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Dear editor,
Division property was a technique proposed by
Todo at EUROCRYPT 2015 to search integral dis-
tinguishers against block ciphers [1]. Todo [2] ap-
plied this technique to perform structural evalu-
ation against both the Feistel and the SPN con-
structions and attacked the full MISTY1. Sub-
sequently, many improved techniques based on
the division property were proposed [3, 4]. At
FSE 2016, Todo and Morii [3] introduced the bit-
based division property and proved its effective-
ness to find distinguishers against non-S-box-based
ciphers.

Although more accurate integral distinguishers
were found by using the bit-based division prop-
erty, it could not be applied to ciphers whose
block length is more than 32 because of its high
time and memory complexities. Based on Todo’s
work, Xiang et al. [5] converted the distinguisher
search algorithm based on the bit-based division
property into an MILP problem at ASIACRYPT
2016. With this method, they obtained a series of
improved results including a 9-round PRESENT
distinguisher with one balanced bit. This distin-
guisher is one of the best-known distinguishers re-
lated to round numbers.

At CRYPTO 2016, Boura and Cauteaut [6]
introduced the parity set to study the divi-
sion property. They utilized the parity set to
exploit further properties of the PRESENT S-
box and the PRESENT linear layer, leading to
several improved distinguishers against reduced-

round PRESENT. Because more properties of the
S-box and the linear layer are utilized, parity
sets can find more accurate integral characteris-
tics. However, although the authors did not point
out, a parity set requires higher time and memory
complexities than the division property does. Our
work aims at reducing time and memory complex-
ities when using parity sets to search integral dis-
tinguishers. As a result, we introduce the idea of
meet-in-the-middle into the distinguisher search.
To illustrate our techniques, we performed exten-
sive experiments on PRESENT and found a 9-
round distinguisher with 22 balanced bits.

Notation 1 (Bit product function). Let u , x ∈
Fn
2 . Denote

xu =

n
∏

i=1

x[i]u[i],

and for u , x ∈ Fn1

2 × Fn2

2 × · · · × Fnm

2 , where
x = (x1, x2, . . . , xm), u = (u1,u2, . . . ,um), define
bit product function as

xu =
m
∏

i=1

xui

i .

Notation 2 (Comparison between vectors). For
a , b ∈ Zm, denote a > b if ai > bi for all
0 < i 6 m, and denote a > b if a > b but a 6= b.

For u ∈ Fn
2 , let us denote

Prec(u) = {v ∈ Fn
2 : v 6 u},

Succ(u) = {v ∈ Fn
2 : u 6 v}.
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Theorem 1. If u, v ∈ Fnt
2 satisfy u > v, then

W (u) > W (v).

Notation 3 (Comparison between sets). Let A

and B be two sets whose elements are in Fn
2 . De-

note A > B if there exist a ∈ A and b ∈ B with
a > b, and A � B if none of such couple exists.

Proposition 1. Let A and B be two sets whose
elements are in Fn

2 with A > B. If there are
a1,a2 ∈ A, b1, b2 ∈ B such that a2 > a1 and
b1 > b2, then A \ {a1} > B \ {b1}.

Notation 4 (Round function). Let F be a per-
mutation of Fn

2 defined by

F : x = (x1, x2, . . . , xn) 7→ y = (y1, y2, . . . , yn).

Then every yi can be seen as a Boolean function
on x1, x2, . . . , xn, denoted by yi = Fi(x). For a
positive integer r, we denote F r as a composition
of r permutation F .

Definition 1 (Division property [1]). Let X be
a multiset whose elements belong to Fn

2 . Then,
X has the division property Dn

k when it fulfills
the following conditions: For u ∈ Fn

2 , the parity
of xu over all elements in X is always even when
wt(u) < k. For further study of the division prop-
erty, please refer to [1, 4] in detail.

Definition 2 (Parity set [6]). Let X be a set
whose elements take values of Fn

2 . The parity set
of X is denoted by U(X) and defined as follows:

U(X) =

{

u ∈ Fn
2 :

⊕

x∈X

xu = 1

}

.

Remark 1. If the parity set U(X) ofX is known,
then the division property of X is given by Dn

k ,
where

k = min
u∈U(X)

wt(u).

For the propagation rules of the parity set on
SPN, please refer to [1].

For an input set X and a round function E, de-
note the parity set after r1-round encryption as
U(Er1(X)), and the algebraic normal form (ANF)
of the i-th output bit after r2-round encryption as
Er2

i (x). If all the terms appearing in Er2
i (x) are

not divisible by any term in {xu : u ∈ U(Er(X))},
then the i-th output bit of (r1+ r2)-round encryp-
tion is balanced.

Based on this observation, we improved the in-
tegral distinguisher search by utilizing the meet-
in-the-middle technique which divides the n-round
propagation of parity sets into n1-round propaga-
tion of parity sets and (n−n1)-round propagation
of the ANF.

Next, we propose a new concept, which we call
term set, to describe the ANF and show the prop-
agation rules of the term set on SPN.

Definition 3 (Term set). Let f(x) be an n-
variable Boolean function. The term set of f(x)
denoted by T (f) is the subset of Fn

2 defined by

T (f)={u ∈ Fn
2 : xu appears in the ANF of f(x)}.

Proposition 2. Let S be an S-box over Fm
2 . De-

note

Ts(u) = {v ∈ Fm
2 : xv appears in

the ANF of Su(x)}.

Then for an m-variable Boolean function f with
the term set T (f), we have

T (f(S(x))) ⊆
⋃

u∈T (f)

Ts(u).

Proposition 3. Let S be a permutation
of Fmt

2 which consists of t parallel indepen-
dent S-boxes over Fm

2 , namely, S(x1, . . . , xt) =
(S(x1), . . . , S(xt)). For an mt-variable Boolean
function f with the term set T (f), we have

T (f(S)) ⊆
⋃

(u1,··· ,ut)∈T (f)

Ts1(u1)× . . .× Tst(ut).

Proposition 4. Let f be an n-variable Boolean
function with the term set T (f). For any k ∈ Fn

2 ,
the term set of f(k ⊕ x) = (x1 ⊕ k1, . . . , xn ⊕ kn)
satisfies

T (f(k⊕ x)) ⊆
⋃

u∈T (f)

Prec(u).

Then, the term set after one round encryption
can be deduced by Propositions 2 and 4, i.e.,

T (f(S(x⊕k))) ⊆
⋃

u∈T (f)

⋃

v∈Ts(u)

Prec(v), for k ∈ Fn
2 .

The proofs of these propositions could be found
through https://eprint.iacr.org/2018/447.

We can also search distinguishers by term
sets only. If there exists a u ∈ Fn

2 satisfying
Succ(u)

⋂

T (Er
i ) = ∅, then a r-round distinguisher

whose input set is Prec(u) is found. However,
the time and memory complexities will be very
high. Thus, we took advantage of the meet-in-
the-middle technique so that the term set and the
parity set could be combined to reduce time and
memory complexities.

In order to find a distinguisher, we need to com-
pare T (Er2

i ) with U(Er1(X)) and verify whether
T (Er2

i ) � U(Er1(X)). Our distinguisher search
algorithm consists of five steps, which can be de-
scribed as follows.
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Step 1. Choose the propagation round num-
bers r1 and r2 for the parity set and the term set
respectively, where r1 + r2 = r.

Step 2. Choose an input set X .
Step 3. Calculate the parity set U(Er1(X)).
Step 4. Calculate the term sets T (Er2

i ) for 16
i 6 n.

Step 5. Compare U(Er1(X)) with T (Er2
i ) for

1 6 i 6 n. If U(Er1(X)) � T (Er2
i ), then the i-th

output bit in r-round encryption is balanced. If
none of such intersections is empty, then choose
another X and go to Step 2.

We also propose some novel techniques to make
our algorithm more efficient.

Size reduce operation. For the term set
T (Er

i (x)), the size reduce operation Rt removes
all the elements v ∈ T (Er

i (x)) such that there
is an element v′ ∈ T (Er

i (x)) with v′ > v. As
for a parity set, the operation Ru removes all
the elements u ∈ U(Er1(X)) such that there is
an element u′ ∈ U(Er1(X)) with u > u′. It
can be deduced from Proposition 1 that the com-
parison result of T (Er

i (x)) and U(Er1(X)) is the
same as the comparison result of Rt(T (Er

i (x)))
and Ru(U(Er1(X))).

Observation 1. The PRESENT super S-boxes
can work independently in the 2-round encryption.

Reducing look-up table. Based on Observa-
tion 1, we can easily construct a 2-round propaga-
tion table for the super S-box by calculating

Ru
(

U(S(P (S(X))))
)

for all possible inputs, where S is a permutation
of F4n

2 consisting of four PRESENT S-boxes

S(x 1, x2, x3, x4) = (S(x1), S(x2), S(x3), S(x4)).

Multiple comparison. This technique at-
tempts to remove the terms that have no multiple
in U ; if no term is divisible by a vector in U , then
it is clear that the output bit is balanced. We tried
to judge such divisibility in terms of degree order
and alphabet order. For the details of this tech-
nique, refer to https://eprint.iacr.org/2018/447.

To illustrate our techniques, we apply our algo-
rithm to the PRESENT distinguisher search.

Observation 2. The cubic terms in the ANFs
of the second and fourth coordinates of the
PRESENT S-box (say S2 and S4) are the same [7].

As a result, the xor of these two coordinates

S2 ⊕ S4 = 1⊕ x1 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4

has only degree 2. Moreover, every term in S2⊕S4

has a multiple in S2 and S4 respectively. Hence,

S2 ⊕ S4 may be balanced even if S2 and S4 are
unbalanced.

We tried to find 10-round PRESENT distin-
guishers first, but the result of the rightmost out-
put bit is unbalanced for all the input sets with
dimension 63. It seems that the ANF of this out-
put bit is the simplest among 64 output bits, and
therefore, our results show that the PRESENT
probably has no 10-round integral distinguishers
by only using the division property. Then, we fo-
cus on the 9-round PRESENT, and find a distin-
guisher with 22 balanced output bits.
Input:
( aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaac ),
Output:
( ????????????b3?b3b ????????????b2?b2b
????????????b1?b1b bbbbbbbbbbbbbbbb ),
where “c” means a constant bit, “a” means an ac-
tive bit, “?”means an unknown bit, and “b” means
a balanced bit. In addition, the presence of bits
with the same notation bi means their addition is
balanced.

Conclusion. In this study, we proposed a con-
cept called the term set to propagate information
of the ANF. With term sets, we improved the dis-
tinguisher search method based on the parity set
in terms of both memory and time complexities.
From the relation between the parity set and the
bit-based division property, it was found that the
term set could also be applied to improve the dis-
tinguisher search method based on the bit-based
division property.
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