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Abstract Continental coverage and year-round operation of the weather radar networks provide an un-

precedented opportunity for studying large-scale airborne migration. The broad and local-scale airborne

information collected by these infrastructures can answer many ecological questions. However, extracting

and interpreting the biological information from such massive weather radar data remains an intractable

problem. Recently, many big-data problems have been solved using the deep learning technology. In this

study, the biological information in the weather radar data is identified using the advanced deep learning

method. The proposed method consists of two main parts, i.e., a rendering and casting procedure and an

image segmentation procedure based on a convolutional neural network. The biological data are automati-

cally extracted by rendering and mapping, image segmentation, and result masking. By analyzing the typical

radar data from single and multiple stations, we partly reveal the intensity and speed of the migration pat-

tern. We present the first feasibility study of the extraction of local and large-scale biological phenomena

from the Chinese weather radar network data.
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1 Introduction

The weather radar networks have proved to be invaluable in the studies of airborne animal move-

ments [1, 2]. These radar data can quantify flying animals over a large coverage area [3], providing an

unprecedented opportunity for analyzing the long-term changes in their numbers [4]. A detailed analysis

of networked radar data can answer biological and ecological questions, such as the vertical structure [5]

and flight orientation [6] of the target animals. Although weather radar facilitates collective monitoring,

dedicated high-resolution radars are required for meticulous individual observations, including species

identification, orientation, and airspeed estimation [7–10].

We seek to answer the biological questions by analyzing the weather radar data. Radar data contain

clear visual patterns that can be screened for biological phenomena. However, identifying the biological

echoes among the huge volume of weather radar is almost impossible for humans. Deep learning has

revolutionized the accuracy of computational tasks with respect to images as well as video and audio

data [11]. Combined with the deep learning technique, the weather radar data are a valuable source

of aerial animal movements [12–14]. Although good results have been achieved in the United States
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and Europe, related work on Chinese weather radar has not yet been reported. As China currently

lacks a wide range of operational dual-polarization weather radar networks, we attempt to mine valuable

biological information from the historical Chinese single-polarization radar data.

The main contributions of this study are listed as follows.

• We discuss the geometry of the weather radar biological observations and reveal the difference

between the normal meteorological echoes and the biological echoes. We then relate the animal movements

to the radar measurements.

• We propose a biological echo extraction technique that retrieves large-scale aerial animal movements.

By rendering the radar data as images, we convert the echo extraction problem into an image segmentation

task. The segmentation is automated using a modified convolutional neural network (CNN).

• Applying the proposed method to the Chinese weather data, we analyze two migration cases. We

demonstrate, for the first time, that local-scale and large-scale biological phenomena can be extracted

from the Chinese weather radar network data.

The remainder of this paper is structured as follows. Section 2 explains the observation geometry and

echo extraction technique of the proposed method. Section 3 demonstrates our method with respect to

the Chinese weather radar data. This study concludes in Section 4.

2 Methods

To unearth the potential of biological monitoring in weather radar data, we need to investigate how

weather radar observes the atmosphere and how biological information can be extracted from the data.

This section discusses the observation geometry and the strategy of scanning the weather radar, including

the products and the data rendering process. Finally, it describes and analyzes the biological echo

extraction process based on the CNN technique.

2.1 Radar data

An operational radar network of over 200 Doppler weather radars in China, called the China next gen-

eration weather radar (CINRAD) network, is crucial for monitoring large-scale airspaces [15, 16]. To

extract biological phenomena from weather radar data, the observation geometry must be dissected. The

radar data products of biological and meteorological echoes are obviously distinguished by the spatial

distribution difference between the precipitation and aerial animal phenomena. To apply the commonly

used image segmentation method, the polar gridded data are rendered into a Cartesian gridded image.

2.1.1 Observation geometry and scanning strategy

Most Chinese weather radars are horizontally polarized Doppler radars with a nominal 3-dB beamwidth

of 1◦. They sample the surrounding airspace in plan position indicator (PPI) scan mode. A weather

radar data product is stored as a set of sweeps. Each sweep is recorded in polar grid form, with each

azimuth θ represented by approximately 360 range vectors. In the default volume coverage pattern, the

radars provide PPI sweeps with elevation angles ranging from 0.5◦ to 19.5◦ at 6-minute intervals. As

the radar beam is approximately 1◦ wide, the lowest elevation 0.5◦ returns the information between 0◦

and 1◦ above the horizon. To improve their volume coverage, radar scans are designed to increment

their elevation by approximately one-degree intervals. Figure 1 overviews the geometry of weather radar

observations and shows the typical volume coverage pattern.

2.1.2 Data products and rendering

Single polarized weather radars have three meteorological base-data quantities: the reflectivity factor, the

mean radial velocity, and the spectrum width. The data are collected and recorded in units of files, which

typically contain six minutes of base data in the normal volume coverage pattern. The radar reflectivity

factor data represent the echo intensity in each sampling volume, which is usually recorded in decibels
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Figure 1 (Color online) Geometry and volume coverage pattern of weather radar scanning. (a) Scanning strategy and

beam geometry of normal weather radar. Five successive elevations are shown. (b) Volume coverage patterns at operational

elevations of 0.5◦, 1.45◦, 2.4◦, 3.35◦, and 4.3◦. When two adjacent elevations overlap, the beams scan the atmosphere with

no gap between those elevations.

(dBZ) [3]. This quantity was chosen for discriminating the echo types because it distinctly characterizes

the precipitation and biological echoes, as highlighted as follows.

• Precipitation has a much higher echo top than biology. Most of the precipitation echoes vertically

extend to thousands or even tens of thousands of meters. Cloud microphysical processes occur inside

clouds, which are affected by temperature, atmospheric pressure, humidity, and other altitude-related

physical parameters. Internal cloud temperatures can be as low as −20◦C, meaning that cloud tops can

reach 10000 m [17]. Aerial animals cannot tolerate such low temperatures, and most of them fly below

3000 m [18].

• The maximum intensity of precipitation is much higher than that of biology. The maximum intensity

can exceed 50 dBZ for precipitation echoes, but rarely exceeds 20 dBZ for biological echoes [19].

• Precipitation and biology have different spatial distributions. Precipitation is greatly affected by the

underlying surface and the intensity of the precipitation echoes varies widely within the radar domain.

In contrast, biological echoes usually change smoothly [20, 21].

• Precipitation and biology have different vertical distributions. Most of the aerial animals concentrate

into several heights where their flight is aided by the wind. The vertical structure of precipitation echoes

is more complicated [22].

Figure 2 shows vertical slices of the precipitation and biological echoes, and the typical measured

data of their reflectivity factor products. The above-described four differences between the precipitation

and biological echoes are visible in the diagrams (Figure 2(a) and (b)). Owing to these differences, the

weather radar PPI scans of precipitation and biology are clearly distinguishable by humans (Figure 2(c)

and (d)). More specifically, (i) the higher echo top of precipitation than biology widens the coverage of

precipitation in the PPI scans, especially at higher elevations; (ii) the maximum dBZ is much higher for

precipitation echoes than for biological echoes (45 dBZ vs. 20 dBZ); (iii) precipitation echoes exhibit a

coarser texture than biological echoes; and (iv) the precipitation scans expand with elevation whereas the



Cui K, et al. Sci China Inf Sci April 2020 Vol. 63 140304:4

Height (m)

(b)(a)

Ground

dBZ scale

Low                   High

dBZ scale

Low                    High

(d)

(c)

3000

6000

9000

Figure 2 (Color online) (a) and (b) Vertical slices of precipitation and biological echoes. (c) and (d) Typical reflectivity

factor products of precipitation and biology deduced from the Xuzhou weather radar station. (c) 12:13 UTC on September

27th and (d) 11:41 UTC on August 31st, 2017. Echo types are confirmed by checking the historical weather conditions.

From left to right, the subgraphs are scanned at elevations of 0.5◦, 1.45◦, 2.4◦, 3.35◦, and 4.3◦, with plotting radii of 227,

127, 81, 58 and 45 km, respectively. These radii correspond to a height range of 3000 m (bottom limit of the antenna

beam).

biological scans are almost unchanged because the targets are concentrated in particular height ranges

and are widely distributed.

As demanded by the extraction module input, we linearly map the radar reflectivity factor data at

each elevation onto a 0 to 255 scale (here, we select the range −15 dBZ to 50 dBZ to cover most of the

data) and cast them into Cartesian grid images (of resolution 321 by 321 to fit the extraction module).

Following a previous study [12], we choose the lowest five elevation data in each data file and render them

into five grayscale images. After these operations, the polar grid reflectivity factor data are converted to

grayscale-image inputs for the extraction module.

2.2 Biological echo extraction

The biological echo extraction process aims to obtain the biological echoes and remove the precipitation

echoes. To discriminate the biological and precipitation phenomena in the radar data, we transform the

extraction procedure into an image segmentation task, which assigns semantic labels to every pixel in an

image. The biological echo extraction process is overviewed in Figure 3. After mapping and rendering,

the gray scale image enters the neural network, which is trained for image segmentation. The network

output is used as a mask that filters out the precipitation and retains the biological echoes.

2.2.1 Dataset description

To train and evaluate the segmentation network, we must build up a dataset of weather radar biological

echoes. Because most operational weather radars in China are singly polarized, no additional information
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Figure 3 (Color online) Biological echo extraction process. The weather radar data are mapped to grayscale images

by a linear mapping method. The biological dataset contains 1500 images for training the convolutional network at each

elevation.

is available for annotations. Assisted by MATLABr R2017a image segmenter app, we manually label

1500 images (300 images at each of the lowest five elevations). These scans are randomly selected from

all Chinese weather radar stations from August 2017 through May 2018. Prior to the experiments, the

labeled images are split into training and evaluation subsets (250 images for training and 50 images for

evaluation at each elevation).

2.2.2 Segmentation network

In image segmentation tasks, deep CNNs show promising improvements over methods relying on hand-

crafted features. A deep neural network transforms an input image into output values through a sequence

of linear and nonlinear transformations. When appropriately structured, the network (like humans) learns

experiences from both local and global information. It also determines the proper key features through

the training process, requiring no artificial intervention to affect the decision process. For this purpose, we

employ the DeepLabv3+ model because it attains state-of-the-art performance and its structure captures

the contextual information on multiple scales [23].

To effectively locate the required biological areas, we train five semantic segmentation networks with

the same structure. We then segment the biological areas of the five lowest-elevation radar data. Figure 4

overviews our modified DeepLabv3+ model. Our segmentation networks are based on the DeepLabv3+

model with the following modifications.

• We reduce the input image size to 321 by 321 to match the radar data and to reduce the GPU

memory consumption. For better exploiting the multi-scale information, we also reduce the rates of the

parallel atrous convolution (called atrous spatial pyramid pooling, or ASPP). Specifically, the output

resolution of a deep CNN structure is 1/16 of the input resolution. The deep CNN output resolution of

the original structure is 33 by 33 for a 513 by 513 image, and the ASPP atrous rates are 6, 12 and 18.

The deep CNN output resolution of the modified structure is 21 by 21 and the atrous rates are reduced

to 4, 8 and 12.

• We reduce the decoder output stride to 1 for densifying the output feature map. We forward the

upsample operation to the front of the concatenation operation and change the upsample rate of the

high-level features to 16. Thus, the two 3 by 3 convolution layers with 256 filters at the end of the

decoder have the same resolution as the input images. Thereby, the decoder module could refine the

segmentation results along the object boundaries.
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Figure 4 (Color online) DeepLabv3+-based network for extracting the biological information from weather radar. The

input resolution is 321 by 321 and the atrous rates in the ASPP part are correspondingly reduced to 6, 8 and 12. The

decoder output stride is reduced to 1 for densifying the output feature map.

2.2.3 Experiments

In preliminary experiments, the image segmentation model is evaluated on the prepared dataset discussed

above. It is found that: (i) the image segmentation model achieves acceptable performance while reducing

the manual labor; (ii) the pixel accuracies at all elevations exceed 92%; (iii) the modified structure

improves the mean intersection-over-union (mIOU) by approximately 0.77% on average.

In our experiment, Xception is employed as the network backbone and the crop size is set to 321 by

321 for memory efficiency. Rather than creating the training data from scratch, we train our weather

radar data segmentation model on checkpoints that are pretrained on Pascal VOC 2012 [24]. Although

these color images largely differ from our grayscale weather radar images, both image types have similar

characteristics of their low-level features. The pretrained model can greatly reduce the time consumption

of training and avoid the risk of model non-convergence. After training the ASPP and decoder weights

in the experiments, we accelerate the training by re-using the network backbone weights. To evaluate the

improvement of our modification, we train the original and modified structures using the same training

protocol and calculate their segmentation performances. In each training process, we apply a ‘poly’ policy

with an initial learning rate of 0.0007 and a learning power of 0.9 over 160 epochs. The training process

is completed in approximately 25 min. Experiments are implemented on the deep learning framework

Tensorflow [25] and execute on a workstation with two Intelr 14-core Xeon E5 CPUs with 256 GB RAM

and four Nvidiar GTX-1080Ti GPUs with 11 GB memory. The operating system is Windowsr Server

2016.

Figure 5 shows the training losses and sample segmentation results at each elevation. The training

process is checked on tensorboard. The training losses rapidly decrease after approximately 200 steps

and finally converge. The segmentation results confirm that the trained model can recognize biological

echoes and discriminate them from precipitation. The model performances at each elevation are assessed

by the pixel accuracies and mIOU values. These performance metrics are summarized in Table 1. At

all elevations, the pixel accuracies and mIOUs exceed 92% and 85%, respectively. Averaged over the

five elevations, the pixel accuracies and mIOU metrics of the segmentation are 0.43% and 0.77% higher,

respectively, in our modified models than in the original DeepLabv3+ structures. Given the small training

dataset (1500 labeled images) and training time (several hours), these results are eminently satisfactory.

Next, we compare the performance metrics of our method with those of MistNet [12]. The results
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Figure 5 (Color online) Training losses and typical segmentation results of the training dataset at each elevation. The

training losses are recorded as functions of the number of training steps. The input images are rendered and casted from

the weather radar data. The brightness of the input images is linearly related to the radar reflectivity factor. The label

images are manually constructed using the MATLAB image segmentation app. The output images are the segmentation

results of the trained models. In the label and output images, the black and gray pixels represent the non-biological and

biological areas, respectively.

Table 1 Segmentation performance at each elevation

Elevation
Pixel accuracy mIOU

Original (%) Ours (%) Original (%) Ours (%)

0.5◦ 94.80 95.30 89.85 90.81

1.35◦ 95.59 95.53 91.28 91.94

2.4◦ 92.63 93.04 86.19 86.91

3.35◦ 92.02 92.37 85.19 85.78

4.3◦ 91.76 92.29 84.59 85.51

Table 2 Performance comparison between our method and a previous work

Method Precision (%) Recall (%) F-score (%)

Ours 92.6 92.4 92.5

MistNet 72.6 96.1 82.7

are shown in Table 2. In this table, the performance metrics of our method are averaged over the five

elevations, and those of MistNet are evaluated on the ‘Historical (weather)’ dataset, whose size and echo

compositions are most similar to ours. Our method outperforms MistNet in terms of the precision and

F-score, confirming that our method better handles situations involving weather echoes than the previous

work.

By combining the radar data rendering procedure and the biological extraction procedure, we obtain

the biological echo masks. Using these masks, we filter out the precipitation echoes and retain the
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Figure 6 (Color online) Typical extraction results on different dates. The images in the first row are acquired at an

elevation angle of 2.4◦, and the brightness is linearly related to the radar reflectivity factor. The images in the second row

are the segmentation results of the trained model at the third elevation angle. Biological echoes are found in the red areas.

biological information.

3 Demonstration

This section demonstrates our proposed method in two cases. First, we analyze the biogeographical

patterns in typical weather radar obtained from an operational radar located on the migration route of

insects and birds. Second, we attempt to analyze the large-scale migration pattern from multiple weather

radars.

3.1 Typical extraction results

To validate and test the proposed method, we collect and process additional weather radar data. The

Xuzhou radar station (34.3◦N, 117.2◦E) is chosen as a typical data source for validation because it locates

on the migration route and the geographical condition is suitable for radar observations. Figure 6 shows

the segmentation results of the selected stations on different dates. For simplicity, we present only the

results obtained at the third elevation angle. In these typical extraction results, the precipitation echoes

(found in the bottom areas of the 7th and 29th August patterns, the upper area of the 24th September

pattern, and the lower left part of the 10th October pattern) are successfully recognized as non-biological

echoes. In addition, the intensity and coverage area of the biological echo first increases and then decreases

as the dates progress, consistent with the regular pattern of autumn migrations.

3.2 Large-scale migration pattern

To reveal the large-scale migration pattern, we collect and process the data of more than 90 radar stations

collected on two typical migration dates in China: one in spring, the other in autumn. We first gather

the data and extract the biological echoes by the proposed modified network as described in Figure 3.

Second, we convert the biological echoes at each station to a relative quantity (the instantaneous migration

intensity) by summing the reflectivity factors within the radar domain. Third, we calculate the target

mean airspeed and direction from the corresponding radial velocity using the velocity-azimuth display

technique [26]. Finally, to interpret the geological features, we visualize these large-scale migration results

on a map.

The large-scale migration patterns obtained by the proposed method are shown in Figure 7. A typical

nocturnal migration pattern is revealed. The animals migrate northeast in spring and southwest in

autumn.
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Figure 7 (Color online) Large-scale migration pattern in China. (a) Spring; (b) autumn. The red color bar represents the

relative migration intensity calculated from the segmentation results (a high red concentration denotes intense migration).

The sizes and directions of the arrow represent the average airspeeds and directions, respectively, of the targets passing the

radar station. All data are collected at 21:00 local time.

4 Conclusion

We proposed a method that extracts biological information from weather radar. The method is based

on the weather radar observation geometry and applies an image segmentation technique. In two typical

animal-movement cases, we demonstrated the possibility of extracting local-scale and large-scale biological

phenomena from Chinese weather radar network data.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 31727901).

The authors thank Prof. Kongming WU, Dr. Qiulin WU and Haowen ZHANG, Institute of Plant Protection, Chinese

Academy of Agricultural Sciences, for their kindly discussion and useful suggestions. The authors thank Dongli WU and

Dasheng YANG, Meteorological Observation Center, China Meteorological Administration, for providing Chinese weather

radar data.

References

1 van Doren B M, Horton K G. A continental system for forecasting bird migration. Science, 2018, 361: 1115–1118

2 Kelly J F, Horton K G. Toward a predictive macrosystems framework for migration ecology. Glob Ecol Biogeogr, 2016,

25: 1159–1165

3 Chilson P B, Frick W F, Stepanian P M, et al. Estimating animal densities in the aerosphere using weather radar: to

Z or not to Z? Ecosphere, 2012, 3: 1–19

4 Rosenberg K V, Dokter A M, Blancher P J, et al. Decline of the North American avifauna. Science, 2019, 366: 120–124

5 Hu C, Cui K, Wang R, et al. A retrieval method of vertical profiles of reflectivity for migratory animals using weather

radar. IEEE Trans Geosci Remote Sens, 2020, 58: 1030–1040

6 Stepanian P M, Horton K G. Extracting migrant flight orientation profiles using polarimetric radar. IEEE Trans

Geosci Remote Sens, 2015, 53: 6518–6528

7 Hu C, Kong S, Wang R, et al. Identification of migratory insects from their physical features using a decision-tree

support vector machine and its application to radar entomology. Sci Rep, 2018, 8: 5449

8 Hu C, Li W, Wang R, et al. Accurate insect orientation extraction based on polarization scattering matrix estimation.

IEEE Geosci Remote Sens Lett, 2017, 14: 1755–1759

9 Hu C, Li W Q, Wang R, et al. Insect flight speed estimation analysis based on a full-polarization radar. Sci China Inf

Sci, 2018, 61: 109306

10 Hu C, Wang Y X, Wang R, et al. An improved radar detection and tracking method for small UAV under clutter

environment. Sci China Inf Sci, 2019, 62: 029306

11 Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceed-

ings of the 25th International Conference on Neural Information Processing Systems, 2012. 1097–1105

12 Lin T Y, Winner K, Bernstein G, et al. MistNet: measuring historical bird migration in the us using archived weather

radar data and convolutional neural networks. Methods Ecol Evol, 2019, 10: 1908–1922

13 Hu C, Li S, Wang R, et al. Extracting animal migration pattern from weather radar observation based on deep

convolutional neural networks. J Eng, 2019, 93: 6541–6545

https://doi.org/10.1126/science.aat7526
https://doi.org/10.1111/geb.12473
https://doi.org/10.1890/ES12-00027.1
https://doi.org/10.1126/science.aaw1313
https://doi.org/10.1109/TGRS.2019.2942993
https://doi.org/10.1109/TGRS.2015.2443131
https://doi.org/10.1038/s41598-018-23825-1
https://doi.org/10.1109/LGRS.2017.2733719
https://doi.org/10.1007/s11432-018-9484-2
https://doi.org/10.1007/s11432-018-9598-x
https://doi.org/10.1111/2041-210X.13280
https://doi.org/10.1049/joe.2019.0041


Cui K, et al. Sci China Inf Sci April 2020 Vol. 63 140304:10

14 Chilson C, Avery K, McGovern A, et al. Automated detection of bird roosts using NEXRAD radar data and convo-

lutional neural networks. Remote Sens Ecol Conserv, 2019, 5: 20–32

15 Xu X F. Construction, techniques and application of new generation doppler weather radar network in China. Eng

Sci, 2004, 1: 15–25

16 Zhu X, Zhu J. New generation weather radar network in China (in Chinese). Meteorolog Sci Tech, 2004, 32:

17 Lakshmanan V, Hondl K, Potvin C K, et al. An improved method for estimating radar echo-top height. Wea Forecast,

2013, 28: 481–488

18 Bruderer B, Liechti F. Variation in density and height distribution of nocturnal migration in the south of Israel. Israel

J Zoology, 2013, 41: 477–487

19 Rennie S J, Curtis M, Peter J, et al. Bayesian echo classification for Australian single-polarization weather radar with

application to assimilation of radial velocity observations. J Atmos Ocean Technol, 2015, 32: 1341–1355

20 Zhang P, Liu S, Xu Q. Identifying Doppler velocity contamination caused by migrating birds. part i: feature extraction

and quantification. J Atmos Ocean Technol, 2005, 22: 1105–1113

21 Lakshmanan V, Fritz A, Smith T, et al. An automated technique to quality control radar reflectivity data. J Appl

Meteor Climatol, 2007, 46: 288–305

22 Hu G, Lim K S, Horvitz N, et al. Mass seasonal bioflows of high-flying insect migrants. Science, 2016, 354: 1584–1587

23 Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), 2018. 801–818

24 Everingham M, Eslami S M A, van Gool L, et al. The pascal visual object classes challenge: a retrospective. Int J

Comput Vis, 2015, 111: 98–136

25 Abadi M, Agarwal A, Barham P, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems.

2016. ArXiv: 1603.04467

26 Browning K A, Wexler R. The determination of kinematic properties of a wind field using doppler radar. J Appl

Meteor, 1968, 7: 105–113

https://doi.org/10.1002/rse2.92
https://doi.org/10.1175/WAF-D-12-00084.1
https://doi.org/10.1175/JTECH-D-14-00206.1
https://doi.org/10.1175/JTECH1757.1
https://doi.org/10.1175/JAM2460.1
https://doi.org/10.1126/science.aah4379
https://doi.org/10.1007/s11263-014-0733-5
https://arxiv.org/abs/1603.04467
https://doi.org/10.1175/1520-0450(1968)007&lt; 0105:TDOKPO&gt; 2.0.CO; 2

	Introduction
	Methods
	Radar data
	Observation geometry and scanning strategy
	Data products and rendering

	Biological echo extraction
	Dataset description
	Segmentation network
	Experiments


	Demonstration
	Typical extraction results
	Large-scale migration pattern

	Conclusion

