of this approach can also be found in [27] where a time-dependent function is generated by

an auxiliary dynamical system and in [28] where a general framework is provided with great flexibility

in choosing a time dependent function. It is also noted that a tradeoff exists between the inter-event

interval and the convergence rate of consensus process.

(3) The third approach is to combine event-triggered control and sampled-data control. For example,

in [29–31], the sampling period for all agents is specified and the sampled data are used for event detection.

In this way, the continuous event detection in numerous previous studies ([11, 12, 25]) is avoided.

Suppose the sampling period is h > 0. The triggering mechanism takes the form:

tk+1 = inf
t=tk+lh,l>0

{‖ǫ(t)‖ = σ‖p(t)‖} . (40)

Whether sampled-data of an agent should be used for actuation and broadcasted at the sampling instant

depends on whenever an event is detected, which makes the protocol different from sampled-data control.

In general, the information broadcasting times will be fewer than those of traditional sampled-data

control. In this setting, it is easy to prove that the inter-event interval is at least one sampling period h,

excluding Zeno behavior. The cost is again the existence of a synchronous clock where the utilization of

a common sampling period for all agents might be restricted, especially in distributed networks.

(4) The fourth approach also takes the advantage of sampled-data control in a natural setting that

the lower bound of inter-event intervals is at least one sampling period [31]. But this approach does

not require a synchronous clock. The idea is to trigger an event when a normal triggering condition

is satisfied (which by itself may result in Zeno behavior) and the inter-event interval is larger than a

specified sampling period (called a fixed timer). For recent advances on this approach, the readers can

refer to the survey papers [32, 33].

This approach is first used in [31, 34, 35] for event-triggered stabilization problems. It is also used for

sampled-data consensus of multi-agent systems in [30], and consensus of first-order integrators in [36]

for a network of an undirected and connected graph. The result is further generalized to general linear

MASs in [37], also for an undirected and connected network; and in [38] for a leader-following network

containing an undirected subgraph of the follower network. Both control targets are guaranteed in these

scenarios. It is noted that, in [38], an agent updates the control protocol at its own triggering instants

and its neighbors’ triggering instants as well. The approach is also studied for general linear MASs with
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a directed network in [39] where a clear-cut condition for triggering event is proposed in terms of an

explicit mathematical expression. The specific triggering mechanism developed in [39] is revisited below

to illustrate the idea of this approach, that is,

tk+1 = max{t̄k+1, tk + τ}, (41)

where τ > 0 is the fixed timer and

t̄k+1 = E(tk, z(tk),Z
b(t : tk, tk+1)) (42)

is of the form (14) with z = p and Zb = col(pbs1 , p
b
s2
, . . . , pbsℓ) where pbj is the specified state pj of the

neighbor j, broadcasted at its own triggering instant, not necessarily tk.

This approach combines time-triggering and event-triggering strategies. The minimum inter-event

interval is lower bounded by the positive fixed timer τ , excluding Zeno behavior. The cost is that the

global information about the network, such as the network size and the dimension of the agent state, is

required in determining the fixed timer. In our opinion, this cost is minimal in the existing approaches.

3 Triggering techniques for estimation in linear networked systems

Triggering techniques have also paid much attention to state estimation during the past decade. State

estimation aims to estimate the inaccessible state of a dynamical system. Depending on the assumed

properties of disturbance and noise, the existing state estimation methods can be roughly categorized into

Kalman state estimation, H∞ state estimation and set-membership state estimation, as surveyed in [9] in

a distributed state estimation context. Introducing triggering techniques to state estimation is promising

for reducing superfluous resource consumption such as sensor power and network bandwidth, whereas it

is essentially challenging because of an inaccessible full state signal of the system and the presence of

disturbance and noise. Different triggering mechanisms have been developed to answer a major question:

how often should one update estimation? In the following, we present a brief survey on event-based state

estimation for linear networked systems.

3.1 Event-triggered Kalman state estimation

When system disturbance and noise are known to be Gaussian, Kalman state estimation (or called

Kalman filtering) represents an effective and efficient method for estimating system state. Boosted by

advanced communication technologies, Kalman filtering for networked systems has become a practical and

interesting topic. However, exchanging measurements from sensor to estimator consumes a lot of energy.

An efficient way to reduce the energy consuming is to minimize the number of data transmission and

computational complexity. In doing so, an event sampling strategy is proposed in [40], where it is pointed

out that if event sampling is not accounted for in the design of an estimator, it can cause undesirable

behaviors, e.g., a diverging error-covariance matrix. Let y(t) ∈ Rm be the system measurement vector.

Define a time-measurement-space H ∈ Rm+1 as

H :=

{(

y(t)

t

)

∣

∣

∣

∣

y(t) ∈ R
m, t ∈ R

}

. (43)

Suppose that the sequence of event instants is given as {t0, t1, t2, . . . , tk, . . . , }. Let Hk denote a subset

of H with t ∈ [tk−1, tk). Then the next event instant tk for given tk−1 can be calculated by

tk := inf

{

t ∈ R+

∣

∣

∣
t > tk−1,

(

y(t)

t

)

6∈ Hk

}

(44)

s.t.

(

y(tk−1)

tk−1

)

∈ int(Hk),
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where int(Hk) means the interior ofHk. The scheme (44) presents a general framework for event sampling

strategies because it is not restricted to a specific event criterion. Thus, it is suitable for any type of

event sampling strategies. However, it just makes sense from the theoretical perspective. In fact, how

to know
(

y(t)
t

)

6∈ Hk is quite difficult in practice. That is, when to sample system measurement signals

according to (44) is challenging, which is not analyzed in [40]. Instead, the authors in [40] applied (44)

to discrete-time networked systems, where system measurements are in the form of discrete-time signals,

with Zeno behavior being excluded naturally. For such systems, an event-based state estimator, namely

Gaussian sum filter, with a hybrid update scheme is proposed to avoid a diverging error-covariance, where

at an event instant, the estimated state is updated using the measurement, while at a synchronous time

instant, the update is based on Hk|t [40]. This idea has been further developed in the recent years [41,42].

It should be mentioned that even though a number of results on event-based Kalman state estimation

are derived for discrete-time networked systems, to the best of the authors’ knowledge, no results on this

issue have been reported for networked systems with continuous-time plants.

3.2 Event-triggered H∞ state estimation

H∞ state estimation allows disturbance and noise to be unknown but energy bounded. Unlike Kalman

state estimation, another significant feature is that the system model is not necessarily exactly known for

H∞ state estimation. Thus, H∞ state estimation has gained applications in a wider range of fields. Its

objective is to design a suitable H∞ filter to achieve a prescribed H∞ performance level γ (> 0). On one

hand, the resultant filtering error system is asymptotically stable, and on the other hand, the H∞ norm

of the filtering error system should be minimized to ensure an L2-induced gain from the noise signals to

the estimation error less than γ.

Intuitively, it is not difficult to extend those triggering techniques presented in Section 2 to deal

with H∞ state estimation of networked systems. First, one can design a desired H∞ filter without

introducing event-triggering techniques. Then, an emulation method can be used to devise an event-

sampling scheme such that (1) the filtering error system is asymptotically stable, and (2) the L2-induced

gain is less than γ. Nevertheless, such an event-sampling scheme is difficult to devise because Zeno

behavior is difficult to exclude. In fact, the minimum inter-event interval for event-triggered control

systems is deeply analyzed in [15], where it is revealed that the minimum inter-event interval is possibly

zero even though small external disturbances are imposed on the system. Consequently, an emphasis

of event-based H∞ state estimation has been placed on the use of sampled-data-based event-triggered

transmission schemes [31, 43–45] rather than event-sampling schemes.

A sampled-data-based event-triggered transmission scheme can be devised through two steps. First,

let the system measurements be sampled with a period h > 0. Then, whether the sampled measurement

will be released to a communication network is determined by an event-triggering condition. Hence, one

does not need to concern about the minimum inter-event interval because all events are triggered at the

sampling instants. The key issue on this scheme is how to define an event-triggering condition. Inspired

by [31], a relative-error-based event-triggering scheme is presented for H∞ state estimation [43, 44, 46].

Let tkh, ε ∈ [0, 1) and W > 0 be the current event-triggering instant, a threshold and a weighting matrix,

respectively. An event-triggering condition reads

‖W
1

2 [y(tkh+ jh)− y(tkh)]‖2 < ε‖W
1

2 y(tkh)‖2, (45)

where j = 1, 2, . . .. Then the next event-triggering time tk+1h can be calculated by

{

tk+1h = tkh+min{jh| (45) is violated},

t0 = 0.
(46)

This event-triggering scheme can be interpreted as: As long as the relative error between W
1

2 y(tkh) and

the current sampled data W
1

2 y(tkh + jh) exceeds the threshold ε, an event is generated, which makes

sense. One of the significant characteristics of this scheme is that the resultant filtering error system can
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be modeled as a time-delay system with a quadratic constraint. As a result, an event-based H∞ filter can

be designed such that the expected objective aforementioned can be fulfilled. The key idea is to define

two piecewise continuous functions d(t) and δ(t) on the interval Ik,j , [(tk + (j − 1))h, (tk + j)h) with

j > 1:

{

d(t) = t−(tk+(j−1))h,

δ(t) = y(tkh)−y((tk+(j−1))h),
t ∈ Ik,j , (47)

which leads to y(tkh) = δ(t) + y(t − d(t)). With these two functions, for linear physical plants, the

filtering error system is readily modeled as a linear system with the time delay d(t) ∈ [0, h]. Moreover,

the event-triggering condition (45) can be described by

‖W
1

2 δ(t)‖2 < ε‖W
1

2 [δ(t)+y(t−d(t))]‖2, t ∈ Ik,j .

In this way, using the S-procedure, the above quadratic constraint can be exploited in the stability

analysis and filter design of time-delay systems. Notice that the time delay d(t) is upper-bounded by a

sampling period h. Thus, a small sampling period can easily ensure the feasibility of a stability criterion

for the filtering error system. Boosted by the advantages, the above sampled-data-based event-triggered

transmission scheme has been employed to further deal with dissipativity estimation [47, 48].

Recent development on the event-triggering condition (45) is to introduce

∥

∥

∥
W

1

2

1 [y(si)− y(t̃k)]
∥

∥

∥

2
< ε

∥

∥

∥
W

1

2

2 y(t̃k)
∥

∥

∥

2
(48)

as a modified event-triggering condition, where t̃k is the latest event-triggering instant, si > t̃k with

{s1, s2, . . . , sj , . . .} being the sequence of sampling instants, and W1 and W2 are weighting matrices.

Clearly, the difference between (45) and (48) lies in two aspects: On one hand, signal sampling may be

not periodic, and on the other hand, the weight matrix on the two sides of (45) may be different. Now,

we make some comments on the event-triggering condition (48). First, it seems that the condition (48)

is more general than (45). However, it is possible that the event condition (48) acts as a time-triggering

scheme because there may exist W1 > 0 and W2 > 0 such that Eq. (48) is violated at all sampling

instants. Moreover, insightful analysis reveals that the condition (48) does not make practical sense. In

fact, if W1 6= W2,

‖W
1

2

1 [y(si)− y(t̃k)]‖2

‖W
1

2

2 y(t̃k)‖2

is neither a relative error nor an absolute error (in the sense of vector norms). Second, it is reasonable

to change periodic sampling to aperiodic sampling. Nevertheless, how to perform aperiodic sampling for

event-based state estimation raises a challenging problem. What is more, how to derive a time-delay

system model for the filtering error system needs to be reconsidered.

3.3 Event-triggered set-membership state estimation

The celebrated Kalman state estimation method necessitates a priori statistical properties of the dis-

turbance and noise as well as an accurate system model without uncertainties. If these requirements

are not met, Kalman filters may lead to poor performance [49]. The H∞ state estimation method, on

the other hand, provides a bound for the worst-case estimation error of the system. Additionally, both

the methods can only obtain a pointwise estimation, namely a single vector, at each instant of time.

In other words, the true system state cannot be guaranteed to within some reliable confidence region,

namely a set in state space, at each instant of time because the estimation has no hard bounds [50].

In many real-world applications such as target tracking and system guidance and navigation, however,

the system state requires a confidence level of 100% to be estimated. This stimulates the development

of set-membership state estimation (also known as ellipsoidal or set-valued estimation). The principle

behind a set-membership state estimation method is that given an assumption of unknown-but-bounded
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disturbance and noise signals, a bounding ellipsoidal set in state space is computed which guarantees the

enclosing of the true state of the system at each instant of time.

In the context of event-triggered state estimation, it is also true that there is a tradeoff between enlarg-

ing the inter-event intervals and achieving accurate estimation performance. As discussed in Section 2,

to increase inter-event intervals, some existing triggering mechanisms can be improved by introducing a

small positive constant threshold, a time-dependent function and some auxiliary dynamic variables (or

called offset variables) into the event triggering functions. However, the steady-state estimation errors of

some existing state estimators in this case need to be evaluated in a practical sense, especially for H∞

state estimators. In contrast, the boundedness of the estimation errors can be readily verified within

an event-triggered set-membership state estimation framework as the calculated state estimation is a

bounding set in state-space rather than a single vector, as recently shown in [51]. To elaborate such an

event-triggered set-membership state estimation strategy, we consider a discrete-time linear time-varying

networked system described by the following state-space equations:

x(t+ 1) = A(t)x(t) +B(t)w(t), (49)

y(t) = C(t)x(t) +D(t)v(t), (50)

where x(t) is the system state at time step t, y(t) is the measurement output to be transmitted over

a communication network, w(t) is the system disturbance, v(t) is the measurement noise, x(0) = x0 is

the initial state, and A(t), B(t), C(t) and D(t) are real-valued time-varying matrices with appropriate

dimensions. Within a set-membership state estimation framework, without requiring accurate statistical

knowledge, the disturbance and noise signals are confined to some specified ellipsoids of the following

form:

Wt , {w(t) : wT(t)Q−1(t)w(t) 6 1}, (51)

Vt , {v(t) : vT(t)R−1(t)v(t) 6 1}, (52)

where Q(t) = QT(t) > 0 and R(t) = RT(t) > 0 are real-valued time-varying matrices with appropriate

dimensions.

The state estimator has the following form:

x̂(t+ 1) = G(t)x̂(t) + L(t)y(tk), (53)

where x̂(t) is the state estimate of the true system state at time k, G(t) and L(t) are the estimator

gain matrix sequences to be designed, x̂(0) = x̂0 is the initial state estimate, and y(tk) is the received

system measurement output at time step tk calculated recursively by the following dynamic triggering

mechanism:

tk+1 = inf
t>tk

{θl(t) > δ(t), t ∈ N}, (54)

where l(t) = (y(t)− y(tk))
TW (t)(y(t)− y(tk))− εyT(tk)W (t)y(tk) and δ(t) is an auxiliary offset variable

satisfying

δ(t+ 1) = ρδ(t)− l(t), δ(0) = δ0 > 0 (55)

with 0 < ρ < 1 and θ > 1/ρ.

To ensure that the true system state can be included in a confidence region, the following performance

requirement is pursued at each time step:

Xt+1 , {x(t+1) : eT(t+1)P−1(t+1)e(t+1) 6 1}, (56)

where e(t + 1) = x(t + 1) − x̂(t + 1) is the estimation error, P (t + 1) = PT(t + 1) > 0 is a real-valued

time-varying matrix to be determined, and eT(0)P−1(0)e(0) 6 1 with P (0) = PT(0) > 0 is a known

real-valued matrix. Therefore, it is clear that the system’s one-step ahead state x(t+1) will always reside
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in the confidence state estimation ellipsoid Xt+1 regardless of unknown-but-bounded disturbance Wt and

noise Vt.

Owing to the non-negativity of the auxiliary offset variable δ(t), it is analytically and numerically proved

in [51] that the dynamic triggering mechanism (54) can result in larger average inter-event interval and

thus less totally release data packets in comparison with some existing static triggering mechanisms of

the following form:

tk+1 = inf
t>tk

{l(t) > 0, t ∈ N}. (57)

However, it is noteworthy that the tradeoff between the inter-event intervals and tightness of the ellipsoidal

estimation set is not examined. Indeed, how to find tight upper and lower bounds for the ellipsoidal

estimation sets remains a challenging issue, which is of particular significance within an event-triggered

state estimation context.

4 Some extensions

In this section, some extensions on switching topologies, quantized control, input-based triggering mech-

anism, denial-of-service (DoS) attacks, and nonlinear systems will be discussed.

4.1 Switching topologies

Most results on MASs usually consider the fixed topology case with the event-triggered control. However,

in practical communication environment, the data exchange among agents may not be always node-to-

node communication owing to failure or repair of agent itself so that the fixed topology becomes time-

varying topologies. An event-triggered controller based on the conventional results on consensus of MASs

with switching topologies requires the absolute states that are difficult to obtain in practice [52]. So,

there arises an issue that continuous communication is needed to check the triggering function. To deal

with this issue, in [53], a mode-based control approach is employed to estimate the state values instead

of measuring the absolute states. In particular, a rule between the average dwell time-based switching

topologies and the triggering instants is designed to derive the consensus criterion.

4.2 Quantized control

Some constraints usually exist in practical communication networks such as the limited bandwidth,

packet loss, and time-delay. It is known that a quantized control approach can well cope with these

constraints [54]. An event-triggered quantized controller is developed to investigate the practical leader-

following consensus of nonlinear MASs in [55], where a uniform quantizer is adopted to quantize all

states of agents. However, quantization of all states of agents may lead to heavy computational cost for

each agent. To save the computation, another quantizer is adopted in [56] that quantizes the relative

measurements and the sum of the relative measurements. In this paper, adjustable conditions of achieving

consensus are derived where all agents converge to a bounded ball and the radius of the ball can be

adjustable by choosing different parameters.

4.3 Input-based triggering mechanism

In most event-triggered control approaches, the triggering condition is based on the measurement error.

There is another approach where the triggering condition is based on input [57]. The input-based trigger-

ing condition associated with a state-dependent threshold is proposed to derive the consensus criterion

by estimating the state values of the relative links between agents. Using this approach, every link has

its own triggering instants and a lower bound while each agent has a lower bound in the conventional

results [58]. In some scenarios, this approach can allocate the limited resource more efficiently and has

faster convergence speed. This approach has also been used in the containment control problem that

aims to find a controller such that the subset of agents stays in the region consisting the leaders [59].
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4.4 Cyber attacks

Data transmission via a shared communication network in networked systems is vulnerable to cyber

attacks such as deception attacks [60–62] and denial-of-service (DoS) attacks [63–65]. In [60], the secure

consensus problem is considered by using event-triggered communication protocols. In [62], for a positive

discrete-time linear system over a sensor network in the presence of deception attacks, the secure ℓ1-gain

performance is analyzed and the distributed finite-time filter is designed. In [65], observer-based event-

triggered control for a continuous networked linear system subject to DoS attacks is addressed. A novel

event-based switched system model is established by considering the effect of the event-triggering scheme

and DoS attacks simultaneously. In [66], an input triggering approach is developed that is able to achieve

secure consensus of MASs under DoS attacks within the switching system framework. In particular, the

attack frequency and the attack duration introduced in [67] are used to restrict the adversaries and to

derive the condition of achieving consensus.

4.5 Nonlinear systems

The research on event-triggered control of nonlinear systems is mainly on the stabilization problem. A

typical approach is to use the small gain theorem based on the prerequisite that the nonlinear system

with a continuous-time (not event-triggered) controller can be input-to-state stable from the measurement

error to state [68]. The approach is also used to deal with partial state feedback and output feedback

scenarios in [69]. When integrated with the internal model technique, the event-triggered stabilization

technique can also be used to handle the output regulation problem in [70] and the cooperative output

regulation problem in [71,72]. In these studies, the steady-state tracking error is regulated to a prescribed

bound and Zeno behavior is excluded. As the ISS property, from the measurement (sensor) error to state,

is technically difficult to achieve (note that global internal stabilizability does not imply global external

stabilizability for nonlinear systems), a new approach is introduced in [73]. It requires a mild condition

that the controlled system has a certain ISS property, but from the input (actuator) disturbance to

state. This new technique is able to handle the asymptotic output regulation problem with the steady-

state tracking error regulated to zero. The technique in [73] is motivated by the sampled-data technique

developed in [74]. The result has also be used to solve the synchronization problem for heterogeneous

nonlinear networked systems in [39].

5 Conclusion and some challenging issues

Networked triggering techniques have been extensively studied over the past years in many control and

estimation problems. The bulky literature is difficult to digest for researchers, especially with the trig-

gering mechanisms mixed with or even hidden behind the complexity of networked system dynamics

and the variety of control and estimation strategies. This study has reviewed some existing triggering

techniques in a unified formulation, peeled from system dynamics and control and estimation strategies,

thus provided readers with better understanding of triggering mechanisms. In what follows, we point out

some challenging issues that are worthy of future research to conclude the study.

• New triggering techniques for complicated system dynamics and control tasks. Most event-triggered

controllers and observers are designed for linear networked systems in simple settings. More advanced

triggering techniques are demanded when complicated system dynamics are taken into consideration.

Also, the consensus problem is one of the main testbeds for networked triggering techniques. Research

efforts are potentially required on new triggering techniques for various practical control tasks such as

synchronization, formation control, and distributed optimization.

• New triggering techniques in combination with intelligent communication/scheduling protocols.

Most existing triggering mechanisms require that data are transmitted in a single packet manner and

there is no collision of data transmissions from multiple senders. This is unreasonable in practical dis-

tributed and networked applications. The analysis and synthesis of distributed and networked control
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systems in the context of event-triggered control and estimation will be more challenging when there are

disorders and competition of multiple data packets. How to design intelligent triggering techniques that

can trigger and schedule multiple data packets effectively and efficiently deserves deep investigation.

• New triggering techniques in the context of system and network co-design. The majority of existing

triggering mechanisms can be deemed as an afterthought from a resource conservation perspective. This

is because the design of such a mechanism involves only the state/output of the control system but not

the state/dynamics of the communication network. In this sense, communication and network resources

are first assumed to be sufficient and then saved to some extent by resorting to the triggering mecha-

nisms. Design of networked triggering techniques, however, should be combined with the dynamics of the

communication network based on current network state such as idle or busy status such that a better and

more realistic tradeoff can be achieved among the control system performance and network performance.

• Demand for new triggering techniques in engineering applications. As a typical application of net-

worked cyber-physical systems, a smart grid incorporates power grids, information and communication

systems, and human societies. In some practical control design of smart grids such as frequency and

voltage regulation [75,76], the fast convergence property of the control schemes is necessarily required in

order to ensure reliability and security of smart grid operation. Note that the adoption of event-triggered

mechanisms can significantly reduce data transmission over communication networks while probably de-

grading the convergence speed of the control scheme seriously. Therefore, in the context of smart grids, it

remains a challenging issue on how to devise a triggering technique such that a suitable tradeoff between

the faster convergence rate and the reduced communication resource utilization can be realized perfectly.

• New triggering techniques in fixed-time cooperative control. Fixed-time cooperative control is cur-

rently a hot research topic in networked systems including multi-agent systems [77–79] because it can

provide a guaranteed settling time [80], which does not depend on initial conditions. This settling time

characterizes convergence rate of the corresponding closed-loop system and can serve as one performance

index for controller design. It should be pointed out that in the context of fixed-time cooperative control,

one should carefully design an event-triggered mechanism over the fixed-time interval such that Zeno

phenomenon should be effectively excluded. Thus, how to well address this issue is an interesting topic.
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