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Abstract To address the flocking issues of an unmanned aerial vehicle (UAV) swarm operating at a leader-

follower mode, distributed control protocols comprising both kinetic controller and topology control algorithm

must be implemented. For flocking the UAV swarm, a distributed control-input method is required for both

maintaining a relatively steady state between neighboring vehicles (including velocity matching and distance

maintenance) and avoiding vehicle-to-vehicle collision. Furthermore, the stability of control protocols should

be analyzed using the potential energy function. In particular, a distributed β-angle test (BAT) rule in

the proposed topology-control issue may allow each UAV to determine its neighboring set by exploiting the

locally sensed information, thereby significantly reducing the communication overhead of the entire swarm.

In addition, node-degree bound is derived to demonstrate the feasibility of the proposed algorithm, in which

the optimal value in terms of convergence is analyzed. The flocking of the flying ad-hoc network (FANET)

can be achieved in a self-organizing way without the use of an external control center via the distributed

control protocols. Ultimately, the proposed analysis is verified by numerical results.
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1 Introduction

Owing to their flexible moving capabilities in the air, unmanned aerial vehicles (UAVs) or drones show

a great potential of application in areas such as atmospheric research, emergency rescue, and cargo

freight [1]. Different UAVs have various sizes and power consumption accordingly, depending on the

diverse needs of their application scenarios [2]. Large-sized UAVs, in particular, are typically equipped

with more sensors, high-capacity batteries, and more powerful engines, enabling them to execute complex

tasks. If a failure occurs on a UAV, however, it will be difficult for it to resume its task. A UAV swarm

comprising many lightweight UAVs is more robust than a single UAV scenario. Because these UAV

swarms are redundant in quantity, they can tolerate some UAV failures during the mission.

However, in large-scale UAV swarms, the control strategy has become increasingly complicated, espe-

cially for centralized control schemes, in which the non-linearly increasing control overhead will seriously

restrict the scalability and communication efficiency of the unmanned swarm. Furthermore, the control

efficiency may be restricted by various issues, including the limited communication range of each UAV,

the inter-UAV-interference and the propagation delay between individuals [3]. Therefore, we must resort

to the distributed control mechanisms to improve the UAV swarm’s control efficiency while achieving
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nearly the same goals as in centralized control [4]. The collective behavior of natural species, such as the

group behavior of birds and fish swarms, can be regarded as a kind of spontaneously organized activity,

which can provide useful inspirations to solve the above challenges [5–8]. Compared with the traditional

centralized control-based network architecture, in a self-organizing network (SON) architecture, because

each node can rely on local interactions with its neighbors to perform its communication tasks, the net-

work’s control signaling overhead can be greatly reduced by implementing the self-organizing mechanism.

The swarm can be controlled by selecting one or more members as leaders to accomplish a number of

specified tasks without requiring all members in the swam to maintain connections to the control cen-

ter [9]. Obviously, the self-organizing control mechanism is very suitable for the drone group. By running

the self-organizing control mechanism, it can exert excellent network control efficiency [10].

Notwithstanding, the UAV swarm’s self-organizing mechanism still faces several challenges before its

practical implementation, including the design of proper distributed neighbor selection rules and kinetic-

input-and-topology-control mechanism for maintaining flocking, and the velocity consensus and collision

avoidance among individuals [11]. To address these challenges, academia and industry have conducted

extensive exploration.

• In a flying ad-hoc network (FANET) under the SON control rules, each individual UAV can obtain

the motion state information of its neighbors located inside its communication range. Because each

individual can act as a motion reference for its neighbors, it is essential for a swarm to converge by

maintaining communication links among neighboring individuals in a real-time manner [12]. Furthermore,

because each UAV is resource constrained with a limited communication efficiency, it is unnecessary for

an individual UAV to establish a communication link with all of its neighboring nodes. In contrast, it

is efficient for each UAV to establish a communication link with a part of its neighbors that have high

channel qualities [13].

• Typical distributed topology control rules mainly comprise two rules, i.e., the link based and zone

based rules. Explicilty, in link based rules such as the full-connectivity algorithm [14], the connection

between any pair of neighbors can be created. On the other hand, in zone-based rules such as relative

neighborhood graph (RNG), Yao graph (YG) and Gabriel graph (GG), a specific area must be identified

in advance to act as the exclusion zone for potential interfering nodes [15]. However, full-connectivity

algorithm may lead to redundancy connections to neighbors, especially in scenarios that the neighbor set

is large. To address this issue, the optimal number of neighbors to form a robust flock with the least

sensing cost is investigated [16], showing that it would be wonderful to ensure the algorithm’s robustness

and efficiency by considering only six to seven neighbors. Evidently, choosing N -nearest neighbors with

a proper N value is likely to be preferred [17].

• In practice, the N -nearest rule exhibits drawbacks such as having asymmetric property and resulting

in multiple subgroups [18]. Except for the above typical rules, Tian et al. [19] investigated the swarm

of agents with a limited angle of view for tracking neighbors in the front-end by simulating the eyes of

natural animals (which are asymmetric). Furthermore, in [20], an acute angle test (AAT) algorithm was

proposed for solving the deployment problem of a large amount of robotic sensors, which is equivalent to

determining the exclusion zone using Gabriel graph. In addition, Ning et al. [21] utilized the AAT rule

to implement the neighbor-interaction rule of robots in two-dimensional spaces. However, the exclusion

zone in [21] was merely determined by the distance between the transmitter and the receiver. Numerical

results showed that in terms of convergence, this rule is not optimal. In addition, the node degree is

not upper-bounded in the AAT-based topology control rule, making the protocol be less feasible in the

application in a FANET [22].

• In kinetic-control problems, the primary goal of the controlling algorithm design is to develop a

proper control function to adjust the motion status of UAVs as dynamic as needed. In general, the

control function comprises two parts: (1) to maintain a relative distance between two neighbors; and

(2) to achieve a velocity consensus among individuals. In particular, the distance-control functionality

acts as a virtual force that provides an attractive or repulsive acceleration to the objects like a spring

force. However, the function’s curve is not necessarily linear. Furthermore, the part of velocity consensus,

which can be utilized to guarantee the final velocity vector of each agent, is identical to its neighbors. In
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addition, the convergence of the UAV swarm should be guaranteed by relying on the Lyapunov theory [23].

Motivated by the above observations, this paper proposes a distributed control protocol comprising

topology control and kinetic control. A localized topology-control rule called β-angle test (BAT) is em-

ployed to solve the proposed topology-control problem. Afterwards, the leader-follower flocking problem

observed in a three-dimensional UAV swarm scenario is considered, in which the distance maintaining,

velocity matching and collision avoidance problems are analyzed. Finally, the convergence of the proposed

control protocol is evaluated, with the upper bound of the node degree analyzed.

The main contributions of this paper are listed as follows:

(1) A modified distributed topology-control rule called β-angle test is proposed, based on which the

neighbor selection can be performed in the UAV swarm.

(2) A distributed kinetic control protocol is designed to achieve flocking of the UAV swarm under a

leader-follower scheme by utilizing the local neighbors’ information.

(3) The existence of boundedness of the node-degree of the proposed BAT rule is proved, guaranteeing

that the resulting network has a constant maximum node degree. Furthermore, the optimal β value for

optimizing the UAV swarm’s convergence is also calculated.

The remainder of this paper is organized as follows. Section 2 first introduces the background knowledge

of graph theory. After which the kinetic model and leader-follower mechanism are described, followed

by defining the convergence metrics. The definition and pseudocode of the proposed BAT algorithm

are provided in Section 3, succeeded by introducing kinetic control function. In Section 4, the proposed

control function’s convergence is analyzed by proving the proposed function’s velocity consensus and

collision avoidance. In Section 5, the boundedness of node degree of the BAT graph is proved, with

the optimal value of parameter β in terms of convergence analyzed. Furthermore, numerous simulation

results are presented in Section 6. Unltimately, the conclusion is drawn in Section 7.

2 Preliminaries

2.1 Graph theory

Considering a typical FANET comprising N UAVs, we assume that all the UAVs are identical in terms

of physical size and communication/control capabilities. The communication radius of each UAV is

assumed to be R. Meanwhile, half-duplex (HD) mode is assumed in the communication link between

each pair of neighboring UAVs. The topology of the FANET can thus be modelled as an undirected

graph (V , E), where V = {1, 2, . . . , N} denotes the set of vertices that correspond to the swarm of UAVs,

while E = {(i, j)|i, j ∈ V , i 6= j} represents the set of edges between vertices that denote the inter-UAV

links. The adjacency matrix A = [aij ] ∈ R
N×N of the undirected graph (V , E) can be defined by [24]

aij =

{

1, (i, j) ∈ E ,
0, otherwise.

(1)

The Laplacian matrix L = [lij ] ∈ R
N×N is

lij =















N
∑

k=1,k 6=i

aik, i = j,

− aij , i 6= j.

(2)

Note that L is symmetric, because E is an undirected graph.
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2.2 UAV kinetic model

In the UAV swarm comprising N agents, the kinematic equation of each UAV in the three-dimensional

space can be described as follows [25]:

{

ṗi = vi,

v̇i = ui,
∀i ∈ V , (3)

where pi ∈ R
3 denotes the position of i-th UAV, while vi and ui denote the velocity and control input of

i-th UAV, respectively. With some abuse of notation, we use bold font to represent vector variables that

are related to the information of a whole swarm, e.g., p and v define the position and velocity vectors

of a swarm, respectively. The state variables of an individual node under Euclidean coordinates are

distinguished by normal font with subscripts, e.g., pi and vi corresponds to the position and velocity of

the i-th node, respectively. The neighbor set of the i-th UAV is denoted by Ni:

Ni = {j ∈ V |‖ij‖ 6 r } , (4)

where ‖ij‖ = ‖pi − pj‖ represents the relative distance between the i-th and j-th UAVs. Initially, the

swarm of the UAVs are randomly deployed, provided that the connectivity of the network must be

guaranteed in the initial deployment. The selected neighbor set of the i-th UAV can thus be determined

by using the topology-control algorithm:

N c
i = {j ∈ Ni |(i, j) ∈ Ec

i }, (5)

where Ec
i denotes the edges that satisfy the proposed topology-control condition in the i-th UAV’s neigh-

borhood set, as proposed in Subsection 3.1. Obviously, N c
i ⊆ Ni can be satisfied.

2.3 Leader-follower mechanism

Assume that the FANET comprises one leader andN−1 followers, each UAV can establish communication

links with its connecting neighbors following the proposed BAT rule. Upon receiving the assignment

information from the control center, the leader UAV will proceed to the destination following the designed

trajectory, while the follower UAVs are unaware of the destination simply because these followers have

no contact ties with the control center. Under the above-mentioned policy, the followers can adjust their

dynamics in accordance with their neighbors to both achieve a velocity consensus and maintain a constant

relative distance between neighbors. Note that the leader UAV is itself located in the neighbor set of its

followers. Moreover, it follows the proposed topology-control rule. The leader’s control input is given by

ul = f(t), f(t) ∈ R
3, (6)

where f(t) denotes a bounded control input from the external orders. In the following, the subscript l

denotes the state variable of the leader UAV. For example, pl and vl represent the corresponding position

and velocity of the leader UAV, respectively. The leader UAV together with its followers select their

neighbors following the same rule, while their control input function could be different.

2.4 Convergence metrics

In this part, the metrics of convergence is defined for evaluating the effectiveness of the proposed control

protocol. Denote the graph generated by the proposed neighbor selection rule in this paper by (V , Ec).

In terms of the ratio of connected neighbors reaching the ideal relative distance l0 between a UAV and

its neighbors, we present the following definition:

γ∗ =

∑

i∈V N c∗
i

∑

i∈V N c
i

, (7)
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where N c
i denotes the number of connected nodes in N c

i , and N c∗
i represents the number of connected

node pair (i, j) ∈ Ec that satisfies |‖ij‖ − l0| 6 ε∗, for some small error ε∗. Obviously, γ∗ is in the range

[0, 1]. A higher value implies that more connections have reached their desired distance. Following this

rule, the convergence of the proposed protocol can be improved.

To evaluate the convergence in terms of both the relative distance control and the velocity consensus,

the standard deviations of the distance and velocity of the leader UAV relative to its followers are

given by

d∗ =

√

√

√

√

1
∑

i∈V N c
i

∑

i∈V

∑

j∈N c
i

p̂Tij p̂ij (8)

and

v∗ =

√

1

N

∑

i∈V

v̂Ti v̂i, (9)

respectively, where p̂ij = ‖ij‖− l0 and v̂i = vi−vl denote the distance and velocity vectors relative to the

desired value, respectively. Obviously, the lower d∗ and v∗ values correspond to a superior convergence.

3 Topology control and kinetic control algorithms design

3.1 BAT topology control algorithm

In this part, a distributed topology-control algorithm called β-angle test is proposed for removing the

unnecessary communication links from the object UAV’s neighborhood set. As the number of neigh-

bors located inside a UAV’s communication range increases, minimizing redundant connections can avoid

unnecessary computation and communication overhead. Thus, the proposed topology-control protocol

should have a bounded node degree, i.e., the maximum number of connections to any node in the swarm

should be less than a given constant. Furthermore, the proposed protocol should be capable of employing

each agent’s local information for achieving the distributed characteristic where the local information is re-

stricted to the information of that agent’s one-hop neighbors. Meanwhile, the topology graph constructed

by the topology-control algorithm should be symmetric to guarantee a bidirectional communication link

between agents. In addition, at the initial stage, each agent selects a fraction of neighbors to be its

connected neighbors under the proposed topology-control condition. After this, the agent takes those

neighbors as references for adjusting its own position and velocity. Moreover, the relative distance be-

tween this agent and its connected neighbors is maintained. Based on the AAT algorithm, an improved

topology-control rule called β-angle test is defined as follows.

Definition 1. For a graphG whose vertices are V , the edge between the i-th and the j-th nodes (i, j ∈ V)
can be established if and only if the inner angle ∠ikj satisfies ∠ikj < β for any node k ∈ V\{i, j}, where
β ∈ (0,π).

The graph determined by both β and ij, denoted by BG(ij, β), is the union set of two disks, in

which ij stands for the chords of both disks. The corresponding angle of circumference is denoted by β.

Furthermore, the radii of both disks can be calculated as RBG = ‖ij‖
2 sin β .

For the i-th UAV, it evaluates both the relative distance and direction of neighbor agents relying

on techniques such as time of signal arrival (TOA) and angle of arrival (AOA) [26, 27]. After that, it

will decide whether the connections with its neighbors can be established using BAT rule. Figure 1,

from inside to outside, shows three cases corresponding to scenarios where β = 2π/3,π/2, and π/3,

respectively. When β = π/2 holds, the BAT rule will be identical to that of AAT, whose curve is a

regular circle. The curves represent trajectories of node k satisfying ∠ikj = β. For a given β, the curve

comprises two arcs, which are symmetric about line ij in terms of both the corresponding chord ij and

the circumferential angle β. If there exists no other node inside the circle, the i-th and j-th nodes will

be BAT connected at β. As shown in Figure 2(a), the i-th and j-th nodes are BAT connected. Observe

that β1, β2 and β3 are less than β. However, from Figure 2(b), the i-th and j-th nodes are not BAT
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Figure 1 The BAT circles at β = π

3
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2
and 2π

3
. Figure 2 (a) shows that the i-th and j-th nodes are BAT

connected. (b) shows that the i-th and j-th nodes are not

BAT connected.

connected because β3 > β. Note that the above description is carried out on a planar plane. Even in

three dimensional spaces, it is still applicable to the BAT rule except that the circle is replaced by sphere.

Furthermore, the pseudocode of BAT algorithm for the following UAVs is given as Algorithm 1.

Algorithm 1 β-angle test

Require: neighbor position matrix pi for each UAV i, critical value of β;

1: for j ∈ Ni do

2: for k ∈ Ni\{j} do

3: calculate ∠ikj;

4: if ∠ikj > β then

5: aij = 0;

6: break

7: end if

8: aij = 1;

9: end for

10: end for

11: return Ai.

Compared with topology-control mechanisms such as N -nearest neighbor rule or AAT rule, the pro-

posed BAT rule exhibits several advantages as the following.

(1) In essence, BAT rule follows the concepts of distribution and symmetricity, making the topology

structure scalable and robust for FANET as the number of swarm agents increases. Furthermore, by

considering the link between two UAV individuals as bidirectional, the BAT rule would be more applicable

because the communication between agents generally comprises the request and acknowledgment frames.

Thus, the rule must be symmetric to avoid extra problems such as a hidden terminal.

(2) As one of the special cases of BAT, the AAT algorithm merely considers the condition that the

angle test threshold is β = π/2. However, the analysis in Section 6 shows that the optimal angle in terms

of both system’s convergence time and convergence error is not necessarily equal to π/2, enabling us to

select a proper β value that leads to the optimal convergence result.

(3) As the number of nodes in communication range increases, algorithms with full connectivity will

cause a huge number of connections for each node, in which the computational complexity will drastically

increase. Besides, for the AAT rule, the maximum node degree can reach as much as n − 1, which is

inapplicable in a real FANET with limited channel resources [13]. However, in the BAT rule, it is proved

that the maximum node degree is partially bounded in Section 5, making the algorithm be more practical

than the original AAT rule.
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3.2 Kinetic control function

To avoid collision, maintain relative distance and match velocities between the i-th UAV and their

connected neighbors. The control input for the object UAVs must comprise two parts, i.e., the distance

control term up
i and velocity matching control term uv

i . The control input is thus given by ui = up
i + uv

i .

Specifically, a simplified control function is given by

ui = kp
∑

j∈N c
i

(

1− l0
‖ij‖

)

pij − kv
∑

j∈N c
i

vij , (10)

where both kp and kv are constants, whereas pij = pj − pi and vij = vj − vi, respectively. Then Eq. (10)

can be rewritten in the vector form:

u = kp

(

(l0L̃− L)⊗ I3

)

p+ kv(L⊗ I3)v, (11)

where u = [uT
1 , . . . , u

T
N ]T, p = [pT1 , . . . , p

T
N ]T, ⊗ is the Kronecker product, I3 denotes a 3 × 3 identity

matrix, and L̃ is the Laplacian matrix corresponding to Ã := [
aij

‖ij‖ ] if (i, j) ∈ Ec. The following goals for

the UAV swarm can be reached by using both the proposed neighbor-set-selection rule and the control

input function.

(1) Without knowing the leader’s information globally, all the following agents in the swarm are capable

of moving at the same speed as the leader, i.e., limt→∞ (vi(t)− vl(t)) = 0, ∀i ∈ V\{l} holds, where vl
denotes the leader’s velocity.

(2) All the agents are required to keep a fixed relative distance to their connected neighbors, i.e.,

limt→∞ ‖ij‖ = l0, ∀i ∈ V and ∀j ∈ N c
i , must be satisfied.

(3) The collision of any two UAVs should be avoided. We first simplify the UAV model to be a sphere

of radius r0, following which the minimum distance dmin must satisfy dmin > 2r0.

4 Stability analysis

In this section, the convergence analysis of flocking in the UAV swarm [28] under the control input in (10)

will be presented. Let us first present the following theorem.

Theorem 1. In a swarm comprising N UAVs, including one leader and N − 1 followers, the kinetic

control of the followers obeys the rule specified in (3). For followers, the control input is acquired from

the information of its neighbors under the requirement in (10). After that, all the agents will converge

to the same speed with the same distance to their BAT connected neighbors.

Proof. At time t = tk, k = 1, 2, . . ., the topology of the UAV swarm is assumed to be time-variant.

Consider the time slot [tk, tk+1) during which the network topology is fixed, the potential function Vij

between the i-th and j-th UAVs is given by

Vij = kp(‖ij‖ − l0)
2
. (12)

The Lyapunov energy function of the UAV swarm can thus be expressed as

E =
∑

i∈V

(

Vi +
1

2
v̂Ti v̂i

)

=
1

2

∑

i∈V





∑

j∈N c
i

Vij + v̂Ti v̂i



, (13)

where Vi =
∑

i∈V Vij represents the potential function at i-th node. Furthermore, supposing that the

initial energy is E(t0), we can readily conclude that E(t0) is bounded. By taking the first-order derivative
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to the energy function with respect to time, we get

Ė =
1

2

∑

i∈V





∑

j∈Nc
i

V̇ij + v̂Ti
˙̂vi





=
∑

i∈V





∑

j∈N c
i

ṗTi ∇pi
Vij + v̂Ti

˙̂vi





=
∑

i∈V

v̂Ti





∑

j∈N c
i

kp (‖ij‖ − l0)

(

− pij
‖ij‖

)

+ kp

(

1− l0
‖ij‖

)

pij + kv
∑

j∈N c
i

vij





=kv
∑

i∈V

∑

j∈N c
i

v̂Ti vij .

(14)

Evidently, we have Ė 6 0 when kv < 0. For each time slot [tk, tk+1), the length of connected edge

lies in (0, R), guaranteeing that both the connectivity of the graph (V , Ec) and collision avoidance can be

met. Note that E(t0) is bounded, i.e., E(t) 6 E(tk), ∀t ∈ [tk, tk+1) holds.

At t = tk, when the topology of UAV swarm changes, the velocities of all agents remain the same,

while the adjacency matrix A changes owing to the topological changes, e.g., some new connections are

established while part of those existing are removed. Obviously, for each edge entry in Ec, we can conclude

that Vij is bounded, implying that the energy variation ∆E is bounded. Consequently, it is shown that

Et+
k
= Et−

k
+∆E is also bounded. Furthermore, we may let the (invariant) level set of E be

Ω =
{

p̂ ∈ R
3N , v̂ ∈ R

3N |E (p̂, v̂) 6 Emax

}

, (15)

where p̂ = [. . . , pTij , . . .]
T and v̂ = [. . . , v̂Ti , . . .]

T. Because the connectivity of the network graph (V , Ec)

holds as t > t0, we can conclude that ‖ij‖ is bounded. Furthermore, E 6 Emax leads to ‖v̂i‖ 6
√
2Emax,

showing that Ω is compact. Using the non-smooth version of LaSalle’s theorem [29], it is shown that

the UAV swarm converges to the largest invariant subset S = {(p̂, v̂)|Ė = 0}. Thus, for all UAVs in the

swarm of interest, limt→∞ v̂i = 0 and limt→∞ dij = l0, ∀j ∈ N c
i can always be guaranteed.

5 Analysis of β in BAT

5.1 Maximum node degree in BAT

Without loss of generality, we denote the graph constructed by node set V following BAT condition in

Definition 1 by BG(V). Furthermore, we denote the graph satisfying the AAT condition by AG(V).
Following the above-mentioned definitions, we present the following lemma.

Lemma 1. For the node set V ∈ R
2, BG(V) ⊃ AG(V) is met, if ∀β > π/2, or BG(V) ≡ AG(V) is met,

if β = π/2, or BG(V) ⊂ AG(V) is satisfied, if ∀β < π/2.

Proof. For an arbitrarily chosen node pair (e.g., the i-th and j-th nodes, let us consider the edge ij,

where i, j ∈ V).
In the case that β > π/2, if there exists a node k satisfying π

2 < ∠ikj < β, then edge ij satisfies the

BAT condition but fails to satisfy the AAT condition. In other words, ij ∈ BG(V) but ij /∈ AG(V).
When ∠ikj > β is met, we have ij /∈ BG(V) and ij /∈ AG(V). Furthermore, when ∠ikj < π/2 is satisfied,

we have ij ∈ BG(V) and ij ∈ AG(V). In summary, for an arbitrarily chosen edge ij, if ij ∈ AG(V) is

satisfied, then ij ∈ BG(V) holds as well. Therefore, we get BG(V) ⊃ AG(V). Similarly, BG(V) ⊂ AG(V)
can be proved by using β < π/2. Obviously, when β = π/2 is satisfied, the AAT condition is shown to

be identical to the BAT condition, and we get BG(V) ≡ AG(V). This completes the proof.

In three-dimensional spaces, the above-mentioned statement holds as well. In the following, the node

degree boundedness of BG(V) is analyzed. First, let us study the case of two-dimensional space, as given

by the following theorem.
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Figure 3 Two adjacent edges ij and ik in BG(V). Figure 4 Solid angle of △jkl at i.

Theorem 2. For a set of nodes V ∈ R
2, the maximum node degree dmax(BG(V)) of BG(V) under the

BAT condition is partially bounded, with the upper bound given by

dmax(BG(V)) =
⌊

2π

π− 2β

⌋

, ∀β ∈
(

0,
π

2

)

. (16)

Proof. For β > π/2, by following Lemma 1, we get BG(V) ⊇ AG(V), showing that AG(V) is un-

bounded [30]. Consequently, BG(V) is unbounded as well.

For β < π/2, we can draw the above-mentioned conclusion by proving that the minimum angle θ

enclosed by the adjacent edges in BG(V) has a lower bound [15]. Without loss of generality, we assume

that ij, ik ∈ BG(V) and ‖ij‖ 6 ‖ik‖. Specially, when j is on the border of BG(ik, β), we get ∠ijk = β

inside BG(ik, β) and ∠imj = β inside BG(ij, β), as shown in Figure 3. Therefore, we have ‖ij‖ = ‖im‖.
Because ‖jk‖ > ‖ij‖ is satisfied, k must be on line jm with ‖jk‖ > ‖jm‖. When k is located at m, the

corresponding ∠kij (i.e., θ) reaches its minimum, i.e., θmin = π − 2β. Therefore, the maximum node

degree can be expressed as dmax(BG(V)) = ⌊ 2π
π−2β ⌋. where ⌊·⌋ denotes the integer part of the value.

Following the analysis above, we can conclude that dmax(BG(V)) is partially bounded in two-dimensional

space under condition β ∈
(

0, π2
)

. Similarly, in three-dimensional space, the following theorem is true.

Theorem 3. For a set of nodes V ∈ R
3, the maximum node degree dmax(BG(V)) of BG(V) under the

BAT condition is partially upper bounded by

dmax(BG(V)) =









2π

π− 3 arcsin

√
3−cot2 β

2







 , ∀β ∈
(

0,
π

2

)

. (17)

Proof. Following Theorem 2, we consider the case where β ∈ (0,π/2). Assume that the angle θ enclosed

by two adjacent edges in BG(V) reaches its minimum, i.e., θ = π − 2β. In the following, let us consider

the solid angle subtended by the tetrahedron ijkl at vertex i, as shown in Figure 4.

Assume that three adjacent edges ij, ik, il ∈ BG(V) have a common vertex i with ih ⊥ △jkl. The

angle enclosed by adjacent edges in BG(V) is then expressed by ∠jik = ∠kil = ∠lij = θmin, in which

one has ‖ij‖ = ‖ik‖ = ‖il‖ and △jkl as a regular triangle. Evidently, we have lm ⊥ jk. Let the edges

be the desired length, as defined in (12), i.e., ‖ij‖ = l0, we can express ‖ih‖ as

‖ih‖ =
√

‖ij‖2 − ‖jh‖2 =
√

l20 −
(

2l0 cosβ√
3

)2

= l0

√

1− 4

3
cos2 β. (18)
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The solid angle of △hmj at vertex i can be given by

ω△hmj =arcsin

(

‖mj‖
√

‖mj‖2 + ‖mh‖2

)

− arcsin

(

‖mj‖
√

‖mj‖2 + ‖mh‖2
‖ih‖

√

‖ih‖2 + ‖mh‖2

)

=arcsin

( ‖mj‖√
3‖mj‖

)

− arcsin





‖mj‖√
3

l0

√

1− 4
3 cos

2 β
√

l20
(

1− 4
3 cos

2 β
)

+ (2l0 cos2 β)





=
π

3
− arcsin

√

3− cot2 β

2
.

(19)

Because △jkl is a regular triangle, we have ω△hjk = ω△hkl = ω△hlj = 2ω△hmj. The solid angle is

then given by

Ω△jkl = 6ω△hmj = 2π− 6 arcsin

√

3− cot2 β

2
. (20)

Therefore, the maximum node degree is given by

dmax =

⌊

4π

Ω△jkl

⌋

=









2π

π− 3 arcsin

√
3−cot2 β

2







 . (21)

Note that when limβ→π/2 dmax = +∞, it indicates that the maximum node degree has no upper bound

in AAT algorithm. In order to ensure that the resulting network has a constant maximum node degree,

β should be chosen as a value different from π/2.

5.2 Optimal β in terms of convergence

In this part, the parameter β in the BAT rule is analyzed. As a matter of fact, it is easy to find out the

exclusion zone for link ij, as denoted by BG(ij, β):

SBG = 2

(

π

( ‖ij‖
2 sinβ

)2(

1− 2β

2π

)

+
1

2
‖ij‖ ‖ij‖

2 tanβ

)

=
‖ij‖2
2

(

cotβ + (π − β) csc2 β
)

.

(22)

By taking partial derivative to SBG with respect to β, one obtains

∂SBG

∂β
= −‖ij‖2 (1 + (π− β) cotβ) csc2 β 6 0. (23)

Obviously, β is distributed inside the range (0,π), and ∂SBG

∂β = 0 is met if and only if β = 0 is

satisfied. In other words, SBG is a monotonically decreasing function of β. Thus the exclusion zone

shrinks as β increases, implying that more links can be established at each node. On the one hand,

this may lead to an increasing number of neighbors satisfying BAT rule, making it harder to achieve

the consensus of relative distance, as shown in Figure 5(a) and (b). The increased number of edges in

the resulting network, however, results in a graph with greater algebraic connectivity [31], leading to a

higher rate of convergence to global consensus. At the same time, the reference information of velocity

from neighboring nodes is enhanced, making it easier for nodes to reach a globally consistent velocity, as

shown in Figure 5(c). Moreover, the overall effect mentioned in the above can be seen in curves plotted

in Figure 5(d).

The corresponding parameter β is originally set to be π/2 in the AAT rule. However, simulation results

show that β = π/2 is not the optimal value in terms of convergence, in which we have assumed that the

velocity of the leader is a constant value and β can be chosen in the range of [0.9, 1.8] in radians with

an interval of 0.05. For each β, the simulation is repeated 100 times, followed by adopting the mean

value of the metrics. Furthermore, three curves are plotted in each graph, each one representing a unique
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Figure 5 (Color online) γ∗ (a), d∗ (b), v∗ (c) and E∗ (d) under different β at N = 20, 50, and 80.

size of swarm (i.e., containing 20, 50, and 80 nodes, respectively). Thereby, the correlation between γ∗

in (7) and β is analyzed, together with the impacts of the distance standard deviation d∗ in (8), velocity

standard deviation v∗ and final energy E in (13) considered.

It is worth mentioning that following the BAT rule, the parameter β determines the area in which the

neighboring nodes are prohibited from being present. In Figure 5(a), it shows the curves between γ∗ and

β. As β increases, it is shown that γ∗ decreases to its minimum value if β > 1.2, implying that smaller β

value enhances the ratio of connections reaching the preset value l0. However, when β < 1.2, the nearly

optimal result can be attained.

Note that the same case goes for d∗: when β < 1.2, the distance standard deviation reaches its

nearly optimal value. As β goes larger, the convergence of distance, according to Figure 5(b) gets worse.

However, as shown in Figure 5(c), the velocity difference becomes smaller v∗ as β increases, thereby

reaching its minimum at β ≈ 1.2488. In conclusion, a larger β results in a better convergence in terms of

velocity. Therefore, there is a trade-off between achieving optimal velocity consensus and optimal relative

distance consensus.

Following the discussion above, neither choosing a larger nor smaller β is appropriate for reaching the

optimal convergent. We can thus use the virtual energy to measure the convergence of both velocity and

relative distance. As shown in Figure 5(d), the curves become nearly V-shaped and the virtual energy

of the swarm reaches its minimum at β ≈ 1.2488. Compared with the corresponding value at β = π/2

(i.e., the AAT rule, as shown in the circled part of the graphs), the γ∗ curve shows a better convergence

under all the above-mentioned metrics. As a result, the optimal β value is located at β ≈ 1.2488 rather

than at β = π/2.

6 Simulation results

In this part, numerical results for both the control protocol in (10) and the proposed BAT rule are

presented. The communication radius of the UAVs is assumed to be identical (we set it to be R = 30)

and the number of UAVs is N = 50. In particular, for the kinetic control function, the desired relative
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Figure 6 (Color online) Final state and trajectories of UAVs. (a) Final state of all UAVs; (b) trajectories of UAV swarm

center and leader.

distance between connected neighbors is set to be l0 = 15. Furthermore, coefficients in (10) are set to

be kp = 0.17 and kv = −0.1, respectively [32]. Moreover, as for the topology control, β is set to be 1.2.

Initially, the motion states of UAVs including position and velocity are randomly distributed vectors in

the range [0, 1] in a three-dimensional space. The initial positions of UAVs are randomly distributed with

the connectivity of the network being guaranteed. In addition, 500 iterations are run in each simulation.

The trajectory of the leader UAV is a helix curve expressed by
{

p̂l = vl,

vl = vx [1, sin(t), cos(t)]
T
.

(24)

The initial position pl is randomly generated in each simulation together with the follower UAVs and

vx = 1. In Figure 6(a), the final state of a UAV swarm is illustrated by arrows to indicate the velocity of

the UAVs. The curves between nodes represent the connected neighbors using the proposed BAT rule.

As shown in Figure 6(a), the velocities of all nodes converge identically in both direction and magnitude.

The UAV swarm’s center and leader trajectories (instead of all node trajectories) are given by Figure 6(b)

for clarity. Therefore, the desired leader-follower movement can be attained. The clusters center denotes

the mean position of all nodes given by pc =
1
N

∑N
i=1 pi.

To further demonstrate the effectiveness of the control input (10) and the proposed BAT, three cases

with variant β values are simulated using a scenario in which the leader’s velocity is kept constant. The

chosen β values are 1.2, π/2 and 1.7, representing the cases where β is acute, right (i.e, the AAT rule) and

obtuse, respectively. Furthermore, the virtual energy curves during the iterations are given in Figure 7(d).

It is shown that the energy E reaches its minimum at about 70 iteration steps, denoting the final energy

level that the UAV swarm can be reached.

Because the leader’s velocity changes dynamically, it is unrealistic that all the distances between

connected neighbors reach l0 accurately. Thereby, γ∗ is used to evaluate the convergence of the relative

distance. As shown in Figure 7(a), at β = 1.2,π/2 and 1.7, the corresponding ratios of reaching l0
within the desired error ε∗ = 0.05l0 are 0.4, 0.4, and 1, respectively. It is shown that γ∗ almost reaches

1 at β = 1.2, compared with the corresponding value γ∗ = 0.4 under the AAT rule (i.e., β = π/2).

Furthermore, Figures 7(b) and (c) denote the standard deviation curves of relative distance and velocity

between the followers and the leader during each iteration, as defined in (8) and (9), respectively. At

β = 1.2, the relative distance reaches 0, less than the corresponding values at both β = 1.2 and β = π/2.

7 Conclusion

In this paper, the flocking of a swarm of UAVs was studied in a leader-follower mode under a distributed

kinetic control protocol and topology control rule. In each swarm, a UAV can decide its motion by
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Figure 7 (Color online) γ∗ (a), d∗ (b), v∗ (c) and E∗ (d) at each iteration.

following the designed second-order integrator-control-input, in which condition the reference neighbors

are chosen by using the BAT-based topology control algorithm. Note that the BAT-based topology

control algorithm extends the AAT rule. In addition, each UAV can be designed to select its neighbors

that satisfy the condition of its exclusion zone determined by the parameter β. Furthermore, the stability

of the proposed control function and the node degree boundedness were analyzed. Moreover, to achieve

a better convergence status than the original AAT rule, the optimal β value was analyzed. Simulations

were finally carried out to verify the proposed theoretical model. More practical limitations, such as

interference, delay and other communication constraints, should also be taken into account in the future

to make the proposed model more feasible in a FANET.
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