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Abstract Owing to the tradeoff between scanning swath and pixel size, currently no satellite Earth ob-

servation sensors are able to collect images with high spatial and temporal resolution simultaneously. This

limits the application of satellite images in many fields, including the characterization of crop yields or the

detailed investigation of human-nature interactions. Spatio-temporal fusion (STF) is a widely used approach

to solve the aforementioned problem. Traditional STF methods reconstruct fine-resolution images under

the assumption that changes are able to be transferred directly from one sensor to another. However, this

assumption may not hold in real scenarios, owing to the different capacity of available sensors to characterize

changes. In this paper, we model such differences as a bias, and introduce a new sensor bias-driven STF

model (called BiaSTF) to mitigate the differences between the spectral and spatial distortions presented in

traditional methods. In addition, we propose a new learning method based on convolutional neural networks

(CNNs) to efficiently obtain this bias. An experimental evaluation on two public datasets suggests that our

newly developed method achieves excellent performance when compared to other available approaches.
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1 Introduction

Remotely sensed images with high temporal and spatial resolution are very important for change detection

applications, such as the characterization of crops [1], vegetation monitoring [2], or the detailed investiga-

tion of human-nature interactions [3]. In the aforementioned scenarios, changes need to be measured at

very fine temporal and spatial scales (especially in heterogeneous regions). However, there are currently

no satellite instruments technically capable to provide such images, mainly owing to the tradeoff between

the scanning swath width and pixel size [4]. As a matter of fact, images with high temporal resolution

usually exhibit low spatial resolution (e.g., MODIS or AVHRR imagery), while images with high spatial

resolution are often sparse in frequency (e.g., Landsat and SPOT images). In order to obtain images with

high spatial and temporal resolution, spatio-temporal fusion (STF) which fuses the two aforementioned

kinds of images has been adopted in the literature as a feasible and effective strategy [5].
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Figure 1 (Color online) Graphical illustration of the main goal of the spatio-temporal fusion (STF) task.

Let C and F respectively denote a coarse and a fine spatial resolution image, and let k−1, k and k+1

denote three different acquisition times. The goal of the fusion task is to predict F̂ (k), with F (k−1),F (k+1)

and C(k−1),C(k),C(k+1) available (or just with F (k−1), C(k−1),C(k)). In this study, we only consider the

first case, as shown in Figure 1. In fact, there are many fusion methodologies aimed at predicting F̂ (k). In

all these methodologies, a key concern is how to model the land surface reflectance changes including two

aspects: phenological changes (e.g., seasonal changes of crops) and land-cover changes [6]. Most available

STF methods can be categorized into three groups: (1) weighted function-based, (2) unmixing-based,

and (3) learning-based.

(1) Among weighted function-based methods, the spatial and temporal adaptive reflectance fusion

model (STARFM) [7] has been one of the most successful benchmarks. It assumes that all pixels in the

coarse images are pure, and uses a weighted strategy to add the reflectance changes between two coarse

images, i.e., C(k−1) and C(k), to the (prior) fine resolution image F (k−1), so as to obtain an approximate

prediction F̂
(k) directly. There are other methods in this category, such as STAARCH [8], ESTARFM [9],

SADFAT [10], and bilateral filter method [11]. All these methods adopt a similar strategy as compared to

the one used by STARFM. However, there is a significant limitation shared by all weighted function-based

methods: because the weights are defined by the the prior fine resolution image, in case that there are

significant changes between the two times, these weights may not hold anymore for the predicted time.

(2) Among unmixing-based methods, the flexible spatiotemporal data fusion (FSDAF) [4] assumes

that the coarse pixels in both C(k−1) and C(k) are mixed by the classes from the prior fine resolution

image F (k−1), and the unmixing differences between the two coarse images are used to represent the

reflectance changes between the two times. ESTDFM [12], STDFA [13], MSTDFA [14] and STRUM [15]

also belong to this category. Owing to the fact that pixels in the coarse resolution images are likely

to be mixed, unmixing-based methods perform better than weighted function-based methods to some

degree [15]. However, similar to weighted function-based methods, unmixing-based methods also assume

that F (k−1) and F (k) contain the same classes, i.e., there are no significant changes between the two

times (which may not be realistic in most cases).

(3) Among learning-based methods, the spatiotemporal satellite image fusion through one-pair image

learning method [16] differs from STARFM and FSDAF in the fact that it aims at reducing the gap

between the coarse and fine spatial resolutions by improving the spatial resolution of the coarse resolution

images. This is done by establishing the correlation of the coarse and fine resolution images via sparse

representation. With similar spatial resolutions, the fusion task is much easier, while in [16], this task

was performed by a simple high-pass modulation.

Owing to the fact that learning-based methods are theoretically able to work in any scenario, including

cases with significant changes, which are difficult to handle for the weighted function-based and unmixing-

based methods, in recent years there has been a significant interest in this kind of approaches. Other

than sparse representation-based approaches [16–21], techniques such as regression trees [22], random
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Figure 2 (Color online) Toy example illustrating the impact of the bias. (a)–(c) The images collected at time 1; (d)–(f)

the images collected at time 2; (g)–(i) show the changes; and (j)–(l) illustrate the bias maps, with (j) showing the bias

between the ground-truth and sensor 1, (k) showing the bias between the ground-truth and sensor 2, and (l) showing the

bias between sensors 1 and 2, respectively. It can be seen that the bias between sensors 1 and 2 (i.e., (l)) is significant,

which is expected to play an essential role in the STF process.

forests [23] and extreme learning machines [24] have been widely used.

Recently, convolutional neural networks (CNNs) have been widely used in image processing tasks, such

as super-resolution [25,26] or pansharpening [27,28], obtaining remarkable results. CNNs have also been

used for STF, an area in which the spatiotemporal satellite image fusion using deep convolutional neural

networks (STFDCNN) [29] was a pioneering approach exhibiting remarkable performance.

In summary, all of the aforementioned methods can be formulated as follows:

F̂
(k) = STF(F (k−1),F (k+1),∆F )

≈ STF(F (k−1),F (k+1),∆C|(C(k−1),C(k),C(k+1))), (1)

where STF(·) refers to a spatio-temporal fusion model, ∆F = {∆F (k−1,k),∆F (k+1,k)} denotes the

changes between times (k−1, k+1) and k for the fine resolution images, and ∆C = {∆C(k−1,k),∆C(k+1,k)}

represents those for the coarse resolution images. The core idea of existing methods is to use ∆C to ap-

proximate ∆F . This is reasonable under the assumption that, for a specific area and period, the change

information can be directly transferred from one sensor to another, owing to the fact that spatial and

temporal land-surface changes are instrument-independent. However, the assumption may not hold in

real situations because different sensors usually exhibit different capacities to capture land-surface in-

formation owing to their specific design, such as bandwidth coverage, spectral response function, and

spatial resolution. These characteristics, along with atmospheric conditions, can result in very different

abilities for change characterization. Such differences, referred hereinafter as bias, are expected to play

an important role in STF.

The toy example in Figure 2 shows a scenario containing a road and a tree, and includes two types of

changes: a spatial change in the shape of the road, and a spectral change in the phenology of the tree.

Figures 2(a)–(c) show the ground image and the ones collected by sensors 1 and 2, at time 1, respectively.

Figures 2(d)–(f) show the ground image and the ones collected by sensors 1 and 2, respectively, at time 2.

Figures 2(g)–(i) show the real changes and the ones captured by sensors 1 and 2, respectively. As shown

by Figure 2, the changes captured by the two sensors are different from the real changes, leading to a

bias between the ground-truth and the remotely sensed images. As expected, the information captured

by the two sensors is different (see Figure 2(h) and (i)) from both the spectral and spatial viewpoints,

which leads to a bias between the two sensors as well, as illustrated in Figure 2(l).

As mentioned before, existing methods approximate the changes in the fine resolution images (e.g.,

Figure 2(i)), by using the change information from the coarse resolution images (e.g., Figure 2(h)),

ignoring the bias between these two sensors (e.g., Figure 2(l)). This is the main reason for the spatial
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distortion (originated by land-cover changes, and also for the spectral distortion originated by phenological

changes). In order to mitigate these issues and achieve a better spatio-temporal prediction, a natural

solution is to include the bias for STF modeling.

Inspired by the aforementioned ideas, in this paper we develop a new sensor-bias driven STF model

(called BiaSTF) specifically aimed at exploiting the bias information in the fusion of different sensors,

which is a main innovative contribution of this study. In other words, our STF method is the first

one that considers both the bias and the changes. Similar to existing methods, our proposed model

still assumes that, for a specific area and period, the change information can be transferred from one

sensor to another (conditionally, not directly). In this regard, an essential consideration exploited in

this study is that the sensor bias also should be transferred from one sensor to another, apart from the

direct changes. Another important contribution of this study is the design of a new CNN-based method to

efficiently learn the bias. Therefore, the proposed method actually belongs to the learning-based category.

From a theoretical viewpoint, the proposed CNN-based BiaSTF1) exhibits lower losses when compared

to traditional methods such as STFDCNN [29] (which is also a CNN-based STF method that adopts the

traditional STF model). Another advantage of the proposed approach is that, with the inclusion of the

bias in the model, the spectral and spatial distortions are significantly reduced, resulting in remarkable

performance in terms of STF.

The remainder of this paper is organized as follows. Section 2 introduces the BiaSTF fusion model

and the BiaSTF-CNN bias learning, with some theoretical model analyses also presented and discussed.

Section 3 evaluates the proposed method via experiments with remotely sensed data sets collected by

Landsat and MODIS, respectively. Section 4 concludes the paper with some remarks and hints at plausible

future research lines.

2 Methodology

Assuming that F (k−1), F (k+1), C(k−1), C(k), C(k+1) are available, the STF task consists of predicting

F̂ (k), which can be obtained as follows:

F̂
(k) = f(F̂ (k−1,k), F̂ (k+1,k)), (2)

where f(·) is a fusion model (generally a weighted function), F̂ (k−1,k) and F̂ (k+1,k) are two transitional

predicted images from F (k−1) and F (k+1). This function can be defined using different strategies. For

instance, the SPSTFM [17] uses the absolute average change of the sum between the normalized differ-

ence vegetation index and the normalized difference built-up index to determine the weights, while the

STFDCNN obtains the weights by measuring the similarity of pixels of the improved coarse resolution

images. F̂ (k−1,k) and F̂ (k+1,k) are respectively given by

F̂
(k−1,k) = F

(k−1) +∆F
(k−1,k), (3)

F̂
(k+1,k) = F

(k+1) +∆F
(k+1,k). (4)

Recall that ∆F (k−1,k) and ∆F (k+1,k) are the reflectance changes from times k−1 and k+1 to k of the

fine resolution images, respectively, and ∆F = {∆F (k−1,k),∆F (k+1,k)}. Then, the fusion model in (2)

turns to

F̂
(k) = f(F (k−1),F (k+1),∆F ). (5)

Notice that, if we have enough training images, a model such as CNN-based learning is likely able to

retrieve the change information ∆F
(k−1,k) and ∆F

(k+1,k) from the fine resolution images only. However,

limited training information is generally available (especially for the fine images, i.e., the ones that

need to be reconstructed). Therefore, it is very difficult (or even impossible) to obtain ∆F (k−1,k) and

1) For simplicity, hereinafter we use the term BiaSTF to refer both to the model and to the proposed CNN-based learning

method.
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∆F (k+1,k) in most cases. In the literature, an alternative solution is to replace ∆F with an altered

∆C = {∆C(k−1,k),∆C(k+1,k)}. In this case, we have

F̂
(k−1,k) = F

(k−1) +G(∆C
(k−1,k)), (6)

F̂
(k+1,k) = F

(k+1) +G(∆C
(k+1,k)), (7)

where G(·) refers to the operations used to alter the original ∆C. Remind that ∆C(k−1,k) and ∆C(k+1,k)

are the reflectance changes in the coarse images from times k − 1 and k + 1 to k. Therefore, the fusion

model in (5) becomes

F̂
(k) = f(F (k−1),F (k+1),G(∆C)). (8)

As mentioned before, the main task of STF is to obtain G(·). For instance, STARFM introduces

the similarity information of the (prior) fine resolution image into the corresponding ∆C, while FSDAF

exploits umixing-based information. In turn, learning-based methods such as SPSTFM directly build a

relation between the ∆F and the corresponding ∆C via parameter learning.

2.1 Problem formulation

Let B = {B(k−1,k),B(k+1,k)} be the bias, and let B(k−1,k) and B
(k+1,k) be the corresponding biases at

times k − 1 and k + 1 to k, which are defined as follows:

B
(k−1,k) = ∆F

(k−1,k) −G(∆C
(k−1,k)) (9)

and

B
(k+1,k) = ∆F

(k+1,k) −G(∆C
(k+1,k)). (10)

Therefore, Eqs. (6) and (7) turn to

F̂
(k−1,k) = F

(k−1) +G(∆C
(k−1,k)) +B

(k−1,k) (11)

and

F̂
(k+1,k) = F

(k+1) +G(∆C
(k+1,k)) +B

(k+1,k). (12)

The fusion model in (2) turns to

F̂
(k) = f(F (k−1),F (k+1),G(∆C),B). (13)

As shown in (13), in our model we need to learn both G(∆C) and B for the reconstruction of F̂ (k).

2.2 CNN-based learning

Let Xl and Zl be the input and output of the lth CNN layer, respectively. The response of a convolutional

layer in a CNN is given by

Zl = ϕ(Wl ∗Xl + δl), (14)

where ∗ denotes the convolution operation, Wl and δl are the weight and model bias metrics, respectively,

and ϕ(·) represents the activation function. Owing to its computational simplicity and ability to mitigate

gradient vanishing, the rectified linear unit (ReLU) [30] is commonly used in CNNs. Its input-output

relation is Zl = max(0,Xl) [31–33].

LetNp be the number of available training image pairs, denoted by {(Ci,Fi)}
Np

i=1, and let θθθ represent the

free parameters to be optimized in the CNN context. The proposed BiaSTF method minimizes two terms:

(i) the loss between the reconstructed change information Ĝ(X;θθθ) and the real changes ∆F , and (ii) the

loss between the reconstructed bias B̂(X;θθθ) and the corresponding ground truth B = ∆F − Ĝ(∆C).

With these definitions in mind, our method adopts the following loss function, which minimizes the

residual between the reconstructed images F̂ (X;θθθ) and the corresponding ground-truth image F :

ℓ(θθθ) = ‖F̂ (X;θθθ)− F ‖2F , (15)
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Figure 3 (Color online) Flowchart of the proposed BiaSTF method.

where ‖ · ‖F stands for the Frobenius norm. As shown in the fusion model in (13), in order to reconstruct

F̂ , we need to learn Ĝ(X;θθθ) and B̂(X;θθθ). Owing to the fact that it is difficult to learn Ĝ(X;θθθ) and

B̂(X;θθθ) simultaneously with a set of joint parameters θ, we approximate ℓ(θθθ) via two subproblems

related to Ĝ(X;θθθ) and B̂(X;θθθ) as follows:

• For the first subproblem, we use the following loss function for Ĝ(·):

ℓ1(θθθ) = ‖Ĝ(X;θθθ)−∆F ‖2F

= c

Np−1∑

i=1

Np∑

j=2

‖Ĝ(i,j)(X(i,j);θθθ)−∆F
(i,j)‖2F , (16)

where c = 1
2

1
Np

1
Np−1 , ∆F (i,j) = F (i) − F (j).

• Then, concerning the second subproblem, we have

ℓ2(θθθ) = ‖B̂(X;θθθ)−B‖2F

= c

Np−1∑

i=1

Np∑

j=2

‖B̂(i,j)(X(i,j);θθθ)−B
(i,j)‖2F ,

(17)

with

B
(i,j) = ∆F

(i,j) − Ĝ(∆C
(i,j)). (18)

For the learning, we adopt the well-known Adam algorithm [34] as the optimizer to minimize the loss

functions. This algorithm has been proven to be very efficient for training purposes. For illustrative

purposes, Figure 3 shows a flowchart depicting the proposed BiaSTF method. From Figure 3, we can

observe that two CNNs are used: one learns the changes given in the first subproblem (17) and the other

learns the bias given in the second subproblem (18). The final prediction is obtained by considering the

observations, the changes and the bias. At this point, we would like to emphasize that there are tools

which should be able to learn the changes and bias more efficiently and effectively. However, because

the main purpose of this study is presenting our new bias-driven STF model, we adopt the same naive

learning strategy. Nevertheless, as highlighted in Section 3, the proposed BiaSTF achieves very good

performance.

2.3 Model analysis

In this subsection, we perform an insightful analysis on the model from two viewpoints. On the one hand,

we show that the traditional STFDCNN approximates the changes in the fine resolution images by using

the changes from the coarse resolution images. On the other hand, we clarify that our newly developed

BiaSTF approach exhibits lower loss, i.e., residual in our implementation, than the STFDCNN.
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Figure 4 (Color online) Reconstruction residual of the proposed BiaSTF and STFDCNN on two datasets, i.e., (a) CIA

and (b) LGC datasets, that will be used for detailed evaluation in Section 3.

First of all, we revisit the STFDCNN method. It minimizes the loss between the reconstructed residual

images R̂(X;θθθ) and the corresponding ground-truth residual image R = F −G(C), similar to the deep

residual network (ResNet) [35] as follows:

ℓ(θθθ) = ‖R̂(X;θθθ)−R‖2F

=
1

Np

Np∑

i=1

‖R̂(i)(X(i);θθθ) +G(C(i))− F
(i)‖2F , (19)

with θθθ being the CNN parameters.

By carefully inspecting (19), we assume R̂ = F̂ −G(Ĉ) and Q = ‖R̂−R‖2F . We can thus obtain

Q = ‖R̂−R‖2F

= ‖F̂ −G(Ĉ)− (F −G(C))‖2F

= ‖(F̂ − F )−G(Ĉ −C)‖2F

= ‖∆F̂ −G(∆C)‖2F . (20)

After comparing (19) and (20), we can conclude that the STFDCNN (which uses ∆C to approximate

∆F ) can be regarded as a traditional method (i.e., it assumes that change information can be straight-

forwardly transferred from one sensor to another). Therefore, a comparison between the losses of BiaSTF

and STFDCNN can be considered as a comparison between the sensor-bias derived STF model and the

traditional model. In the following, we make a detailed comparison between the losses of the proposed

BiaSTF and traditional methods. The final loss function of BiaSTF, obtained by plugging (18) into (17),

becomes

E(‖B̂ −B‖2F ) = E(‖B̂ − (∆F −G(∆C))‖2F )

= E(‖B̂ +G(∆C)−∆F ‖2F ).

With respect to STFDCNN, taking (20) and (19) into account, we can model its loss as follows:

E(‖R̂−R‖2F ) = E(‖G(∆C)−∆F̂ ‖2F ). (21)

Following [36], it is easy to infer that2)

E(‖B̂ +G(∆C)−∆F ‖2F ) < E(‖G(∆C)−∆F̂ ‖2F ).

Therefore, we can conclude that the proposed BiaSTF has a better expected loss than the one of

STFDCNN. For illustrative purposes, Figure 4 plots the training residual of the proposed BiaSTF and

the traditional STFDCNN on two different datasets, i.e., CIA and LGC datasets, that will be used for

2) For a detailed proof, we refer to the work in [36].
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Table 1 Structure of the CNN architecture used by the proposed BiaSTF

Layer Filter size Stride Activation function

Conv1 7×7×n1 (1, 1) ReLU

Conv2 5×5×n2 (1, 1) ReLU

Conv3 3×3×n3 (1, 1) ReLU

Conv4 3×3×1 (1, 1) –

detailed evaluation in Section 3. It can be observed that the final residual of BiaSTF is much smaller

than those of STFDCNN, which confirms the introspections in our theoretical analysis. Furthermore, as

shown in Figure 4, in the beginning of BiaSTF the residual behaves the same as in STFDCNN. This is

expected, as the first subproblem (16) is exactly the same as in STFDCNN. However, in the later stage

of BiaSTF the residual further degrades to a much lower level by taking advantage from the bias learning

in the second subproblem (18)—STFDCNN converged in the first stage. Therefore, we can conclude that

our proposed approach is expected to achieve better STF reconstruction.

3 Experimental results

In this section, we evaluate the proposed BiaSTF approach by using two dtasets consisting of pairs of

Landsat-MODIS images. For comparative purposes, three methods, including ESTARFM (a classical

weighted function-based method) [9], FSDAF (a representative unmixing-based method) [4], and STFD-

CNN (a CNN-based learning method) [29], are also evaluated. For the competitors, the parameters are

set according to the original contributions to ensure their optimal performance. We would like to em-

phasize that these three methods are based on the traditional sptio-temporal fusion model, in which only

the changes are used for the reconstruction of the final image. Our proposed method uses (in addition to

the changes) the bias of the two sensors in the reconstruction process. Finally, for our proposed BiaSTF,

the weights in the final fusion model in (2) are determined by evaluating the similarity between the

predictions of F̂ (k−1,k) and F̂ (k+1,k), and the coarse images C(k).

3.1 CNN setting

For the proposed BiaSTF, we use four convolutional layers to construct the network architecture, where

the outputs of the first three layers are activated by using the ReLU funcion. The detailed settings are

illustrated in Table 1, where n1, n2, and n3 represent the number of kernels for the convolutional layers:

1, 2, and 3, respectively. Specifically, in this study we set n1, n2, and n3 to 128 owing to the complicated

spatial and temporal changes of the studied sites. Taking into account the limitations of the memory of

the GPU used in experiments, the training images are tailored into patches with size of 128 × 128 for

learning purposes. The final implementation is carried out using Tensorflow and Keras on a GTX 1080Ti

GPU.

3.2 Sites and datasets

Two datasets are used in our experiments, which are publicly available from [37]. They are collected by

Landsat (with 25 m spatial resolution and six spectral bands: 1–5 and 7) and MODIS (500 m spatial

resolution and the corresponding spectral bands: 1–5 and 7), respectively. The band orders of the two

sensors have been adjusted to match each other.

• The area covered by the first dataset is the coleambally irrigation area (CIA) in New South Wales,

Australia. In total, 15 cloud-free Landsat-MODIS image pairs are used, all with size of 1500 × 1500

pixels and acquired between October 2001 and May 2002, which comprise a growing period for the crops.

Notice that, CIA is a heterogenous area with multiple phenological changes [37]. As a result, it becomes

a widely used benchmark for the evaluation of STF methods. For the two CNN-based learning methods

(STFDCNN and the proposed BiaSTF), the image pairs 1–7 and 15 are used for training, while the

remaining pairs (8–14) are used in the prediction stage. For illustrative purposes, Figure 5 shows the 1st,
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Landsat

MODIS

1st pair 10th pair 15th pair

Figure 5 (Color online) Examples from CIA dataset, from which we can observe that there are significant phenological

changes.

Landsat

MODIS

1st pair 8th pair 14th pair

Figure 6 (Color online) Examples from LGC dataset, in which significant land-cover type changes can be observed.

10th and 15th pairs from the CIA dataset. It can be seen that there are significant phenological changes

among these three pairs.

• The area covered by the second dataset is the lower Gwydir catchment (LGC), also located New

South Wales, Australia. In total, 14 cloud-free Landsat-MODIS image pairs are used, all with size of

2000 × 2000 pixels and acquired between April 2004 and April 2005. LGC suffers a serious flood in mid-

December 2004. Specifically, the 8th pair is often used to test the ability of STF methods to characterize

land-cover type changes. Similar to our experiments for the CIA dataset, we choose 8 image pairs for

training purposes. Owing to the fact that the 8th image pair records the flood, we specifically choose the

pairs 1–6, 13 and 14 for training, and the remaining pairs (7–12) for the prediction stage. For illustrative
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purposes, Figure 6 shows the 1st, 8th and 14th pairs from the LGC dataset. It is obvious that there are

significant land-cover type changes among these three pairs.

3.3 Evaluation metrics

Four metrics are considered for quantitative evaluation as the following.

• The root mean square error (RMSE), which measures the reflectance difference between the predicted

image and the real image [4]. The lower the RMSE is, the better the performance is.

• The correlation coefficient (CC), which evaluates the linear relationship between the predicted and

real reflectance [4]. The higher the CC is, the better the performance is.

• The erreur relative global adimensionnelle de synthese (ERGAS), which indicates the overall spectral

similarity of two images [38]. The lower the ERGAS is, the better the performance is.

• The structure similarity (SSIM), which evaluates overall structure similarities between the predicted

and real images [39]. SSIM is a index measuring the spatial similarity. As a result, higher SSIM values

indicate lower spatial distortion.

• The spectral angle mapper (SAM), which measures the spectral angle differences between the pre-

dicted and real images. SAM is a index measuring the spectral similarity. As a result, lower SAM values

indicate lower spectral distortion.

3.4 Results and analysis

3.4.1 Experiment 1: overall quantitative evaluation

Table 2 summarizes the conducted quantitative evaluation experiments for the two considered datasets,

where the RMSE, CC, and SSIM refer to the mean values obtained for all six bands. It can be observed

that the proposed approach obtains the best results in most cases.

It should be noted that, for the SSIM metric (indicating the spatial similarity) and the SAM metric

(indicating the spectral similarity), which respectively evaluate the spatial and spectral distortions, the

proposed BiaSTF exhibits significant advantages over the other tested methods. Therefore, we can

conclude that the proposed BiaSTF can significantly reduce the distortion in comparison with the other

methods, which results from the model difference, where a bias of sensors is included in our newly

proposed model. In other words, by taking advantage from the bias modeling, the proposed BiaSTF can

quantitatively achieve better reconstruction from both the spatial and spectral viewpoints.

3.4.2 Experiment 2: quantitative and qualitative analysis

In this experiment, we perform a detailed quantitative and qualitative analysis of the obtained predictions,

with the following main observations.

• For the CIA dataset, we particularly address the prediction results for the 10th pair, which suffers

from severe phenological changes. Table 3 shows the results of the obtained quantitative assessment.

It is remarkable that the proposed approach achieves better results for all the considered (six) bands.

Concerning the SSIM and SAM metrics, the proposed BiaSTF exhibits significant advantages over the

other tested methods. As already mentioned, this indicates that the proposed BiaSTF exhibits smaller

spatial and spectral distortions in the STF process. In the following, we provide a qualitative illustration

of the obtained results. Figure 7 shows the obtained predictions. As it can be observed from the zoomed

regions, the reconstructed color (lower-leftmost plot) obtained by the proposed BiaSTF is more similar

to the ground-truth, which indicates that our BiaSTF exhibits less spectral distortion. On the other

hand, as shown in the upper-leftmost plot, our BiaSTF can preserve better the spatial details, meaning

that it exhibits less spatial distortion. Therefore, from both the quantitative and qualitative viewpoints,

the proposed BiaSTF achieves better fusion performance, with less spatial and spectral distortions, when

compared with methods based on the traditional model.

• For the LGC dataset, we specifically choose the 8th pair for detailed analysis because this pair

contains significant land-cover changes, which cause its spatial structure to be quite different from that
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Table 2 Quantitative assessment of the fusion results obtained for the two considered datasets

CIA dataset LGC dataset

Pair ESTARFM FSADF STFDCNN BiaSTF Pair ESTARFM FSADF STFDCNN BiaSTF

RMSE

8th 0.0301 0.0331 0.0256 0.0227 7th 0.0265 0.0247 0.0378 0.0240

9th 0.0249 0.0282 0.0263 0.0235 8th 0.0386 0.0374 0.0346 0.0334

10th 0.0263 0.0243 0.0274 0.0230 9th 0.0382 0.0383 0.0275 0.0239

11th 0.0265 0.0278 0.0285 0.0244 10th 0.0227 0.0237 0.0252 0.0211

12th 0.0241 0.0269 0.0251 0.0215 11th 0.0272 0.0283 0.0242 0.0240

13th 0.0213 0.0231 0.0226 0.0208 12th 0.0165 0.0230 0.0268 0.0167

14th 0.0229 0.0251 0.0229 0.0203 13th 0.0156 0.0255 0.0245 0.0154

CC

8th 0.8740 0.8514 0.9154 0.9312 7th 0.7295 0.7530 0.6456 0.7981

9th 0.9113 0.8784 0.8990 0.9186 8th 0.6871 0.7078 0.7166 0.7454

10th 0.9075 0.9206 0.8939 0.9267 9th 0.7444 0.6938 0.8372 0.8644

11th 0.8806 0.8734 0.8621 0.8993 10th 0.8975 0.8722 0.8879 0.9048

12th 0.8371 0.7936 0.8302 0.8644 11th 0.8900 0.8809 0.9061 0.9075

13th 0.8643 0.8505 0.8462 0.8670 12th 0.9356 0.8878 0.8476 0.9391

14th 0.8602 0.8223 0.8481 0.8794 13th 0.9326 0.8560 0.8313 0.9309

ERGAS

8th 0.8382 0.9239 0.7531 0.6445 7th 0.8418 0.8005 1.2632 0.7925

9th 0.8121 0.9214 0.8663 0.7740 8th 2.3058 2.0301 2.0952 2.0083

10th 0.8838 0.8097 0.8981 0.7720 9th 1.7146 1.7339 1.2056 1.0770

11th 0.8827 0.9474 0.9694 0.8131 10th 0.8059 0.8612 0.8949 0.7528

12th 0.8843 0.9616 0.9172 0.7901 11th 0.9556 0.9861 0.8486 0.8433

13th 0.8601 0.9027 0.9579 0.8943 12th 0.5657 0.7771 0.9810 0.5639

14th 0.8503 0.9607 0.8462 0.7540 13th 0.5015 0.7823 0.8909 0.5000

SSIM

8th 0.8921 0.8715 0.9288 0.9412 7th 0.8244 0.8403 0.7250 0.8658

9th 0.9277 0.8958 0.9174 0.9323 8th 0.7481 0.7523 0.7813 0.8022

10th 0.9246 0.9353 0.9164 0.9407 9th 0.7969 0.7811 0.8853 0.9074

11th 0.9111 0.9049 0.8972 0.9233 10th 0.9224 0.9078 0.9094 0.9302

12th 0.8977 0.8697 0.8923 0.9174 11th 0.9081 0.8996 0.9233 0.9250

13th 0.9146 0.9048 0.9034 0.9165 12th 0.9549 0.9189 0.8836 0.9572

14th 0.9080 0.8838 0.9034 0.9224 13th 0.9538 0.8861 0.8766 0.9532

SAM

8th 0.0728 0.0834 0.0742 0.0619 7th 0.0889 0.0799 0.1317 0.0738

9th 0.0716 0.0874 0.0874 0.0730 8th 0.2781 0.2433 0.2213 0.2156

10th 0.0783 0.0740 0.0914 0.0705 9th 0.1227 0.1785 0.1241 0.1185

11th 0.0823 0.0890 0.1004 0.0794 10th 0.0743 0.0935 0.0749 0.0651

12th 0.0770 0.0914 0.0893 0.0705 11th 0.0719 0.0805 0.0701 0.0689

13th 0.0737 0.0774 0.0824 0.0680 12th 0.0534 0.0681 0.0877 0.0504

14th 0.0601 0.0723 0.0762 0.0590 13th 0.0502 0.0801 0.0819 0.0463

Table 3 Quantitative assessment of the fusion results obtained for the 10th pair of the CIA dataset

ESTARFM FSDAF STFDCNN BiaSTF

RMSE CC SSIM RMSE CC SSIM RMSE CC SSIM RMSE CC SSIM

Band1 0.0134 0.9002 0.9379 0.0115 0.9168 0.9509 0.0126 0.8726 0.9317 0.0111 0.9232 0.9543

Band2 0.0138 0.8984 0.9351 0.0130 0.9094 0.9419 0.0138 0.8864 0.9288 0.0122 0.9124 0.9446

Band3 0.0211 0.9111 0.9247 0.0199 0.9216 0.9339 0.0222 0.8976 0.9137 0.0192 0.9242 0.9358

Band4 0.0348 0.8929 0.9009 0.0307 0.9160 0.9197 0.0378 0.8789 0.8878 0.0286 0.9280 0.9322

Band5 0.0382 0.9211 0.9248 0.0357 0.9319 0.9352 0.0389 0.9188 0.9229 0.0340 0.9365 0.9394

Band6 0.0368 0.9214 0.9242 0.0353 0.9283 0.9303 0.0395 0.9091 0.9138 0.0331 0.9360 0.9381

ERGAS 0.8838 0.8097 0.8981 0.7720

SAM 0.0783 0.0740 0.0914 0.0705

of its temporally adjacent image pairs. Table 4 shows the obtained results, while Figure 8 also shows

the obtained predictions. Similar to the observations in our previous experiment, the proposed approach
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Ground-truth ESTARFM FSDAF STFDCNN BiaSTF

Figure 7 (Color online) Prediction results obtained for the 10th pair of the CIA dataset.

Table 4 Quantitative assessment of the fusion results obtained for the 8th pair of the LGC dataset

ESTARFM FSDAF STFDCNN BiaSTF

RMSE CC SSIM RMSE CC SSIM RMSE CC SSIM RMSE CC SSIM

Band1 0.0161 0.6905 0.8597 0.0160 0.6820 0.8577 0.0166 0.6697 0.8513 0.0157 0.7126 0.8673

Band2 0.0228 0.6928 0.8059 0.0226 0.6921 0.8063 0.0234 0.6934 0.8045 0.0223 0.7115 0.8168

Band3 0.0281 0.6955 0.7795 0.0277 0.6904 0.7775 0.0295 0.6952 0.7754 0.0275 0.7169 0.7938

Band4 0.0481 0.7201 0.7487 0.0428 0.7947 0.7923 0.0376 0.8273 0.8329 0.0373 0.8374 0.8471

Band5 0.0660 0.6725 0.6595 0.0647 0.7008 0.6603 0.0558 0.7491 0.7264 0.0556 0.7656 0.7543

Band6 0.0505 0.6515 0.6356 0.0506 0.6868 0.6200 0.0451 0.6654 0.6975 0.0417 0.7317 0.7348

ERGAS 2.3058 2.0301 2.0952 2.0083

SAM 0.2781 0.2433 0.2213 0.2156

Ground-truth ESTARFM FSDAF STFDCNN BiaSTF

Figure 8 (Color online) Prediction results obtained for the 8th pair of the LGC dataset.

obtains the best results from a quantitative standpoint (as shown by Table 4). On the other hand,

as demonstrated in Figure 8, the proposed BiaSTF achieves better performance than the one obtained

by the other methods from a qualitative perspective also. Actually, as mentioned before, this image is

quite challenging from the viewpoint of reconstruction. We can observe that, from Figure 8, the image

obtained by the proposed BiaSTF exhibits much better similarity in terms of color (i.e., spectral similarity)

and spatial structure (i.e., spatial similarity) with regards to the ground-truth than those obtained by

ESTARFM, FSDAD and STFDCNN, considering the two zoomed regions as illustrative examples (it

is clear that the reconstruction obtained by BiaSTF exhibits much less distortion when compared with

the other three methods). Therefore, from this experiment we can conclude that the proposed BiaSTF

exhibits better STF performance when compared to the methods based on the traditional model.

3.4.3 Experiment 3: qualitative evaluation of the bias

As we described in Section 2, traditional methods only use changes from different acquisition times

to reconstruct the missing images, while the proposed BiaSTF exploits both the changes and the bias

between different sensors. In the former two experiments, we have provided quantitative results. In

this experiment, we perform a qualitative evaluation of the impact of changes and bias on the proposed

method. Figures 9 and 10 show the obtained changes maps, bias maps and bias errors (calculated as

the difference between the real bias maps and the obtained bias maps) for the 10th pair of the CIA

dataset and the 8th pair of the LCG dataset, respectively. After a qualitative evaluation of the results

in Figures 9 and 10, the following observations can be highlighted.
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Real change map ESTARFM FSDAF STFDCNN BiaSTF

Real bias map ESTARFM FSDAF STFDCNN BiaSTF

Real vs. ESTARFM Real vs. FSDAF Real vs. STFDCNN Real vs. BiaSTF

Figure 9 Change maps (first row), bias maps (second row), and bias square error maps (third row) obtained by different

methods for the CIA dataset, using the 10th pair.

Real change map ESTARFM FSDAF STFDCNN BiaSTF

Real bias map ESTARFM FSDAF STFDCNN BiaSTF

Real vs. ESTARFM Real vs. FSDAF Real vs. STFDCNN Real vs. BiaSTF

Figure 10 Change maps (first row), bias maps (second row) and bias square error maps (third row), obtained by different

methods for the LGC dataset, using the 8th pair.
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• First of all, concerning the changes, it is clear that the change maps obtained by the BiaSTF are

more similar to the real ones than those obtained by the other tested methods. This is a very interesting

observation because, theoretically, both learning-based methods (i.e., STFDCNN and BiaSTF) would

be expected to achieve the same (or very similar) change maps. Indeed, the maps produced by these

two methods are very similar. However, the maps obtained by BiaSTF are slightly better than those of

STFDCNN. This is mainly owing to the fact that we are incorporating a two-step learning in proposed

BiaSTF, so that the inclusion of the learning step for the bias reinforces and strenghtens the learning of

the changes.

• Furthermore, we can clearly observe that there is a bias between the two considered sensors. For

illustrative purposes, we not only compute the bias between the two sensor for our approach, but also for

the other tested methods. It is clear that the bias maps of our BiaSTF are more similar to the real ones,

while those obtained from the reconstructions are quite different from the real ones. This is expected, as

there is no consideration of the bias in the traditional model. In other words, with the inclusion of the

bias, the proposed BiaSTF is able to learn a model close to real scenarios.

• Finally, we can also see that the bias error maps (calculated as the difference between the real and

obtained bias maps) obtained by the proposed BiaSTF are better than those obtained using the other

methods. This confirms that the reconstructions achieved by BiaSTF exhibit less error when compared

to those obtained by the other tested method, as already indicated by our quantitative experiments.

4 Conclusion

In this study, we have presented the BiaSTF for remotely sensed images, where the bias is learnt by a

CNN-based method. An essential consideration exploited by our approach is that the sensor bias also

should be transferred from one sensor to another, apart from the direct changes. Another important

contribution of this study is the design of a new CNN-based method to efficiently learn the bias. Our

quantitative and qualitative experiments, conducted on two different datasets, reveal that the proposed

BiaSTF exhibits very good performance in STF when compared with other traditional methods. This

is because the proposed BiaSTF exploits both the changes and the bias between different sensors, while

traditional methods only use changes from different acquisition times to reconstruct the missing images.

A final relevant contribution of the proposed approach is that, with the inclusion of the bias in the

model, the spectral and spatial distortions are significantly reduced, resulting in remarkable performance

in terms of STF. In the future, we will develop more advanced deep learning-based strategies to learn the

bias and changes more efficiently and effectively.
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