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Appendix A Security proof for the (2,2) vector secret sharing scheme

Our (2,2) vector secret sharing construction is secure under the SIS assumption proved in the following theorem.

Theorem 1. Our special (2,2) vector secret sharing construction is secure if the SIS(n,m, q, β) assumption holds.

Proof. Let A be some PPT adversary that succeeds in attacking the (2,2) vector secret sharing scheme with non-negligible

probability ε. We can construct an algorithm B that breaks the SIS(n,m, q, β) problem defined by A∗ ∈ Zn×mq . Assume

P ∗ = {P ∗1 , P ∗2 } is the challenge participate set.

In Setup Phase, algorithm B uses A∗ instead of A, obtains (B,TB) ← TrapGen(n, q,m), picks two random ma-

trices U∗1,U
∗
2 ← (DZm,η)m and sets A1 = A∗U∗1 − H(P ∗1 )B, A2 = A∗U∗2 − H(P ∗2 ). Then B sends parameters

pp = (n, q,m,A∗,B,A1,A2) to A. From the Corollary 4.4 of [1], the distribution of matrices A1,A2 are statistically

close to them in real scheme.

In query phase, algorithm B answers the sub-secret queries of any shareholders from adversary A, except for answering

the queries of P ∗1 , P
∗
2 at the same time. Here we assume adversary A never queries P ∗2 ’s sub-secret.

If Pi 6= P ∗1 , B samples E2,1,E2,2 ← (DZm,s1 )m, R1 ← Dm×m, sets −UPi
← [A0|A2 + H(P ∗2 )B] ·

(
E2,1

E2,2

)
, stores

UPi
in the shareholder Pi. Then B samples Ei ← SampleRight(A,A1 + (H(Pi) − H(P ∗1 ))B,U∗1,TB,UPi

, s′1), E′Pi
←

SampleRight(A,A1 + (H(Pi) − H(P ∗1 ))B,U∗1,TB, 0, s
′
1) and sets EPi

= E′Pi
R1. At last, it returns (Ei,EPi

,R1) as the

query.

If Pi = P ∗1 , B samples E1,1,E1,2 ← (DZm,s1 )m, R1 ← Dm×m, sets UP∗
1
← [A0|A1 +H(P ∗1 )B] ·E1, EP∗

1
= −U∗1 ·R1,

where E1 :=

(
E1,1

E1,2

)
. Then it computes HP∗

1
:= E1,1 − EP∗

1
R−1

1 E1,2, and stores HP∗
1
,UP∗

1
in the shareholder P ∗1 . At

last, B returns (E1,EP∗
1
,R1) to A as the query. According the Corollary 4.4 of [1], Theorem 17 and Theorem 19 of [2], the

distribution of answered sub-secret is statistically close to the distribution in real scheme.

In the Construction phase, A provides a valid secret T∗ under challenge participant set P ∗. In other words, adversary

A recovers AP∗
1 ,P

∗
2

’s short basis T∗, and has AP∗
1 ,P

∗
2
·T∗ = 0.

In the following, we will use A’s T∗ to obtain a valid solution of SIS problem. First, let (tT1,1, t
T
1,2, t

T
1,3)T be the first

column vector of matrix T∗. Obviously, it has (A∗|A∗U∗1|A∗U∗2) · (tT1,1, tT1,2, tT1,3)T = 0, that is A∗ · (t1,1 + U∗1t1,2 +

U∗2t1,3) = 0. Since ‖U∗i ‖ 6 η
√
m, i ∈ {1, 2}, then it has ‖t1,1 + U∗1t1,2 + U∗2t1,3‖ 6

√
3m · (1 + 2η

√
m). If t1,1 + U∗1t1,2 +

U∗2t1,3 6= 0 and
√

3m · (1 + 2η
√
m) 6 β, then t1,1 + U∗1t1,2 + U∗2t1,3 will be a non-zero solution of SIS(n,m, q, β) problem.

Next, we will show that t := t1,1 + U∗1t1,2 + U∗2t1,3 6= 0. Suppose for an easy case that t1,2 = 0 and t1,3 = 0; then for

a valid short basis we must have t1,1 6= 0 and thus t 6= 0. Suppose on the contrary that t1,2 6= 0 or t1,3 6= 0. In that case,

w.l.o.g., let t1,2 6= 0, since ‖t1,2‖ <
√

3ms1 � q, then there exists at least one t1,2’s coordinate such that it is non-zero

modulo q. We assume t1,2’s last one coordinate is non-zero and set it y. Assume u∗ is the last column of U∗1 and then we

have t = yu∗+ t′, where t′ has nothing to do with u∗. We know that only the last column of U∗1 contains u∗’s information

which is available to A. From a simple pigeonhole principle, there are exist many admissible and equally likely vector u∗

that are same with A’s view. A can not know the value of yu∗ with probability exceeding once third, then every other

yu∗ would fail to do so. Since we have Pr{t 6= 0} > 1 − exp(−Ω(m − n log q)) → 1 under λ → ∞, then we deduce that

Pr{t 6= 0} > 2/3. Therefore, algorithm B can solve the SIS(n,m, q, β) problem with the advantage of (2/3) · ε.
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Since the SIS problem is as hard as approximating to the worst-case shortest independent vector problem from [3], then

the adversary A can not provide such a valid secret T∗ for challenge participant set P ∗. So, the proposed (2,2) vector secret

sharing scheme is secure. This concludes the proof.

Appendix B Security proof for the general RIBFHS scheme

Theorem 2. Our general RIBFHS scheme is EUF-sID-CMA secure, if the scheme VSS and the scheme FHS are secure.

Proof. Suppose adversary A breaks the general construction of RIBFHS. Let (id∗, t∗, τ∗, µ∗) be the challenge identity,

time, tag and the vector of messages on which the adversary A will make a forgery. We can construct an algorithm A∗
that succeeds attacking the scheme VSS or construct an algorithm B∗ that forges a valid message/signature pair for scheme

FHS. The simulation process is as follows:

Setup∗(1λ, 1L, 1l, N): A∗ simulates the parameters as in initial phase of VSS, and B∗ perform the algorithm FHS.Setup

to obtain other parameters. Send all parameters to A.

PriKeyGen and Key Update Queries: A∗ first picks a node ν∗ ∈ BT and allots it to id∗. It is worth noting that there

will be two types adversaries:

• Type (a) adversaries are revoked users and can challenge the target identity id∗ before or on time t∗.

• Type (b) adversaries can not challenge the target identity id∗ at any time.

Obviously, Type (a) adversaries are the insider adversaries and Type (b) are the outsider adversaries. For Type (a)

adversaries, A∗ first picks a node ν∗ ∈ BT and may be allot it to id∗. We know that these adversaries are revoked

users which can issue id∗’s private key query before or on time t∗. For PriKeyGen queries, when the adversary issues

the target identity id∗, A∗ samples E1,1,E1,2 ← (DZm,s1 )m, R1 ← Dm×m as the answer which corresponds to the

case i = i∗ of VSS’s sub-secret query; Otherwise, A∗ uses the VSS’s i 6= i∗ sub-secret queries to answer. For Key

Update queries, when the adversary does not ask the update key at t = t∗, A∗ also can use the VSS’s i 6= i∗ sub-secret

queries to answer; when the adversary issues the t = t∗ update key query, A∗ samples E′1,1,E′1,2 ← (DZm,s1 )m,

R2 ← Dm×m as the answer which corresponds to the case i = i∗ of VSS’s sub-secret query. For Type (b) adversaries,

A∗ also first picks a node ν∗ ∈ BT and may be assign it id∗. We know that these adversaries can never issue id∗’s

private key query. Then for the PriKeyGen queries, A∗ can use the VSS’s i 6= i∗ sub-secret queries to answer. For Key

Update queries, when the adversary challenge the update key at t 6= t∗, A∗ also can use the VSS’s i 6= i∗ sub-secret

queries to answer; when the adversary issues the t = t∗ update key query, A∗ samples E′1,1,E′1,2 ← (DZm,s1 )m,

R2 ← Dm×m as the answer which corresponds to the case i = i∗ of VSS’s sub-secret query.

Signature Queries: A issues a series of signature queries. B simulates signatures of messages µ for A’s signature queries

as follows. B∗ answers these

• If the queried messages µ are under target identity id∗ in target time t∗. B answers these queries same to the

answers of FHS’s signature queries.

• If the queried messages µ are under identity id 6= id∗ or in time t 6= t∗, B answers as follows:

1. if id 6= id∗, sample vector using SampleRight’s extension algorithm SampleRightExt from [?]:

σ ← SampleRightExt(A0, (H(id)−H(id∗))B,At,µ,TB, 0, s
′
2)

2. if t 6= t∗, sample vector

σ ← SampleRightExt(A0, (H(t)−H(t∗))B,Aid,µ,TB, 0, s
′
2)

3. Output σ.

Forgery: Adversary A outputs the signing key SKid∗,t∗ or a forgery (µ∗, σ∗, C∗).

If A outputs the signing key SKid∗,t∗ , then A∗ outputs SKid∗,t∗ . It means that A∗ breaks the scheme VSS. If A outputs

a forgery (µ∗, σ∗, C∗), then B∗ outputs this result. It means that B∗ breaks the scheme FHS. Since the schemes VSS and

FHS are secure, then our general construction is secure.

Appendix C Comparisons

Appendix C.1 Efficiency comparisons

It is known that our proposed RIBFHS scheme is a general construction, which utilizes (2,2) vector secret sharing as a

black box to transform any FHS scheme into a RIBFHS scheme. In other words, if a concrete and secure FHS scheme is

input into (2,2) vector secret sharing black box, it will output a concrete and secure RIBFHS scheme. Since we proposed a

RIBFHS general construction, we cannot analyze its efficiency accurately. While there is no RIBFHS scheme at present, we

are the first to propose a RIBFHS scheme and cannot provide efficiency comparisons with the existing schemes directly. In

terms of revocation mechanism, we can compare the PKG’s workload between existing lattice-based RIBS schemes (Xiang’s

RIBS [4]and Hung’s RIBS [5]) and our RIBFHS scheme. In Xiang’s RIBS scheme, since the PKG needs to interact with

users to generate the update key secretly, then the number of update keys is linear with the non-revoked users’ number

Nmax − r, where Nmax is the maximum number of users in the system, r is the number of revoked users. In Hung’s RIBS

scheme, their update key algorithm has nothing to do with revocation list and produces all users’ update key in the system.
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In other words, the number of update keys is the maximum number of users Nmax. Our RIBFHS scheme adopts complete

tree revocation technology from [6], which causes that the number of update keys has r log(Nmax/r) function associated

with revoked users’ number r and maximum number of users Nmax. In practical use, few users will be revoked in each time

period. For example, suppose that there is only one user is revoked in some time period, then the update keys’ numbers

in our RIBFHS, Xiang’s RIBS and Hung’s RIBS are log(Nmax), Nmax − 1 and Nmax, respectively. Thus the update keys’

number in our scheme is logarithmic with the maximum number of users Nmax. But the update keys’ number in both

Xiang’s RIBS and Hung’s RIBS are linear with the maximum number of users Nmax.

Appendix C.2 Functionality comparisons

According to functionality, we also present some comparisons with Xiang’s RIBS and Hung’s RIBS in Table C1 to highlight

our RIBFHS’s strengths. Firstly, our RIBFHS can be easily achieved through (2,2) vector secret sharing as a black box

and FHS. But both Xiang’s RIBS and Hung’s RIBS are concrete schemes and cannot easily achieved through any black

boxes. Secondly, both our RIBFHS and Xiang’s RIBS are secure in the standard model. But Hung’s RIBS is secure under

the random oracle model, which has not yet met the requirement of reality. Thirdly, both our RIBFHS and Hung’s RIBS

broadcast the update keys regularly through public channels. But Xiang’s scheme uses secure channels to send periodic

update keys. Finally, Our RIBFHS can perform homomorphic operations over signatures, which can be suitable to be

applied in the untrusted cloud computing environment. Furthermore, such computed signatures can be made context

hiding to ensure that they do not reveal anything about the underlying data beyond the outcome of the computation.

However, none of Xiang’s RIBS and Hung’s RIBS have this practical property.

Table C1 The comparison table between the existing RIBS schemes and our RIBFHS scheme

Xiang’s RIBS [4] Hung’s RIBS [5] Our RIBFHS

Update keys’ number Nmax − r Nmax r log(Nmax/r)

Black box No No Yes

Security model Standard model Random oracle model Standard model

Update key’ transport channel Secure channel Public channel Public channel

Homomoriphic property No No Yes

Context hiding No No Yes
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