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Abstract Constructing secure and effective code-based signature schemes has been an open problem. In

this paper, we efficiently reduce the key size of the Durandal signature scheme introduced by Aragon et al.

(EUROCRYPT 2019). We prove that the improved scheme is EUF-CMA secure by reducing its security to

the advanced product spaces subspaces indistinguishability (PSSI+) problem, the decisional rank syndrome

decoding (DRSD) problem, and the affine rank syndrome decoding (ARSD) problem under the random oracle

model. Furthermore, our signature scheme is more secure than the Durandal scheme because recovering key

attacks are equivalent to solving the rank syndrome decoding (RSD) problem, instead of the rank support

learning (RSL) problem in the original Durandal scheme. Our signature scheme takes less time to generate

a signature owing to the fact that our signature scheme enjoys smaller security parameters in comparison

to the Duradual scheme. We compare the new scheme with existing code-based signature schemes and find

that our signature scheme has advantages in terms of the public key size.
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1 Introduction

The security of the digital signature schemes currently used such as the DSA and the ECDSA depends

on the hardness of the discrete logarithm problem in different subgroup. However, this complex problem

could be broken by Peter Shor’s algorithm [1] in a quantum setting. Recently, quantum communications

and quantum attacks are developing vigorously [2–5]. Therefore, quantum-attack-resistant signature has

become an urgent need. Code-based cryptosystems originated from the McEliece cryptosystem [6], which

was further developed by Niederreiter [7], are promising candidates to resist quantum attacks. Their

security is based on complex problems in coding theory, such as the syndrome decoding (SD) problem,

which has been proven to be NP-complete [8].

The McEliece and Niederreiter schemes are not invertible; therefore it is not easy to apply them to

signature schemes. This problem remained open until Courtois, Finiasz, and Sendrier (CFS) proposed

a code-based hash-and-sign signature scheme [9] in 2001. The security of the CFS scheme depends on

two complexity assumptions, i.e., (i) the syndrome decoding problem and (ii) distinguishing a Goppa

code from a random linear code with the same security parameters. However, there is a gap between

the signature computation time and the strength of security, because it is necessary to significantly grow

the signature computation time in order to increase the hardness of attack. Moreover, there are some
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Table 1 Sets of parameters for our scheme and the Durandal signature scheme in bits.

Instance q m n r d w l l′ λ PKS SS Security

Our parameters I 2 229 83 3 7 59 – – 3 95035 25835 128

Durandal [22] 2 241 101 6 6 57 4 1 12 121961 32514 128

improvements of the CFS scheme [9] by exploiting other code families, such as the LDGM code [10] and

the convolutional code [11]. However, these improvements ended in failure [12, 13].

In 2014, Gaborit et al. [14] proposed the RankSign scheme using the rank metric [15] and the LRPC

code [16]. This signature scheme also uses the hash-and-sign method and the difference with the CFS

scheme is that the RankSign scheme can invert a random syndrome. Unfortunately, the improved

version [17] of the RankSign scheme was totally broken by Debris-Alazard and Tillich [18] owing to

an algebraic attack which exploits that the augmented LRPC code has very low rank weight codewords.

The above two signature schemes are code-based hash-and-sign signatures. Another approach to

construct code-based signatures is to convert a identification scheme into a signature by applying the

Fiat-Shamir transformation [19]. However, the prover in such identification schemes [20, 21] has the

cheating probability of 2/3 or 1/2 in each round. As a result, this approach leads to a large signature

size.

According to the above analysis, constructing secure and effective code-based signature schemes has

been an open problem. Recently, some studies [22–26] adopted the Lyubashevsky’s framework [27]

to construct code-base signature schemes without using any trapdoor values or decoding algorithm.

Importantly, this method can overcome the weaknesses of the traditional methods described above. We

briefly describe the Lyubashevsky’s framework [27] below. Two matrices H and T over a finite field

constitute the public keys, and the prover wants to prove that she has a private matrix S of small entries

and T = HST. The prover randomly chooses a vector y with small norm and computes the syndrome

x = HyT and sends it to the verifier. The verifier randomly chooses a vector c of small norm as a

challenge and transmits it to the prover. The prover calculates z = y + cS after she receives c and

transmits z to the verifier. The verifier verifies whether z has a small norm and HzT − TcT = x.

Among these code-based signature schemes [22–26] based on the Lyubashevsky’s framework, no obvious

weakness has been identified in the Durandal signature scheme [22] so far. The difficulty using this method

to construct a code-based signature scheme lies in how to generate random signatures. In fact, a variant

of Lyubashevsky’s framework was proposed in the Durandal signature scheme [22]. The main idea is

that the signer can add another secret matrix pS′ to y + cS and obtain a signature in the form of

z = y + cS + pS′ where p is an extra random vector. In this way, signatures enjoy better randomness

so that the adversary does not obtain easily the knowledge of the private key from signatures. The

authors [22] proved that the Durandal scheme is EUF-CMA secure under the random oracle model by

reducing it to the advanced product spaces subspaces indistinguishability (PSSI+) problem, the decisional

rank support learning (DRSL) problem, and the affine rank syndrome decoding (ARSD) problem. To be

precise, these complex problems are used in the ideal configuration when proving the security. However,

the public key size and the signature size of the Durandal scheme are relatively large.

Our contributions are as follows.

(1) We efficiently reduce the signature size and the public key size of the Durandal signature scheme [22]

by exploiting the dot product “·” proposed in the RQC encryption scheme [28] at the same level of security.

We also reduce the size and the number of security parameters. The result is shown in Table 1. PKS

stands for the public key size and SS stands for the signature size.

(2) We prove that our improved Durandal scheme is EUF-CMA secure by reducing its security to the

PSSI+ problem, the decisional rank syndrome decoding (DRSD) problem, and the ARSD problem under

the random oracle model. The major difference between the Durandal scheme and our signature scheme

is that the security of our scheme is reduced to the DRSD problem rather than the DRSL problem.

(3) Recovering key attacks on our scheme are equivalent to solving the rank syndrome decoding (RSD)

problem rather than the rank support learning (RSL) problem in the original Durandal scheme. This

shows that our scheme is more secure than the Durandal scheme because, precisely, solving the RSD
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problem is more complex than solving the RSL problem according to [16].

(4) Our signature scheme takes less time to generate a signature owing to the fact that our scheme

enjoys smaller security parameters in comparison to the Duradual scheme [22]. We also compare our

signature scheme with existing code-based signature schemes and find that our scheme has advantages in

terms of the public key size.

Organization. The remainder of this paper is organized as follows. Section 2 presents some preliminaries

required in the paper. Section 3 describes our improved Duradual signature scheme. The security analysis

of our scheme is presented in Section 4. Section 5 gives the proof of security. In Section 6, we describe

security parameters and compare our scheme with several existing code-based signature schemes. We

give the conclusion of this paper in Section 7.

2 Preliminaries

2.1 Notations

We denote by N and R
+ the set of the natural numbers and the non-negative real numbers, respectively.

And for m, q ∈ Z, q is a prime number, Fqm is an extension of degree m of the finite field Fq, and

R = Fqm [X ]/〈P (X)〉 is the quotient ring of polynomials modulo P (X) whose coefficients are in finite

field Fq. Each element of R is viewed as row vectors or polynomials. We represent vectors/polynomials

(respectively matrices) by using lower-case (respectively upper-case) bold letters. We denote by ‖ · ‖ the

rank weight of a vector. We say that an algorithm is a PPT algorithm if it is a probabilistic polynomial-

time algorithm. We say that a function f : N→ R
+∪{0} is a negligible function if for any polynomial p(·)

there exists k0 ∈ N such that for all k > k0 it holds f(k) < 1/p(k). If S is a finite set, x
$
← S represents

that x is chosen uniformly and randomly from set S. All logarithms are of base 2. The Gr(k,Fqm) stands

for the set of all Fq-subspaces of dimension k of Fqm .

2.2 Dot product “·”

For u = (u0, u1, . . . , un−1), v = (v0, v1, . . . , vn−1) ∈ F
n
qm , the dot product “·” of u and v is defined by

u · v
∆
= u(X) · v(X) mod (P (X)),

where u(X) and v(X) are polynomials with coefficients u and v, respectively, and P (X) ∈ Fq[X ] is a

polynomial of degree n.

In the following, R = Fqm [X ]/〈P (X)〉 and each element of R is viewed as a row vector or a polynomial

if there is no ambiguity.

Definition 1 (Ideal matrix [28]). Let u(X) ∈ R. The ideal matrix generated by u(X) is defined as

IM(u) =















u(X) mod (P (X))

Xu(X) mod (P (X))
...

Xn−1u(X) mod (P (X))















.

According to [28], the dot product of u and v can be written as matrix-vector product using the IM(·)

operator, i.e.,

u · v = u× IM(v)T = (IM(u)× vT)T = v × IM(u)T = v · u.

Note that the operation “×” indicates a matrix multiplication. In the rest of this paper, we will omit

“×” and mod (P (X)). In our improved scheme, we will use the following obvious properties of the dot

product “·” and they are crucial to our scheme.

u · (v1,v2) = (u · v1,u · v2) = (v1 · u,v2 · u) = (v1,v2) · u, ∀ u,v1,v2 ∈ R,
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u · (v1 + v2) = u · v1 + u · v2 = v1 · u+ v2 · u = (v1 + v2) · u, ∀ u,v1,v2 ∈ R,

(u1 · u2) · u3 = u1 · (u2 · u3), ∀ u1,u2,u3 ∈ R.

2.3 Rank metric codes

We mainly revisit some basic properties and definitions about rank metric codes in this subsection for

elaborating our construction. We refer the reader to [29] for more details.

Definition 2 (Rank metric over Fn
qm). Let β1, β2, . . . , βm ∈ F

m
qm be a basis of Fqm viewed as a vector

space of dimensional m over Fq and x = (x1, x2, . . . , xn) ∈ F
n
qm . Each coordinate xj can be expressed as

a vector of Fm
q in basis β1, β2, . . . , βm, i.e., xj = Σm

i=1aijβi. Then

x = (x1, x2, . . . , xn) = (β1, β2, . . . , βm)















a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn















m×n

△
= (β1, β2, . . . , βm)A(x).

The rank weight ‖x‖ of x is defined by

‖x‖
△
= Rank A(x).

The support Supp(x) of x = (x1, x2, . . . , xn) ∈ F
n
qm is defined as the Fq-subspace generated by

x1, x2, . . . , xn, i.e., Supp(x) = 〈x1, x2, . . . , xn〉Fq
. Thus the rank weight of x is equal to the dimension of

its support, i.e., ‖x‖ = dim(Supp(x)).

Definition 3 (Fqm -linear codes). An Fqm -linear code C of length n and dimension k is a linear subspace

of Fn
qm of dimension k equipped with the rank metric. It is denoted by [n, k]qm .

We say that G ∈ F
n×k
qm is a generator matrix for an [n, k]qm code C if C = {mG | m ∈ F

k
qm} and

H ∈ F
(n−k)×k
qm is a parity-check matrix for an [n, k]qm code C if C = {x ∈ F

n
qm | HxT = 0}. The G and

H are under systematic form if they have the form of [Ik | P ] and [In−k | Q].

Definition 4 (Rank singleton (RS) bound). Let C be an [n, k]qm . The rank singleton bound RS(m,n, k)

for C is defined as

RS(m,n, k) =
(n− k)m

max{n,m}
.

Definition 5 ([2n, n]qm -ideal codes [28]). A [2n, n]qm-code is an ideal code if its generator matrix has

the form of [A | B] where A and B are two ideal matrices of size n.

In our scheme, we will use systematic [2n, n]qm-ideal codes with a parity-check matrix of the form

[In | Q] where In is an identity matrix and Q is an ideal matrix of size n.

The reason why we exploit ideal codes is that it decreases considerably the size of the key [30] and

its syndrome can be expressed by the parity-check matrix with the dot product. Ideal codes have been

applied to code-based cryptography [22, 28] and can resist the folding attack [31].

2.4 Complexity problems

Code-based cryptography in the rank metric setting originates from [32] and generally depends on the

hardness of syndrome decoding problem for rank metric. We will describe four universal complex prob-

lems, which are related to our scheme.

Definition 6 (The RSD problem [16]). Let H be a full-rank (n− k)× n matrix over Fqm with k 6 n,

s ∈ F
n−k
qm , and r an integer. The problem is to find e ∈ F

n
qm such that ‖e‖ = r and HeT = sT.

Definition 7 (The DRSD problem [16]). Let H be a full-rank (n− k)×n matrix over Fqm with k 6 n

and e ∈ F
n
qm of rank weight r. The problem is to distinguish the pair (H ,HeT) from (H , s) with

s
$
← F

n−k
qm .
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The authors in [33] have shown that the RSD problem is hard by probabilistically reducing it to the SD

problem [8] in the Hamming setting. We present the best known methods proposed recently of solving

the RSD problem in Section 4. The dual version of the DRSD problem has been used in [16] and they

are equivalent.

In the following, we will give an explicit description of the RSD problem and the DRSD problem in the

systematic ideal configuration owing to the use of systematic [2n, n]qm-ideal codes in our construction.

We still call it the rank ideal syndrome decoding (RISD) problem and the decisional rank ideal syndrome

decoding (DRISD) problem, because [2n, n]qm-ideal codes are a particular case of ideal codes [28].

• The RISD problem [28]. Let H = [In | IM(h)], h ∈ R, be a parity-check matrix of a systematic

[2n, n]qm-ideal code C, s ∈ F
n
qm , and r an integer. The problem is to find e = (e1, e2) ∈ F

2n
qm such that

e1 + h · e2 = s and ‖e1‖ = ‖e2‖ = r, where HeT = (e1 + h · e2)
T = e1 + h · e2.

• The DRISD problem [28]. Let H = [In | IM(h)], h ∈ R, be a parity-check matrix of a systematic

[2n, n]qm-ideal code C and e = (e1, e2) ∈ F
2n
qm of ‖e1‖ = ‖e2‖ = r. The problem is to distinguish the pair

(H ,HeT) from (H , s) with s
$
← F

n
qm .

Note that ‖e1‖ = ‖e2‖ = r implies ‖e‖ = r. Therefore, the above two complex problems do not

contradict RSD problem (Definition 6). These two problems have been used in [28]. The authors in [28]

showed that decoding these systematic ideal codes is widely regarded as a complex problem by the

community and systematic ideal codes would not weaken the complexity of the decoding problem for

generic codes. The authors in [28] also showed solving the DRISD problem consists in directly solving

the RISD problem. These indicate that the RSD problem has been as hard as the RISD problem and

the DRSD problem has been as hard as DRISD problem up to now.

Therefore, in Section 5, we will always replace the RISD problem and the DRISD problem with the

RSD problem and the DRSD problem, respectively, to study the security of our signature scheme.

2.5 The Durandal scheme

In this subsection, we recall the construction of the Durandal scheme [22]. In fact, a variant of Lyuba-

shevsky’s framework is proposed in the Durandal scheme. The main idea is that the signer can add

another secret matrix pS′ to y + cS and obtain a signature in the form of z = y + cS + pS′ where p is

an extra random vector. In this way, generated signatures enjoy better randomness so that the adversary

does not obtain easily the any knowledge of the private key from signatures. This scheme can be briefly

described in Algorithm 1.

3 The improved Durandal signature scheme

In this section, we firstly give the definition and the security model of the digital signature schemes, and

then present our improved Durandal signature scheme. Finally, we analyze the computation cost of our

signature scheme.

3.1 The digital signature scheme

Here, the algorithm that generates the public key and the private key is the key generation (KGen)

algorithm. The algorithm that the signer applies to a message and generates a signature is the signature

(Sign) algorithm. The algorithm that the verifier applies to a message and a signature for verifying the

validity of the signature is the verification (Vrfy) algorithm.

Definition 8. A digital signature scheme consists of three polynomial-time algorithms (KGen, Sign,Vrfy)

such that the following.

• KGen: Taking as input a security parameter λ, it outputs a public key pk and a private key sk.

• Sign: Taking as input a private key sk and a message m from some message space, it outputs a

signature σ.



Song Y C, et al. Sci China Inf Sci March 2020 Vol. 63 132103:6

Algorithm 1 The Durandal signature scheme [22]

Key generation:

- Choose a parameter set (q,m, n, r, w, d, l, l′, λ).

- Construct a hash function H from bit strings of arbitrary length to strings of length l′k of F , i.e., H : {0, 1}∗ → F l′k.

- Consider an random ideal ideal matrix H ∈ F
n×2n
qm .

- Choose randomly an Fq-subspace E of dimension r of Fqm , i.e., E
$
← Gr(r,Fqm).

- Choose randomly l vectors si ∈ E2n and construct an ln× 2n matrix S by all si and their n shifts.

- Choose randomly l′ vectors s′i ∈ E2n and construct an l′n× 2n matrix S′ by all s′i and their n shifts.

- Compute HST = T and HS′T = T ′.

- The private key: S and S′.

- The public key: H, T , and T ′.

Signature: To sign a message m ∈ {0, 1}∗.

- Choose randomly an Fq-subspace W of dimension w of Fqm and an Fq-subspace F of dimension d of Fqm , i.e.,

F
$
← Gr(d, Fqm ) and W

$
← Gr(w, Fqm).

- Choose randomly a y ∈ (W + EF )2n, i.e., y is a vector of length 2n from the support W + EF .

- Compute x = HyT.

- Compute c = H(x,m, F ).

- Choose an Fq-subspace U of dimension dr − λ of the product space EF such that U does not contain any non-zero

values in the form of ef for all f ∈ F and e ∈ E.

- Compute p ∈ Fn such that Supp(y + cS′ + pS) ⊂ U +W and let z = y + cS′ + pS.

- The signature: (z, F, c,p).

Verification: To verify a signature (z, F, c,p) on a message m.

- Computes x̂ = HzT − T ′cT − TpT.

- If H(x̂,m, F ) = c.

- If ‖z‖ 6 dr − λ+ w.

• Vrfy: Taking as input a public key pk, a message m, and a signature σ, it outputs a bit b, where

b = 1 indicates “valid” and b = 0 indicates “invalid”.

It is required that except with negligible probability over (pk, sk) output by KGen(1λ), it must hold

that Vrfypk(m, Signsk(m)) = 1 for every legal message m. We call σ a valid signature on a message m

if Vrfypk(m, σ) = 1.

The security. For a fixed public key pk that a signer generate, a forgery consists of a message m

and a valid signature σ on a message m, where m is not previously signed by a signer. The security

of a signature scheme means that an adversary should be unable to output a forgery even if it obtains

signatures on other messages of its adaptive choice. We now present the formal definition of security.

Let Π = (KGen, Sign,Vrfy) be a signature scheme. We present the following signature experiment

Sig-forgeA,Π(λ) for an adversary A and security parameter λ.

(1) KGen(1λ) is run to generate the public keys pk and the private key sk.

(2) The adversary A is given pk and has access to the oracle Signsk(·).

(3) A outputs (m∗, σ∗). LetM denote the set of all queries A has made to the oracle.

(4) A succeeds if (i) Vrfy(m∗, σ∗) = 1 and (ii) m∗ /∈M.

(5) The game outputs 1 if A succeeds.

Definition 9. A signature scheme Π = (KGen, Sign,Vrfy) is existentially unforgeable under adaptive

chosen-message attacks (EUF-CMA), if for all PPT adversaries A, there is a negligible function f such

that

Pr[Sig-forgeA,Π(λ) = 1] 6 f(λ).

3.2 Our signature scheme

It is not easy to perform operations which satisfy the requirements of the Durandal signature scheme

in code-based cryptography. We find that with random ideal codes, the dot product is suitable for

constructing the Durandal scheme. Our improved Durandal scheme is presented in Algorithm 2.

Correctness. To a generated signature, the verifier firstly checks whether the following equation

always holds

HzT = z1 + h · z2 = (y1 + c · e′1 + p · e1) + h · (y2 + c · e′2 + p · e2)
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= (y1 + h · y2) + (c · e′1 + h · c · e′2) + (p · e1 + h · p · e2)

= (y1 + h · y2) + (e′1 · c+ h · e′2 · c) + (e1 · p+ h · e2 · p)

= (y1 + h · y2) + (e′1 + h · e′2) · c + (e1 + h · e2) · p

= HyT +He′
T
· c+HeT · p

= x− IM(s′)cT − IM(s)pT.

Algorithm 2 The improved Durandal signature scheme

Key generation:

- Choose a parameter set (q,m, n, r, w, d, λ).

- Construct a hash function H from bit strings of arbitrary length to strings of length dn of Fq, i.e., H : {0, 1}∗ →

{0, 1, . . . , q − 1}nd.

- Consider an n× 2n systematic parity-check matrix H = [In|IM(h)] of a random [2n, n]qm -ideal code where In is an

n× n identity matrix and h ∈ R.

- Choose randomly an Fq-subspace E of dimension r of Fqm , i.e., E
$
← Gr(r,Fqm).

- Choose randomly e = (e1,e2) ∈ E2n where e1, e2 ∈ En and e′ = (e′1,e
′

2) ∈ E2n where e′1, e
′

2 ∈ En, i.e., e′ and e

are two vectors of length 2n with the same support E.

- Compute s = HeT and s′ = He′T.

- The private key: e and e′.

- The public key: H, s, and s′.

Signature: To generate a signature on a message m.

- Choose randomly an Fq-subspace W of dimension w of Fqm and an Fq-subspace F of dimension d of Fqm , i.e.,

F
$
← Gr(d, Fqm ) and W

$
← Gr(w, Fqm).

- Choose randomly a y = (y1,y2) ∈ (W +EF )2n where y1,y2 ∈ (W +EF )n, i.e., y is a vector of length 2n from the

support W +EF .

- Compute x = HyT.

- Compute c = H(x,m, F ) and c will be viewed as elements of Fn in the following steps.

- Choose an Fq-subspace U of dimension dr − λ of the product space EF such that U does not contain no non-zero

values in the form of ef for all f ∈ F and e ∈ E. It is necessary to note that e is an element in space E and e is a vector

of length 2n in E2n.

- Compute p ∈ Fn such that Supp(y + c · e′ + p · e) ⊂ W + U and let z = y + c · e′ + p · e where z = (z1, z2) =

(y1 + c · e′1 + p · e1,y2 + c · e′2 + p · e2).

- The signature: (z, F, c,p).

Verification: To verify a signature (z, F, c,p) on a message m.

- Compute x̂ = HzT − IM(s′)cT − IM(s)pT.

- If H(x̂,m, F ) = c.

- If ‖z‖ 6 dr − λ+ w.

The verifier then checks whether H(x,m, F ) = c and ‖z‖ 6 dr − λ + w. If they hold, (F, c,p, z) is

then a valid signature on the message m and the verifier will accept it.

Note that e1 + h · e2 = HeT has been presented in the definition of the RISD problem in Subsection

2.4. Similarly, we have y1 + h · y2 = HyT and e′1 + h · e′2 = He′T.

Remark 1. We need to explain the following issues on our signature scheme.

(1) Compute c = H(x,m, F ) and c is viewed as elements of Fn. The signer can divide the hash values

c = H(x,m, F ) into n blocks of length d because our hash function is constructed by H : {0, 1}∗ →

{0, 1, . . . , q − 1}nd. In addition, the signer can find a basis f1, f2, . . . , fd of F owing to the fact that she

has the knowledge of Fq-subspace F of dimension d of Fqm . Then each block of length d can be regarded

as coordinates of one element in F . Therefore, c can be viewed as an element of Fn.

(2) Choose an Fq-subspace U of dimension dr−λ of the product space EF such that U does not contain

any non-zero values in the form of ef for all f ∈ F and e ∈ E. Choosing such subspace U can prevent the

adversary from recovering the secret E through the method of decoding the LRPC code [16]. According

to [22], once the signer knows λ and F , she can find U that meets the above conditions. The probability

that a random U does not contain any non-zero x = ef is around e−2. In addition, the authors also

present the cost of verifying U , that is, qr−1
q−1 (dr + d− λ)2 operations in Fqm through computing whether

eF ∩ U = {0}, ∀e ∈ E/Fq.
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(3) Compute p ∈ Fn such that Supp(c · e′ + p · e+ y) ⊂W + U . From the above issues, if the signer

wants to find U that does not contain non-zero x = ef , she firstly needs to determine the range of λ.

The following not only gives the method of calculating p, but also indicates the range of λ.

We denote z1 = y+ c · e′, and z1 is expressed as a dr× 2n matrix by expressing each coordinates in a

basis u1, . . . , udr−λ, v1, . . . , vλ of EF , where U = 〈u1, . . . , udr−λ〉, that is, U is generated by u1, . . . , udr−λ.

In order to make z = y + c · e′ + p · e ∈ U2n, a direct approach is that we also express p · e in a basis

u1, . . . , udr−λ, v1, . . . , vλ of EF and make p · e be equal to z1 = y + c · e′ on the last λ lines which

correspond to v1, . . . , vλ.

This linear equations system gives 2nλ equations and dn unknowns in the basis field Fq. We require

that the equation must have solutions, then it must follow the condition that the number of unknowns is

greater than the number of equations, that is, 2nλ < dn⇔ λ < dn/2n = d/2.

(4) In Subsection 2.2, the dot product “ · ” is defined in R = Fqm [X ]/〈P (X)〉. Elements of R are

considered as vectors or polynomials over Fqm . Although, in our scheme, elements are chosen from E2n,

(W + EF )2n, and (W + U)2n, they can use the dot product because E, W + EF , and W + U are also

Fq-subspaces of Fqm . In other words, in our scheme, the dot product “ · ” is feasible.

3.3 Computational costs

(1) The cost of generating keys. The cost of this step depends mainly on the generation of the public

key by given the private key. The main operation is matrix-vector multiplications over Fqm . The matrix

H is an n × 2n matrix. The totally cost that generates the public key s and s′ is 2n2 multiplications

over Fqm .

(2) The cost of generating a signature. The operation that generates a signature of a message m

mainly stems from the offline phase and the online phase.

• Offline phase

(i) Choose Fq-subspaces W of dimension w and F of dimension d of Fqm .

(ii) Choose y = (y1,y2) ∈ (W + EF )2n and compute x = HyT.

(iii) Choose an Fq-subspace U of dimension dr − λ of the product space EF such that U does not

contain any non-zero values in the form of ef for all f ∈ F and e ∈ E.

(iv) Express p = (p1,p2, . . . ,pn) in basis f1, f2, . . . , fd of F where pi =
∑

pijfj (i = 1, 2, . . . , n, j =

1, 2, . . . , d).

(v) Write p · e in a basis u1, . . . , udr−λ, v1, . . . , vλ of EF where U = 〈u1, . . . , udr−λ〉 to obtain a linear

expression about variables pij on the last λ lines which correspond to v1, . . . , vλ. Compute a 2λn× 2λn

matrix A that inverts this linear mapping about variables pij . If this linear mapping cannot be inverted

or produce the matrix A, then another random subspace U of EF is selected.

The main cost in the offline phase consists in computing matrix A and this requires (2λn)3 multipli-

cations in Fq.

• Online phase

(i) Set c = H(x, F,m) ∈ Fn and compute p ∈ Fn such that Supp(y + c · e′ + p · e) ⊂ W + U by

applying the matrix A computed in the offline phase.

(ii) Compute signature z = y + c · e′ + p · e.

The online phase requires (2λn)2 multiplications over Fq to obtain p and 4n2 multiplications over Fqm

to compute y + c · e′ + p · e.

(3) The cost of verifying a signature. The cost of this step depends mainly on the calculation of

HzT − IM(s′)cT − IM(s)pT, which takes 3n2 multiplications over Fqm .

4 Analysis of security

We will study the security of our signature scheme from the following three aspects in this section, i.e.,

the distinguishing attack, the key recovery attack, and the forgery attack.
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4.1 The complexity of the distinguishing attack

Definition 10 (The PSSI problem [22]). Assume that E is a fixed Fq-subspace of dimension r of Fqm .

Let Fi, Ui, and Wi be the following three Fq-subspaces of Fqm dimension d, dr − λ, and w:

• Fi
$
← Gr(d,Fqm).

• Ui
$
← Gr(dr− λ,EFi) and satisfies {ef | ∀ e ∈ E and f ∈ Fi} ∩Ui = 0, i.e., Ui does not contain any

non-zero values in the form of ef .

• Wi
$
← Gr(w,Fqm).

The PSSI problem is to distinguish (zi, Fi) where zi
$
← F

2n
qm and zi has support Wi + Ui from (z′

i, Fi)

where z′
i

$
← F

2n
qm and z′

i has rank weight dr − λ+ w.

Ref. [22] showed that the complexity which the adversary could solve the PSSI problem isO(2m−2(dr−λ))

and suggested that 3(dr−λ+w) > m because this can prevent the adversary from distinguishing signatures

and random vectors by exploiting subspaces that the dimension is 3.

Definition 11 (Advanced PSSI (PSSI+) problem [22]). Assume that E is a fixed Fq-subspace of di-

mension r of Fqm . Let Fi, Ui, and Wi be the following three Fq-subspaces of Fqm dimension d, dr − λ,

and w:

• Fi
$
← Gr(d,Fqm).

• Ui
$
← Gr(dr− λ,EFi) and satisfies {ef | ∀ e ∈ E and f ∈ Fi} ∩Ui = 0, i.e., Ui does not contain any

non-zero values in the form of ef .

• Wi
$
← Gr(w,Fqm).

Assume that H is an n× 2n random ideal matrix.

• Choose randomly e = (e1, e2) ∈ E2n where e1, e2 ∈ En and e′ = (e′1, e
′
2) ∈ E2n where e′1, e

′
2 ∈ En,

i.e., e and e′ are two vectors of length 2n and share the same support E.

• Set s = HeT and s′ = He′T.

The PSSI+ problem is to, when the adversary is additionally given H , s, and s′, distinguish (zi, Fi)

where zi
$
← F

2n
qm and zi has support Wi + Ui from (z′

i, Fi) where z′
i

$
← F

2n
qm and z′

i has rank weight

dr − λ+ w.

The PSSI+ problem combines two instances of the RSD problem (precisely, the RISD problem) and

an instance of the PSSI problem, which they possess the same support E. The only difference between

the PSSI+ problem we present and the PSSI+ problem presented in [22] is that we replace instances of

the RSL problem with instances of the RSD problem. Ref. [16] showed that solving the RSD problem is

more complex than solving the RSL problem. This shows that our PSSI+ problem is more complex than

the PSSI+ problem presented in [22]. More importantly, we can also obtain a conclusion, as in [22], that

solving the PSSI+ problem we present is as hard as solving the PSSI problem.

4.2 The complexity of recovering key

Recovering the private key e and e′ from H , s, and s′ means that the adversary solves two instances

(H , s, r) and (H , s′, r) of the RSD problem. There are two main types of generic methods of solving the

RSD problem:

(1) Algebraic methods. These methods try to solve an algebraic system by exploiting q-polynomials and

the Groebner basis [34,35]. The complexity of these methods depend mainly on the number of unknowns

and equations in an algebraic system rather than the value of q and m in some cases. Therefore, these

methods usually appear to be more efficient than combinatorial methods [35, 36] when q is large.

(2) Combinatorial methods. The goal of these methods is to find the correct support of the codeword

or the error. They are usually the best ones for small q (typically q = 2). Combinatorial methods

are less efficient as q increases when n and k are large. For an [n, k]qm -linear code over Fqm , the best

combinatorial method to find an error of rank weight r is O((n − k)3m3qr⌈
(k+1)m

n
⌉−m), which depends

mainly on the value of n and m. This method is proposed in [36], and is an improvement of the method

described in [35].
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Moreover, we also should take into account the complexity of the method proposed in [35] of solv-

ing the RSD problem, i.e., O(k3r3qr⌈
(k+1)(r+1)−(n+1)

r
⌉), because in the case of ideal codes the inequality

⌈ (k+1)(r+1)−(n+1)
r

⌉ 6 k always holds.

Therefore, the complexity of combinatorial methods must be measured by

min
{

O
(

(n− k)3m3qr⌈
(k+1)m

n ⌉−m
)

,O
(

k3r3qr⌈
(k+1)(r+1)−(n+1)

r ⌉
)}

.

In this paper, we consider q = 2 which leads to the case that algebraic methods are harder than combi-

natorial methods. Thus, we only consider combinatorial methods when we choose security parameters.

4.3 The complexity of the forgery attack

The forgery attack is that the adversary directly solves an instance (H , IM(s),x+IM(s′)cT, dr−λ+w,F )

of the ARSD problem. We will describe the definition of the ARSD problem and the complexity of solving

this problem according to [22] in the following.

Definition 12 (The ARSD problem [22]). Assume that H is a parity-check matrix of a random [n, k]qm -

linear code, H ′ $
← F

(n−k)×n′

qm , F
$
← Gr(r2,Fqm), r1 an integer, and s ∈ F

n−k
qm . The ARSD problem is to

find e ∈ F
n
qm and e′ ∈ F

n′

qm such that HeT +H ′e′
T
= sT, ‖e‖ = r1, and Supp(e′) ⊆ F .

Although this problem is presented by random codes, it can straightforwardly be applied to the case

of ideal codes. We denote by (H ,H ′, s, r1, F ) an instance of the ARSD problem. Ref. [22] showed that

the ARSD problem is as hard as the RSD problem in the worst case. Specifically, the algorithm which

can solve the ARSD problem can be used to solve the RSD problem with non-negligible probability when

m >
r1(n−r1)+n′r2

n−k−r1
.

The following proposition gives the complexity of solving the ARSD problem.

Proposition 1. When n′r2 + max{n,m}r1 < m(n − k), the complexity of solving the ARSD

problem is

O

(

m3(n− k)3q
r1

⌈

km+n′r2
max{m,n}

⌉

−r1(n+m−r1)−n′r2+(n−k)m
)

.

The authors prove this proposition in [22] by combining method of calculating the Rank Singleton

bound and condition m 6
r1(n−r1)+n′r2

n−k−r1
.

5 Proof of security

We mainly give the security proof of our signature scheme in this section by reducing it to the PSSI+

problem, the DRSD problem, and the ARSD problem under the random oracle model. Moreover, we also

need the following lemma in [22] to proceed the proof of the security of our scheme.

Lemma 1. Assume that H is an n × 2n random ideal matrix. The statistic distance between the

distribution D1 = {HyT|y
$
← (W + EF )2n} and the distribution D2 = {x|x

$
← F

n
qm} is denoted by

D(D1,D2) and

D(D1,D2) <
ε

2
,

where ε = 2
(nm−wm−w2−dm−d2−2nrd+2nw) log q

2 +O(1), E
$
← Gr(r,Fqm), F

$
← Gr(d,Fqm), and W

$
← Gr(w,

Fqm).

Theorem 1. If the PSSI+ problem, the DRSD problem, and the ARSD problem are hard, then our

signature scheme is existentially unforgeable under adaptive chosen-message attacks (EUF-CMA) when

H is modelled as a random oracle.

Proof. Let Π be our scheme and A a PPT adversary attacking Π. We prove security of our scheme by

a sequence of games. Pr[Si] stands for the probability that the Game i returns 1.

Game 0. This game follows the steps of the experiment Sig-forgeA,Π(λ) (Definition 9) and it is a

genuine EUF-CMA game:
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(1) KGen(1λ) is run to obtain the private key (e, e′) and the public key (H , s, s′).

(2) The adversary A is given the public key (H , s, s′), and gains access to the oracle H(·) as well

as Signsk(·) that, on input a message m, the challenger returns a signature σ = (F,H(m, F,x),p,y +

H(m, F,x) · e′ + p · e) where x = HyT ∈ F
n
2 and y

$
← (W + EF )2n.

(3) The adversary then outputs (F ∗, c∗,p∗, z∗) as a forged signature on a message m∗, where m∗ has

been not requested a signature previously.

(4) The adversary A succeeds if (i) H(m∗, F ∗,Hz∗T − IM(s′)c∗T − IM(s)p∗T) = c∗ and (ii) ‖z∗‖ 6

dr − λ+ w.

(5) The game outputs 1 if the adversary A succeeds.

The probability that the adversary obtains a valid signature is Pr[S0], we have

Pr[S0] = Pr[Sig-forgeA,Π(λ) = 1].

Game 1. The distinction between Games 1 and 0 is that x is generated in different ways. More

precisely, x is in the distribution D1 in Game 0 and x′ is in the distribution D2 in Game 1.

(1) KGen(1λ) is run to obtain the private key (e, e′) and the public key (H , s, s′).

(2) The adversary A is given (H , s, s′).

For every message m, we randomly choose a z′ of rank weight dr − λ+ w from subspace U +W

of EF + W , randomly choose a c′ from Fn, and compute p′ whose support is F . Then set

x′ = Hz′
T
− IM(s′)c′T − IM(s)p′T and c′ = H(m,x′, F ). Eventually, we output (F, c′,p′, z′) as

a signature on a message m.

(3) The adversary then outputs (F ∗, c∗,p∗, z∗) as a forged signature on a message m∗, where m∗ has

been not requested a signature previously.

(4) The adversary A succeeds if (i) H(m∗, F ∗,Hz∗T − IM(s′)c∗T − IM(s)p∗T) = c∗ and (ii) ‖z∗‖ 6

dr − λ+ w.

(5) The game outputs 1 if the adversary A succeeds.

Note that x′ here is not necessarily the syndrome of the vector with support W + EF , and s′ can be

viewed as a random vector in F
n
qm . Under Lemma 1, we have

|Pr[S1]− Pr[S0]| 6 ε.

When ε is lower than the security level, the adversary cannot efficiently distinguish Games 1 and 0.

Game 2. The only distinction between Games 2 and 1 is that z′ is chosen from F
n
qm with rank weight

dr − λ+ w , instead of the subspace U of W + EF . The others proceed as Game 1.

(1) KGen(1λ) is run to obtain the private key (e, e′) and the public key (H , s, s′).

(2) The adversary A is given (H , s, s′). For every message m,

we randomly choose a z′ of rank weight dr − λ+ w from F
n
qm , instead of the subspace U +W of

EF +W .

Then we randomly choose a c′ from Fn, and compute p′ whose support is F . Then set x′ = Hz′
T
−

IM(s′)c′
T
− IM(s)p′T and c′ = H(m,x′, F ). Eventually, we output (F, c′,p′, z′) as a signature on a

message m.

(3) The adversary then outputs (F ∗, c∗,p∗, z∗) as a forged signature on a message m∗, where m∗ has

been not requested a signature previously.

(4) The adversary A succeeds if (i) H(m∗, F ∗,Hz∗T − IM(s′)c∗T − IM(s)p∗T) = c∗ and (ii) ‖z∗‖ 6

dr − λ+ w.

(5) The game outputs 1 if the adversary A succeeds.

Under the hardness of the PSSI+ (Definition 11) problem, we have

|Pr[S2]− Pr[S1]| 6 εPSSI+ ,

where εPSSI+ is the bound on the successful probability that the PPT adversary solves the PSSI+ problem.
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Game 3. The only difference between Games 2 and 3 is that the public key s and s′ in Game 3 is

chosen randomly from F
n
qm , instead of being generated by HeT and He′

T
, and the others proceed as

Game 2.

(1) KGen(1λ) is run to obtain the private key (e, e′) and the public key (H , s, s′).

(2) The adversary A is given (H , s, s′ ).

For every message m, we randomly choose a z′ of rank weight dr − λ + w from F
n
qm , instead of the

subspace U+W of EF+W . Then we randomly choose a c′ from Fn, and compute p′ whose support is F .

Then set x′ = Hz′T − IM(s′)c′T − IM(s)p′T and c′ = H(m,x′, F ). Eventually, we output (F, c′,p′, z′)

as a signature on a message m.

(3) The adversary then outputs (F ∗, c∗,p∗, z∗) as a forged signature on a message m∗, where m∗ has

been not requested a signature previously.

(4) The adversary A succeeds if (i) H(m∗, F ∗,Hz∗T − IM(s′)c∗T − IM(s)p∗T) = c∗ and (ii) ‖z∗‖ 6

dr − λ+ w.

(5) The game outputs 1 if the adversary A succeeds.

According to the hardness of the DRSD problem (Definition 7), we have

|Pr[S2]− Pr[S3]| 6 εDRSD,

where εDRSD is the bound on the successful probability that the PPT adversary solves the DRSD problem.

At this point, all information which the challenger transmits to the adversary is independent from any

secret and randomly chosen. Therefore, the security of our signature scheme can be reduced to the case

where the attacker does not get any signatures.

If the adversary can work out a valid signature after Game 3, then an instance of the ARSD problem

(Definition 12) would be indirectly solved. We have

Pr[S3] 6 εARSD,

where εARSD is the bound on the successful probability that the PPT adversary solves the ARSD problem.

By combining this with all the previous inequalities obtained in the above games, we have

Pr[Sig-forgeA,Π(λ) = 1] = Pr[S0] 6 ε+ εPSSI+ + εDRSD + εARSD.

This completes the proof of Theorem 1.

6 Security parameters

In this section, we choose two sets of parameters of our signature scheme and compare it with the

Durandal scheme and existing code-based signature schemes.

Choice of parameters. Firstly, we recall the public parameters (q,m, n, r, w, d, λ).

• q,m: the number of elements in the basis field and the degree of the extension of the basis field.

• n: the dimension of the random ideal code.

• 2n: the length of the random ideal code.

• r: the dimension of Fq-subspace E of Fqm .

• d: the dimension of Fq-subspace F of Fqm .

• w: the dimension of Fq-subspace W of Fqm .

• λ: the difference between the dimension dr − λ of Fq-subspace U of Fqm and the dimension dr of

EF , where U does not contain any non-zero values in the form of ef for all f ∈ F and e ∈ E.

In order to highlight the advantages of our scheme over the Durandal scheme [22] in terms of the private

size and the public size under the same conditions, the selection of our parameters is mainly based on

the conditions presented in the Durandal signature scheme [22]. Security parameters for our signature

scheme firstly must satisfy the following conditions:
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Table 2 Sets of parameters for our scheme and the Durandal scheme in bits

Instance q m n r d w l l′ λ PKS SS DA FA KRA Security

Our prameters I 2 229 83 3 7 59 – – 3 95035 25835 193 591 148 128

Our prameters II 2 233 89 3 8 58 – – 4 103685 27198 193 1334 150 128

Durandal [22] 2 241 101 6 6 57 4 1 12 121961 32514 193 – 461 128

(1) To avoid attacks [31, 37–39] and according to [28], m and n must be two different primes, and

P (X) ∈ Fq[X ] is an irreducible polynomial of degree n.

(2) We choose d and n such that dn > 512 to ensure that the entropy of c ∈ F dn is high enough.

(3) We must choose m, n, r, d, w, and λ such that 3(dr − λ + w) < RS(m, 2n, n) to make the rank

weight of signatures generating in our scheme below the RS bound (Definition 4). Note that RS(m, 2n, n)

stands for the Rank Singleton bound of [2n, n]qm-ideal codes over Fqm and RS(m, 2n, n) = mn
max{m,n} .

(4) To ensure that our scheme can resist the distinguisher attack (DA) and achieve the security level

of 128, we must choose m, r, d, and λ such that m − 2(dr − λ) > 128 + 64, where we assume that the

adversary can gain 264 signatures. That is, the complexity of solving the PSSI+ problem (Definition 11)

is greater than or equal to 2192. More specifically,

O(qm−2(dr−λ)) > q192.

(5) The distinguisher could use subspaces that dimension is 3 to distinguish our signatures from random

vectors, we must choose m, r, d, w, and λ such that 3(dr − λ+ w) > m to resist this attack.

(6) To ensure that our scheme can resist the forgery attack (FA) and achieve the security level of 128,

we must choose all security parameters (q,m, n, r, d, w, λ) according to Proposition 1 such that

O
(

m3n3q(w+dr−λ)⌈ nm+nd

max{m,2n}⌉−(w+dr−λ)(m+2n−w−dr+λ)−nd+mn
)

> q128.

Stated differently, the complexity of solving an instance (H , IM(s),x + IM(s′)cT, dr − λ + w,F ) of the

ARSD problem (Definition 12) is greater than or equal to 2128.

(7) To ensure that our scheme can resist the key recovery attack (KRA) and achieve the security level

of 128, we must choose q, m, n, and r to satisfy

min
{

O
(

n3m3qr⌈
(n+1)m

2n ⌉−m
)

,O
(

n3r3qr⌈
(n+1)(r+1)−(2n+1)

r ⌉
)}

> q128.

This implies that the complexity of solving two instances (H , s, r) and (H , s′, r) of the RSD problem

(Definition 6) is not less than 2128. In this paper, we only consider combinatorial methods that solve the

RSD problem because the cost of combinatorial methods [34,35,40,41] is smaller than the complexity of

algebra methods [35, 36] when q = 2.

Note that, we use a variant of the RSD problem in the systematic ideal configuration in our signature

scheme, i.e., the RISD problem, instead of the RSL problem. Therefore, we do not need to take into

account the influence of solving the RSL problem on security parameters.

In Table 2, PKS stands for the public key size and SS stands for the signature size. We choose two

sets of parameters our parameters I and our parameters II for security level of 128. The public key is

composed of (H , s, s′) and has a size of (mn + 4mn) log q = 5mn log q bits. The signature consists of

(F, c,p, z):

• a seed of 256 bits to describe F .

• c has a size of 512 bits.

• p has a size of dn log q bits.

• z has a size of (dr − λ+ w)[m + 2n− (dr − λ+ w)] log q bits.

Thus, the signature has a size of 768 + [dn+ (dr − λ+ w)(m + 2n− dr + λ− w)] log q bits.

Table 2 shows that our signature scheme enjoys shorter the public key size and the signature size than

the original Durandal scheme [22].

In Table 3, we compare our scheme with Durandal scheme from the aspects of KeyGen, Sign(Online),

and Verification and the result shows that our scheme takes less time to generate a signature. Both our
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Table 3 Comparison with Durandal scheme in ms

Scheme KeyGen Sign(Online) Verification

Our parameters I 545 62 293

Durandal [22] 7141 93 421

Table 4 Comparison with existing code-based signature schemes in bits

Scheme PKS SS Security

Our parameters I 95035 25835 128

CFS [9] 9437184 81 83

Stern [45] 347 122880 83

(U |U + V ) Sign [42] 8220835 7870 128

KKS [44] 176900 615 80

scheme and Durandal scheme are implemented on Intel(R) Core(TM) i5-7440HQ CPU@ 3.40 GHz with

the SageMath software 8.8.

Comparison with existing code-based signature schemes. We compare the public key size

and the signature size of our scheme with that of CFS, Stern, (U |U + V ) Sign, and KKS. The first two

signature schemes have been described previously in Section 1. Recently, another code-based signature

scheme whose security relies on (U |U +V ) codes has been proposed [42]. The KKS signature scheme [43]

which Kabatianskii, Krouk, and Smeets put forward in 1997 has been considered to be a one-time

signature scheme according to the attack given in [44].

In Table 4 [9,42,44,45], PKS stands for the public key size and SS stands for the signature size. Table 3

shows that at the cost of larger signature size our scheme has advantages in terms of the shorter public

key size, but the signature size is the second largest. While the promising scheme [45] has the shortest

public key than others, the signature is significantly larger than ours.

7 Conclusion

We efficiently reduced the public key size and the signature size of the Durandal signature scheme [22] by

exploiting the dot product proposed in the RQC encryption scheme [28] at the same security strength. We

proved that our improved Durandal signature scheme is EUF-CMA secure by reducing its security to the

DRSD problem, the PSSI+ problem, and the ARSD problem under the random oracle model. The major

difference between the Durandal scheme and our signature scheme is that the security of our scheme is

reduced to the DRSD problem rather than the DRSL problem. Furthermore, recovering key attacks on

our scheme is equivalent to solving the RSD problem, instead of the RSL problem in the original Durandal

scheme, which shows that our scheme is more secure than the Durandal scheme according to [16]. Our

signature scheme takes less time to generate a signature owing to the fact that our scheme enjoys smaller

security parameters in comparison to the Duradual scheme [22]. We also compared our scheme with

existing code-based signature schemes and found that our scheme has advantages in terms of the public

key size.
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