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Dear editor,

Division property was a technique proposed by
Todo at EUROCRYPT 2015 to search integral dis-
tinguishers against block ciphers [1]. Todo [2] ap-
plied this technique to perform structural evalu-
ation against both the Feistel and the SPN con-
structions and attacked the full MISTY1. Sub-
sequently, many improved techniques based on
the division property were proposed [3,4]. At
FSE 2016, Todo and Morii [3] introduced the bit-
based division property and proved its effective-
ness to find distinguishers against non-S-box-based
ciphers.

Although more accurate integral distinguishers
were found by using the bit-based division prop-
erty, it could not be applied to ciphers whose
block length is more than 32 because of its high
time and memory complexities. Based on Todo’s
work, Xiang et al. [5] converted the distinguisher
search algorithm based on the bit-based division
property into an MILP problem at ASTACRYPT
2016. With this method, they obtained a series of
improved results including a 9-round PRESENT
distinguisher with one balanced bit. This distin-
guisher is one of the best-known distinguishers re-
lated to round numbers.

At CRYPTO 2016, Boura and Cauteaut [6]
introduced the parity set to study the divi-
sion property. They utilized the parity set to
exploit further properties of the PRESENT S-
box and the PRESENT linear layer, leading to
several improved distinguishers against reduced-
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round PRESENT. Because more properties of the
S-box and the linear layer are utilized, parity
sets can find more accurate integral characteris-
tics. However, although the authors did not point
out, a parity set requires higher time and memory
complexities than the division property does. Our
work aims at reducing time and memory complex-
ities when using parity sets to search integral dis-
tinguishers. As a result, we introduce the idea of
meet-in-the-middle into the distinguisher search.
To illustrate our techniques, we performed exten-
sive experiments on PRESENT and found a 9-
round distinguisher with 22 balanced bits.

Notation 1 (Bit product function). Let u, x €
F3. Denote
n
" = H x[i]“m,
i=1

and for u, ¢ € Fy* x F3? x -+ x Fy™, where

= (T, T2,...,Tm), u= (U, Un,...,Upy), define
bit product function as

Notation 2 (Comparison between vectors). For
a, b € Z™, denote a > b if a; > b; for all
0 < i< m, and denote a > b if a > b but a # b.
For u € 3, let us denote
Prec(u) = {ve Fy : v < u},

Succ(u) = {ve Fj : u< v}
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Theorem 1. If u,v € F3 satisfy w > v, then
W (u) > W(v).

Notation 3 (Comparison between sets). Let A
and B be two sets whose elements are in F3. De-
note A > B if there exist a € A and b € B with
a> b, and A # B if none of such couple exists.
Proposition 1. Let A and B be two sets whose
elements are in Fy with A > B. If there are
a,a; € A ,by,by € B such that ao > a; and
b1 2 b2, then A\{al} 2 B \ {bl}

Notation 4 (Round function). Let F be a per-
mutation of 5 defined by

F:x=(z1,29,...,20) = Y= (Y1,Y2,- - -, Yn)-

Then every y; can be seen as a Boolean function
on x1,%,...,&,, denoted by y; = F;(x). For a
positive integer r, we denote F" as a composition
of r permutation F.

Definition 1 (Division property [1]). Let X be
a multiset whose elements belong to F3. Then,
X has the division property D} when it fulfills
the following conditions: For w € FZ5, the parity
of &% over all elements in X is always even when
wt(u) < k. For further study of the division prop-
erty, please refer to [1,4] in detail.

Definition 2 (Parity set [6]). Let X be a set
whose elements take values of Fy. The parity set
of X is denoted by U(X) and defined as follows:

U(X){uewg: @m"1}.
zeX
Remark 1. If the parity set U(X) of X is known,
then the division property of X is given by Dj,
where
k= min wt(u).
ueU(X)

For the propagation rules of the parity set on
SPN, please refer to [1].

For an input set X and a round function F, de-
note the parity set after ri-round encryption as
U(E™ (X)), and the algebraic normal form (ANF)
of the i-th output bit after ro-round encryption as
E?(zx). If all the terms appearing in E;?(x) are
not divisible by any term in {z" : uw € U(E" (X))},
then the i-th output bit of (1 +72)-round encryp-
tion is balanced.

Based on this observation, we improved the in-
tegral distinguisher search by utilizing the meet-
in-the-middle technique which divides the n-round
propagation of parity sets into ni-round propaga-
tion of parity sets and (n —nq)-round propagation
of the ANF.

Next, we propose a new concept, which we call
term set, to describe the ANF and show the prop-
agation rules of the term set on SPN.
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Definition 3 (Term set). Let f(x) be an n-
variable Boolean function. The term set of f(x)
denoted by T'(f) is the subset of F4 defined by

T(f)={w e Fy : " appears in the ANF of f(x)}.

Proposition 2. Let S be an S-box over F5'. De-
note

Ts(u) = {veF5 : z’ appears in
the ANF of S*%(x)}.

Then for an m-variable Boolean function f with
the term set T'(f), we have

T(f(S@) < |J Tsluw).

ueT(f)

Proposition 3. Let & be a permutation
of F3* which consists of ¢ parallel indepen-
dent S-boxes over F5', namely, S(x,..., o) =
(S(x1),...,5(x)). For an mit-variable Boolean
function f with the term set T'(f), we have

rirsnc Y

(w1, u) ET(f)

Ts1(ug) X ... X Tsi(uy).

Proposition 4. Let f be an n-variable Boolean
function with the term set T'(f). For any k € F%,
the term set of f(k® x) = (v1 D k1,..., 2, B ky)
satisfies

Then, the term set after one round encryption
can be deduced by Propositions 2 and 4, i.e.,

T(f(S(xok) S |J |J Prec(v), for ke Fy.
ueT (f) veTs(u)

The proofs of these propositions could be found
through https://eprint.iacr.org/2018/447.

We can also search distinguishers by term
sets only. If there exists a w € Fy satisfying
Succ(w) T(EF) = 0, then a r-round distinguisher
whose input set is Prec(u) is found. However,
the time and memory complexities will be very
high. Thus, we took advantage of the meet-in-
the-middle technique so that the term set and the
parity set could be combined to reduce time and
memory complexities.

In order to find a distinguisher, we need to com-
pare T'(E;?) with U(E™ (X)) and verify whether
T(E®) # UE™(X)). Our distinguisher search
algorithm consists of five steps, which can be de-
scribed as follows.
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Step 1. Choose the propagation round num-
bers r1 and ro for the parity set and the term set
respectively, where 71 + ro = 7.

Step 2. Choose an input set X.

Step 3. Calculate the parity set U(E™ (X)).

Step 4. Calculate the term sets T'(E;?) for 1<
< n.

Step 5. Compare U(E™ (X)) with T(E;?) for
1<i<n HUE™(X)) # T(E?), then the i-th
output bit in r-round encryption is balanced. If
none of such intersections is empty, then choose
another X and go to Step 2.

We also propose some novel techniques to make
our algorithm more efficient.

Size reduce operation. For the term set
T(E!(x)), the size reduce operation R’ removes
all the elements v € T(E!(x)) such that there
is an element v € T(E!(x)) with v > v. As
for a parity set, the operation R" removes all
the elements w € U(E™ (X)) such that there is
an element v/ € U(E™ (X)) with uw > o/. Tt
can be deduced from Proposition 1 that the com-
parison result of T'(E7(x)) and U(E™ (X)) is the
same as the comparison result of R'(T(E!(z)))
and R*(U(E™(X))).

Observation 1. The PRESENT super S-boxes
can work independently in the 2-round encryption.

Reducing look-up table. Based on Observa-
tion 1, we can easily construct a 2-round propaga-
tion table for the super S-box by calculating

R (U(S(P(S(X)))))

for all possible inputs, where S is a permutation
of F3" consisting of four PRESENT S-boxes

8(5171, T2, I3, :174) = (S(ml); 5(332), S(:E;g), 5(334))

Multiple comparison. This technique at-
tempts to remove the terms that have no multiple
in U; if no term is divisible by a vector in i/, then
it is clear that the output bit is balanced. We tried
to judge such divisibility in terms of degree order
and alphabet order. For the details of this tech-
nique, refer to https://eprint.iacr.org/2018/447.

To illustrate our techniques, we apply our algo-
rithm to the PRESENT distinguisher search.

Observation 2. The cubic terms in the ANFs
of the second and fourth coordinates of the
PRESENT S-box (say Sz and S4) are the same [7].

As a result, the xor of these two coordinates
S @ 84 = 1D z1 ® x2w3 © T2wg D T34

has only degree 2. Moreover, every term in Ss .5y
has a multiple in Sy and Sy respectively. Hence,
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Sy @ S4 may be balanced even if Sy and Sy are
unbalanced.

We tried to find 10-round PRESENT distin-
guishers first, but the result of the rightmost out-
put bit is unbalanced for all the input sets with
dimension 63. It seems that the ANF of this out-
put bit is the simplest among 64 output bits, and
therefore, our results show that the PRESENT
probably has no 10-round integral distinguishers
by only using the division property. Then, we fo-
cus on the 9-round PRESENT, and find a distin-
guisher with 22 balanced output bits.

Input:

( acaaaaaaacaaaaca aaaaaaaaaaaaaaaa
aaaaeaaaaaaaaaad aaaaaaaaaaaaaaac ),
Output:

[AP%)]

where “c” means a constant bit, “a” means an ac-
tive bit, “?”means an unknown bit, and “b” means
a balanced bit. In addition, the presence of bits
with the same notation b; means their addition is
balanced.

Conclusion. In this study, we proposed a con-
cept called the term set to propagate information
of the ANF. With term sets, we improved the dis-
tinguisher search method based on the parity set
in terms of both memory and time complexities.
From the relation between the parity set and the
bit-based division property, it was found that the
term set could also be applied to improve the dis-
tinguisher search method based on the bit-based
division property.
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