
SCIENCE CHINA
Information Sciences

March 2020, Vol. 63 139104:1–139104:3

https://doi.org/10.1007/s11432-018-9540-y

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. LETTER .

An improved PAAs countermeasure based on

permutation tables and latch PUF

Bing LI, Shuai CHEN* & Kai WANG

Advanced Cloud-Systems Research Center, School of Microelectronics, Southeast University, Nanjing 210000, China

Received 27 April 2018/Accepted 6 August 2018/Published online 10 February 2020

Citation Li B, Chen S, Wang K. An improved PAAs countermeasure based on permutation tables and latch PUF.

Sci China Inf Sci, 2020, 63(3): 139104, https://doi.org/10.1007/s11432-018-9540-y

Dear editor,
Maintaining the secrecy of secret keys under the
so-called power analysis attack (PAA) is chal-
lenging (the summary of PAAs countermeasure
was shown in Appendix A). Prior studies have
demonstrated that conventional permutation ta-
bles masking scheme is a powerful method for
PAAs countermeasure [1]. However, this mask-
ing scheme lacks consideration of the leakages de-
rived from the simultaneously updated registers [2]
(shown in Appendix B). In view of this vulnera-
bility, we propose an improved permutation tables
masking scheme which can manipulate the sensi-
tive values simultaneously without leaking key in-
formation in the Hamming distance model.

Furthermore, we propose a Latch physical un-
clonable functions (PUF) [3, 4] based a true ran-
dom number generator (TRNG) to generate ran-
dom bits as masks. The throughput of the TRNG
is 12.5 Mbps in 25 MHZ clock which satisfies the
requirements of masks in our masking scheme.
Also, experiment results demonstrate that our
TRNG pass the National Institute of Standards
and Technology (NIST) random number tests. For
security issue, experiment results show that the
Pearson coefficient reduced from 0.8 to nearly 0,
which demonstrate that our improved permuta-
tion tables masking scheme provides a relatively
higher security against first-order PAAs than con-
ventional permutation tables masking schemes.

Our improved permutation tables masking

scheme. As shown in Figure 1(a), a 16-bytes

data was operated in an AES (advanced encryp-
tion standard) round function for encryption, and
each byte of this data was transformed in the
same transformations. Based on this property,
we proposed to randomly exchange the contents
of masked intermediate value P (zi) where 0 6 i

6 15 in each operation process to remove the de-
pendency between the distributions of Lsum1 and
∆(Sh(z)).

Our masked AES scheme works as follows.
Upon each invocation of our masked AES, M

was randomly selected from a set of permuta-
tions M which defined over F4

2, for example, M =
[14, 6, 0, 5, 9, 1, 4, 15, 8, 10, 12, 2, 3, 13, 11, 7]. Here,
M cannot be defined as the set of all the permu-
tations over F4

2. Essentially, in order to ensure the
correctness of AES, M must include all numbers
between 0 and 15. Moreover, M was generated by
a random number kM in this study.

After the randomized AddRoundKey transfor-
mation, masked intermediate value P (zi) were op-
erated to P (zi)

′ according to M : P (zi)
′ = [P (z14),

P (z6), P (z0), P (z5), P (z9), P (z1), P (z4), P (z15),
P (z8), P (z10), P (z12), P (z2), P (z3), P (z13),P (z11),
P (z7)], where 0 6 i 6 15.

At the beginning of randomized SubBytes trans-
formation, S-box was accessed at the address
P (zi)

′, for 0 6 i 6 15. Essentially, after that, the
values of registers R1 and R2 were no longer based
on P (zi), but associated with P (zi)

′.

At last, function M−1 (which was inversed from
M) was applied to exchange the output of regis-

*Corresponding author (email: chenshuai ic@seu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9540-y&domain=pdf&date_stamp=2020-2-10
https://doi.org/10.1007/s11432-018-9540-y
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9540-y
https://doi.org/10.1007/s11432-018-9540-y

Li B, et al. Sci China Inf Sci March 2020 Vol. 63 139104:2

Latch PUF 1

Latch PUF 2

...

Latch PUF 128

Latch PUF 3

XOR1
XOR2

Output

...

XOR127...
Latch Latch Latch Latch Latch

Latch Latch

Latch Latch Latch

clk
challenge

Latch PUF 1

Latch PUF 2

Latch PUF 128

Latch PUF 3 output

...

...

clk
challenge

XOR127

XOR3XOR2

XOR1

Latch PUF 1

Latch PUF 2

...

Latch PUF 128

Latch PUF 3

XOR1

XOR2

XOR65

XOR127

Output
Latch PUF 4

Latch PUF 127

Latch PUF 128

Latch PUF 127

XOR 64
XOR 96

XOR 65

XOR 96

XOR 127

XOR 1

XOR 2

XOR 64

Latch PULatch PULatch PULatch PULatch PULatch PULatch PULatch PULatch PU

Latch PULatch PULatch PULatch PULatch PULatch PULatch PU

Latch PULatch PULatch PULatch PULatch PULatch PU

Latch PULatch PULatch PULatch PULatch PULatch PULatch PULatch PULatch PULatch PULatch PU

clk
challenge

...

......

First
level

Second
level

Seventh
level

Latch PUF 1

Latch PUF 2

...

Latch PUF 3
output

Latch PUF 4

...

......

First
level

Second
level

Seventh
level

clk
challenge

Latch PUF 4

Race and hazard

Feed back
Feed back

P P

XT

Messages
M key K

Randomised

AddRoundKey

16 bytes 16 bytes

Masked intermediate value

Randomised

SubBytes

T P′

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

M

S
h

S
l

T P′
S

h
S

l T P′
S

h
S

l

S-box

Randomised

SubBytes

S-box

Randomised

SubBytes

S-box

P
ADD

P
ADD

P−1

M−1

P−1

P′−1 P′

uvMasked

Output y
16 bytes

Exchange the inputs of S-box

P(z
0
) P(z

5
) P(z

15
)

P(z
i
) where 0≤i≤15

P(z
i
)′ where 0≤i≤15

P(z
14

)

for P(z
1
) for P(z

2
) for P(z

16
)

P(z
6
) P(z

0
) P(z

7
)

P(z
1
)

M

M=[14,6,0,5,9,1,4,15,

8,10,12,2,3,13,11,7]

e.g.

Q

Q

Challenge LUT
(NAND)

LUT
(NAND)

DFF

DFF

DFF

DFF

clk
challenge

clk
peripheral

Response

16×2 bits
16×4 bits

16×2 bits

(a)

(b) (c)

(d)
(e)

(g)(f)

Figure 1 (Color online) The structure of our improved permutation tables masking scheme and Latch PUF based TRNG.
(a) The structure of improved permutation tables masking scheme; (b) the structure of Latch PUF cell; (c) the structure
of Latch PUF cell in FPGA [5]; (d) XOR corrector in [5]; (e) symmetrically placed XOR corrector; (f) XOR corrector with
feed-back; (g) symmetrically placed XOR corrector with feed-back.

ters in the 16 times of randomized SubBytes trans-
formation, in order to get the correct encrypting
output.

Here, we will analyze the leakage of simultane-
ously updated registers R1, R2, R3 and R4 in our
masked AES. Take one byte of randomized inter-
mediate value P (z1) for example, the global leak-
age of registers R1 and R2 (also denoted by Lsum1)
satisfies

Lsum1 = Λ(µ(∆(Sl(z1)))⊕ µ(∆(Sh(P (z1)))))

+ Λ(µ(∆(Sh(M(P (z1))))))

+NR1 +NR2. (1)

As shown in (1), except for the condition that
M(P (z1)) = P (z1), the distribution of Lsum1 in
our masked AES is independent of sensitive vari-
able ∆(Sh(z)). In our masked AES, M was freshly
selected from M by a uniformly distributed mask
kM before each execution. Therefore, without the
knowledge of kM , an attacker who makes statis-
tics for the power consumption of Lsum1 only can
get random values. Therefore, the randomness of
masks (kM , k4, k3, k2 and k1) is the most impor-
tant issue to against PAAs and some other at-
tacks [2]. In this study, a Latch PUF based TRNG
was used to generate the uniformly distributed
masks. The FPGA implementation of this Latch
PUF based TRNG will be given bellow.

FPGA Implementation of Latch PUF Based

TRNG. PUF is a kind of device with unique “bi-
nary behavior” which depends on Integrated Cir-
cuit(IC) manufacturing variations [4]. PUF based
TRNGs extracts randomness directly from the re-

sponse of PUF insides. The advantage of this
TRNG includes much better resiliency against
physical attacks, the absence of side channel infor-
mation, and much lower overheads [5]. Therefore,
many studies so far have focused on PUF based
TRNGs [6] (the summary of PUF based TRNG
was shown in Appendix C).

Although, the masks in our improved permu-
tation tables masking scheme do not need a high
throughput. It just requires 48-bits random num-
ber in each encryption process (256 clock cycles), it
must be produced by a uniformly distributed ran-
dom number generator. Here, we choose the Latch
PUF based TRNG for this application scenario.

One of the methods for implementing Latch
PUF (Figure 1(b)) as a TRNG on Xilinx Virtex-4
FPGAs is proposed in [5]. Hata et al. [5] adopted
a XOR corrector to link many Latch PUF FPGA
implementation (Figure 1(c)) to generate suffi-
cient entropy (Figure 1(d)). However, the place-
ment and routing of this XOR corrector is actually
performed by automatic place-and-route software.
This method, as shown in Figure 1(d), causes a
race and hazard problem at the output of gate
XOR 2. Therefore, the value of eventual output
only depends on parts of Latch PUF cells, and the
entropy of the random bits might be decreased.

In order to decrease the issue of race and hazard
aforementioned, we implemented the XOR correc-
tor symmetrically. The schematic of our XOR cor-
rector is shown in Figure 1(e). In the first level
of our XOR corrector, 64 XOR gates were closely
connected to 128 Latch PUF cells. Similar prop-
erty existed in the rest five levels of our XOR cor-

Li B, et al. Sci China Inf Sci March 2020 Vol. 63 139104:3

rector. Consequently, for every XOR gate, the two
input signals arrived almost at the same time. Un-
fortunately, our prior studies show that the im-
provement are limited, the entropy of random bits
are still not enough.

To improve the entropy of this PRNG, we pro-
posed to use feed forward to introduce nonlinearity
in the circuits. As shown in Figure 1(f) and (g),
the output of XOR 2 was fed back to the input of
XOR 1. Then the output of XOR 3 is fed back to
the input of XOR 2. Furthermore, we use feed for-
ward in the symmetrically placed XOR corrector
to improve the entropy.

In our work, we carefully implemented these
four different Latch PUF based TRNGs on a Xil-
inx SP3E FPGAs boards. The sampling sig-
nal clksampling was fed by the peripheral clock
(50 MHz), and clksampling (25 MHz) was gener-
ated from peripheral clock by using a digital clock
manager (DCM).

Experiment Results. There are two important
requirements for the masks in our masking scheme:
enough throughput and uniformly distribution.

As aforementioned, the throughput must >

4.688 Mbps when the clock frequency of the en-
cryption is 25 MHz. As shown in Appendix D,
compared with SRAM PUF based TRNG, our
Latch PUF based TRNG reduces the area over-
head (from 55k gates to 2480 gates) as well as the
throughput (12.5 Mbps > 4.688 Mbps). Further,
the ring oscillator physical unclonable functions
(RO PUF) based TRNG costs the lowest area re-
sources among these PUF based TRNGs (only 750
gates), but cannot satisfy the throughput require-
ments. Hence, our Latch PUF-based TRNG is rel-
atively more suitable for our masking scheme.

We applied the NIST tests [7] to examine the
distribution of the random sequences. The test re-
sults in Appendix D show that the symmetrically
placed XOR corrector has relatively higher entropy
than the automatically placed XOR corrector, and
the feed forward improves the randomness of se-
quences.

There are two experiments that can be used to
evaluate the leakages of the sensitive variables in
this study (shown in Appendix E). At first, we per-
form a first-order CPA attack to evaluate the Ham-
ming weight leakage. This attack makes statis-
tics about power consumption at a single point.
Afterward, a Hamming distance leakage evalua-
tion which correlates to the power consumptions
of simultaneously updated registers was presented.
The test results illustrate that compared to the
original permutation tables masking scheme [1],
our improved permutation tables masking scheme
leaks relatively few information of sensitive vari-

ables in the Hamming distance model.
Conclusion. We proposed an improved permu-

tation tables masking scheme to overcome the se-
curity issues in conventional permutation tables
masking scheme. This method consists in (1) us-
ing a novel Latch PUF based TRNG with symme-
try XOR corrector and feed forward to generate
the uniformly distributed masks, and (2) randomly
exchanging the inputs of S-boxes with a new per-
mutation table. Furthermore, we exemplified this
Latch PUF based TRNG on Xilinx SP3E FPGAs.
The throughput of this TRNG is 12.5 Mbps in
25 MHZ clock which satisfies the requirements of
masks in our masking scheme. NIST test results
demonstrate that the random numbers generated
by this TRNG are uniformly distributed. On the
other hand, this solution has been evaluated within
information-theoretic experiments, proving its se-
curity against first-order PAAs, the Pearson coeffi-
cient reduced from 0.8 to nearly 0. However, prior
studies have demonstrated that the generation of
permutation tables cost too many clock cycles. In
the future works, we will find ways to solve the
flaws existed in our design.

Acknowledgements This work was supported by Na-

tional Natural Science Foundation of China (Grant No.

61571116).

Supporting information Appendixes A–E. The sup-

porting information is available online at info.scichina.com

and link.springer.com. The supporting materials are pub-

lished as submitted, without typesetting or editing. The

responsibility for scientific accuracy and content remains

entirely with the authors.

References

1 Coron J. A new DPA countermeasure based on permu-
tation tables. In: Proceedings of International Con-
ference on Security and Cryptography for Networks,
2008. 278–292

2 Maghrebi H, Guilley S, Prouff E, et al. Register leak-
age masking using gray code. In: Proceedings of IEEE
International Symposium on Hardware-Oriented Secu-
rity and Trust, 2012. 37–42

3 Maes R. Physically Unclonable Functions: Construc-
tions, Properties and Applications. Berlin: Springer,
2016

4 Li B, Chen S. A dynamic PUF anti-aging authentica-
tion system based on restrict race code. Sci China Inf
Sci, 2016, 59: 012108

5 Hata H, Ichikawa S. FPGA Implementation of
metastability-based true random number generator.
IEICE Trans Inf Syst, 2012, 95: 426–436

6 Chen S, Li B, Zhou C J. FPGA implementation of
SRAM PUFs based cryptographically secure pseudo-
random number generator. Microprocess MicroSyst,
2018, 59: 57–68

7 Rukhin A, Soto J, Nechvatal J, et al. A Statistical
Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. Technical
Report SP 800-22 Rev. 1a, 2010

info.scichina.com
link.springer.com
https://doi.org/10.1016/j.micpro.2018.02.001

