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Abstract In the cloud environment, where the cloud server cannot always be fully trusted, both data and

query privacy should be well protected for secure data outsourcing. Searchable encryption provides a more

practical solution to secure data storage while enabling efficient search queries. In this paper, four important

problems of public key encryption with keyword search (PEKS), namely, a scheme without secure channels,

conjunctive keyword search, (offline) outside and inside keyword guessing attack (full KGA) resistance and

proof in the standard model, are considered. We provide an in-depth analysis of the reasons behind (offline)

full KGA by considering two types of PEKS schemes as examples. In particular, we introduce the concept of

server-aided secure channel free public key encryption with conjunctive keyword search (SA-SCF-PECKS)

which can resist (offline) full KGA. Furthermore, we provide a concrete and efficient construction of SA-SCF-

PECKS, and prove its security in the standard model. To the best of our knowledge, our proposal is the

first PECKS scheme to address these four problems simultaneously. We compare the security and efficiency

of our scheme with those of other related PECKS schemes in theoretical and practical ways. In general,

compared with other schemes, our SA-SCF-PECKS scheme shows better performance in terms of security

and efficiency.
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1 Introduction

1.1 Motivation

Compared to centralized data storage, which may cause larger accidents, cloud storage provides a rela-

tively inexpensive and user-friendly solution to manage big data for enterprises, governments, and orga-

nizations, while also accelerates the wide proliferation of sensitive data.

The recent revelation of the largest data leak in Swedish history in 2017 reignited government and user

concerns on data privacy, particularly when dealing with data in the cloud. This leakage which was mainly

caused by the improper outsourcing deal between the Swedish transport agency (STA) and IBM indicates

that data privacy protection is necessary in the cloud computing environment and cloud servers that can

be controlled by adversaries cannot always be fully trusted. The cloud server may spy on users’ data

and attempt to learn more about user queries. Moreover, lots of examples also indicate that systematic

approaches, such as firewalls and access control, do not inherently protect data privacy, particularly
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against adversaries within the system. Traditional encryption protects data privacy at the expense of

data utility, such as keyword search, which is a basic database functionality. Thus, a solution that securely

outsources data and allows efficient queries meanwhile is clearly needed. Queries must be well protected

because they may reveal insights of querier’s interests, agendas, modes of operation. Such protection is

particularly crucial when handling government affairs or data with high security requirements.

Herein, we design a practical solution to secure data outsourcing with enhanced privacy protection.

Both user data and query privacy are well protected in our solution, which also supports conjunctive

keyword search on encrypted data. Ideally, fully homomorphic encryption [1] or ORAM [2] can help

us design such protocols that leak absolutely no information to the cloud server. Unfortunately, these

approaches are impractical that even slower than downloading the encrypted data and doing search locally

by user himself [3]. The proposal of searchable encryption introduces a more practical solution for the

above problem. The notion of public key encryption with keyword search (PEKS) was first proposed

by Boneh et al. [4] and designed for the store-and-forward system; it was later extended to many other

scenarios. The data owner (e.g., government, enterprise, or person) may want to outsource confidential

documents to the public cloud, and the querier who may be the data owner himself or some other

authorized users, can query the cloud server for documents containing a specific keyword. Traditional

PEKS, is exempt from sophisticated secret key management and has flexible application scenarios. Indeed,

the following issues must be addressed as practical or theoretical requirements in secure data outsourcing.

Firstly, the secure channel between the cloud server and querier required in traditional PEKS scheme

is expensive and overburdened for the case with weak infrastructure. As mentioned in [5], adopting some

mature techniques, such are SSL/TLS, to build a secure channel still incurs heavy computation and

communication costs, that renders this type of schemes weakly adaptable.

Secondly, supporting single keyword search on encrypted data is far from meeting application require-

ments. Thus, we desire to design a PEKS scheme supporting conjunctive keyword search (PECKS) [6].

Thirdly, the commonly-queried keyword space usually has low entropy because the owner’s data is

very likely related to some specific areas. Thus, (outside or inside) adversaries may be able to guess the

queried keywords and crack these keywords within a reasonable short period of time. This limitation

is an inherent security flaw in traditional PEKS called (offline) keyword guessing attack (KGA). More

specifically, an attacker with the querier’s public key can guess a possible keyword and encrypt it to

generate the corresponding ciphertext. The attacker can then test whether this ciphertext matches the

target trapdoor. The above process can be repeated until the correct underlying keyword is found, thereby

breaking the trapdoor privacy in PEKS. If the attacker is from outside of the cloud services system, we

call it (offline) outside keyword guessing attack (OKGA). If the attacker is the cloud server, system

administrator or other insiders within the cloud provider, we call it (offline) inside keyword guessing

attack (IKGA). We say it is secure against full KGA, when a scheme can go against both OKGA and

IKGA. In Sweden’s data breach, the unmodified dataset was outsourced to IBM, who, in turn, outsourced

the data storage and management to subcontractors with full access permissions. In this case, the use and

management of data were completely out of the data owner’s (STA’s) control. A malicious cloud server

can do anything it wishes. Thus, privacy risks remain when a PEKS scheme applied to this scenario

cannot go against IKGA.

Finally, constructing a scheme in the standard model is usually more desirable, and the same for

constructing a more secure PEKS scheme. The scheme with random oracles may never be secure when

it is instantiated in the standard model [7].

Motivated by the above scenarios, we aim to construct a PEKS scheme for secure data outsourcing

that takes all of these four issues into consideration which are more secure and practical. Besides, this

construction can be easily integrated into cloud platform, such as ownCloud.

1.2 Related work

Several directions have been further studied following the first PEKS proposed by Boneh et al. [4].

Secure channel free. Baek et al. [5] considered a new variant of PEKS called secure channel free
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Table 1 Security comparison of various PECKS schemes

GSW04 [9] PKL05 [6] CH09 [11] ZZ11 [13] HHL14 [24] YM16 [27] MML17 [14] ZW17 [26] Ours

Trapdoor unforgeability X X X X X X X X X

Ciphertext anonymity X X X X X X X X X

Secure channel free × × × × X X X X X

Outside KGA X × × × × X X X X

Inside KGA × × × × × × × × X

Standard model × × × X X X X X X

PEKS (SCF-PEKS). The cloud server in SCF-PEKS possesses its own public/private key pair, so that

trapdoors can be transferred without a secure channel. In later work, Rhee et al. [8] strengthened the

security model of Baek et al.’s SCF-PEKS.

Conjunctive keyword search. Overall, existing PECKS schemes can be categorized into two

types: the fixed keyword field scheme and the variable keyword field scheme. In the fixed keyword field

scheme [6, 9–12], m fixed keyword fields must be defined for each document. Two assumptions are still

necessary [9]. Under these assumptions, the null field must be padded with some symbols, which has

poor impact on efficiency. Besides, the querier must determine the keywords to search, as well as the

corresponding keyword fields. This condition is impractical to extend to other scenarios involving various

documents. While the variable keyword field scheme [13,14] requires a smaller storage space of the cloud

server, and keywords can be listed in any order, which is more flexible and efficient.

KGA resistance. KGA was first observed by Byun et al. [15]. Fang et al. [16], Xu et al. [17] and Guo

et al. [18] later attempted to construct PEKS schemes that are secure against OKGA, but these schemes

still did nothing to inside attackers. Wang et al. [19] creatively set two cloud servers without collusion in

their framework to resist IKGA. Chen et al. [20] applied a similar idea and proposed a new model called

dual-server public key encryption with keyword search (DS-PEKS) that could resist IKGA. However,

because the keyword search process was performed separately by two servers, DS-PEKS scheme may still

suffer from the search inefficiency. Huang et al.’s [21] public-key authentication encryption with keyword

search (PAEKS) solved IKGA by embedding the data owner’s private key into the searchable ciphertexts.

Jiang et al.’s work (SEK-IA) [22] integrated identity-based encryption (IBE) into PEKS to resist inside

attackers. Both PAEKS and SEK-IA applied the similar idea that added data owner’s authentication

information into the searchable ciphertexts, such that the trapdoor produced in their schemes should

also contain the data owner’s specified identity (the public key or the identity in IBE). Therefore, when

PAEKS is applied to the multi-owner setting, the data user must create a specific trapdoor for each

data owner, and the number of trapdoors is linear to the number of data owners. Although the SEK-IA

scheme has a constant-sized trapdoor even in the multi-owner scenario, the cloud server must search for

each data owner’s ciphertexts, and the trapdoor changes as the specified data owner identity set changes.

An additional trusted third party is needed in the SEK-IA scheme. Besides, the above two solutions

require major modifications to the original PEKS scheme, and the scenario scalability is affected. Sun

et al. [23] combined a signcryption algorithm and indistinguishability obfuscator (io) to deal with IKGA

in PEKS, which, unfortunately, inherits the impracticability of io. PECKS schemes also suffer from this

type of attack. Hwang et al. [24] showed two previous PECKS schemes that are insecure against OKGA

and constructed a SCF-PECKS scheme against OKGA. However, Lu et al. [25] showed that Hwang et

al.’s scheme [24] is still susceptible to full KGA by giving three concrete KGAs. Zhao et al.’s scheme [26]

and Miao et al.’s VCKSM scheme [14] also fail to resist IKGA. Therefore, devising a secure SCF-PECKS

that can resist full KGA remains an unsolved problem.

Proof in the standard model. A comparison of some related PECKS schemes is shown in Table 1 [6,

9, 11, 13, 14, 24, 26, 27]. To the best of our knowledge, no known scheme that meets all the requirements

in Subsection 1.1 simultaneously is yet available. In this paper, we address all of the problems described

above, and propose an enhanced searchable encryption scheme that can resist full KGA, the security of

this scheme is proven in the standard model.
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1.3 Our contributions

Firstly, we point out a recent SCF-PEKS scheme and a recent PECKS scheme that have failed to resist

(offline) IKGA. We note that the same holds for most existing PEKS schemes (including the PEKS

scheme and its variants). Secondly, we propose a new framework with enhanced privacy protection,

called server-aided secure channel free public key encryption with conjunctive keyword search (SA-SCF-

PECKS), which can stand against full KGA. Thirdly, we construct a concrete SA-SCF-PECKS scheme in

the standard model. To the best of our knowledge, it is the first PECKS scheme that can resist full KGA

and can be proven secure in the standard model. This scheme can be constructed in an environment

without a secure channel between the cloud server and the querier which is highly practical. Finally, we

compare the efficiency of our scheme with those of other related PECKS schemes in theory and practice.

We implemented our SA-SCF-PECKS scheme and the public key encryption with conjunctive-subset

keywords search (PECSK) scheme in ZZ11 [13]. Moreover, our scheme can be integrated into cloud

storage applications, such as ownCloud.

2 Preliminary

In this section, we review some useful notations and notions.

Notations. r
$
←− S denotes uniformly choosing a random element r from a set S. S1 → S2 means a

mapping from set S1 to set S2. We also define {si}
k
i=1 := {s1, . . . , si, . . . , sk}. |S|b denotes the bit-length

of an element in a set S. A function negl(n): N → R is negligible in n if for every positive polynomial

p(·) there exists an N such that ∀ n > N , negl(n) < 1/p(n).

Bilinear pairing. Let G1, G2, and GT be three multiplicative groups of prime order p, and g1 be a

generator of G1, g2 be a generator of G2. We say e : G1 × G2 → GT is a bilinear map, if the following

three conditions are met:

• Bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab, ∀a, b ∈ Zp.

• Non-degeneracy: e(g1, g2) 6= 1GT
.

• Computability: ∀g1 ∈ G1 and ∀g2 ∈ G2, e(g1, g2) can be computed efficiently.

We use Type-III bilinear groups in our concrete construction.

The decisional Diffie-Hellman (DDH) assumption. Consider a cyclic group G of prime order

p, and with a generator g. The DDH problem is to distinguish the tuples of (ga, gb, gab) and (ga, gb, gc)

where a, b, c
$
←− Zp. We define the advantage AdvDDH

G,A (·) of an adversary A as |Pr[A(ga, gb, gab) =

1]− Pr[A(ga, gb, gc) = 1]|. The DDH assumption holds if AdvDDH
G,A (·) is negligible for all PPT A.

Blind signature. We briefly review the definition of blind signature. In our scheme we use a deter-

ministic round-optimal blind signature (deBS), we will adapt the definition to this case.

(1) Syntax. Our deterministic blind signature deBS scheme includes five polynomial-time algorithms,

executed by a signer and a user.

• KeyGendeBS(1
λ): Taking as input a security parameter λ, the algorithm returns a parameter PdeBS

of deBS, a public/private key pair (pkdeBS, skdeBS) of the signer and a secret key kU for the user. Suppose

λ and PdeBS are the default inputs to the following algorithms in deBS scheme.

• User-Request(pkdeBS, kU ,m): Taking as input a public key pkdeBS, a secret key kU , and a message

m, this algorithm generates a user’s signature request ξ, with state st.

• Signer-Issue(skdeBS, ξ): Taking as input the signer’s private key skdeBS and a user’s signature request

ξ, it outputs a pre-signature σ̄.

• User-Process(pkdeBS, σ̄, st): Taking as input a public key pkdeBS, a pre-signature σ̄, and the state

st, it generates a blind signature σm of message m, or outputs ⊥ if σ̄ is not valid.

• VerifydeBS(pkdeBS,m, σm): Taking as input a public key pkdeBS of singer, a message m, and a

signature σm, if σm is a valid signature of m, it returns 1; else returns 0.

Throughout our paper, blind signature scheme is deterministic, that is for each pkdeBS, each m, and a

given user’s secret key kU , only one valid signature σm exists s.t.VerifydeBS(pkdeBS,m, σm) = 1.
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(2) Security requirements. One-more unforgeability and blindness are usually required.

(One-more) unforgeablity states that for all probabilistic polynomial time (PPT) adversaries, the

probability of forging qk+1 valid signatures of qk+1 different messages after at most qk interactions with

an honest signer is negligible. Here, we need an extended concept over message set. Blindness means the

probability of judging the order in which two messages m0 and m1 are signed, for an adversarial signer,

after interacting with an honest user, is negligible.

3 Inside keyword guessing attacks (IKGAs) on some previous schemes

We now present IKGA on an SCF-PEKS scheme [28] and a PECKS scheme [13], respectively. A brief

review of these schemes can be found in Appendix. We note that this attack is not considered in their

proposals and this rather shows that many previous schemes do not fulfill this security requirement.

3.1 IKGA against an SCF-PEKS scheme

Fang et al.’s scheme is constructed in the standard model, the details of which are described in Ap-

pendix B. We note that the potential IKGA vulnerability is outside of the original security model of [28].

Lemma 1. Fang et al.’s scheme [28] is vulnerable to (offline) IKGA.

Proof. If there exists a potential insider attacker A, who is the server or other insider within the cloud

management system without server’s private key skS , A can launch (offline) IKGA as detailed below:

Step 1. Attacker A selects his target trapdoor Tw = (r
Tw

, d
Tw

) from the trapdoors received from

querier, where d
Tw

= (rq,2 · g
−r

Tw )
1

rq,1−w , r
Tw

$
←− Z

∗
p.

Step 2. A guesses a possible keyword w∗ according to his knowledge background.

Step 3.

- If A is the server, it can just use the public key of querier and server, to generate the ciphertext C∗
w

of the keyword w∗. Then it takes its own private key sks, the ciphertext C∗ and the target trapdoor Tw

to test if C∗ and Tw match. If the test passed, A’s guessed keyword w∗ is the underlying keyword of Tw.

Otherwise, go back to Step 2.

- Even if A does not have the server’s private key skS , it can use the public key pkQU of the querier

and the guessed keyword w∗, to check if e(d
Tw

, q · g−w∗

) = e(g, rq,2 · g
−r

Tw ) holds. If so, the guessed

keyword w∗ is the underlying keyword of Tw. Else, go back to Step 2.

Commonly-used keyword space in each specific field (such as government, finance) has low entropy.

Thus, the inside attacker can easily launch the above attack within a short period of time.

3.2 IKGA against a PECKS scheme

In this subsection, we consider a PECSK scheme [13] (as shown in Appendix B) which is also a variable

keyword field one.

Lemma 2. Zhang et al.’s scheme [13] is vulnerable to (offline) IKGA.

Proof. Assuming A is a potential insider attacker, the (offline) IKGA can be conducted as below:

Step 1. First, A selects a target trapdoor TQ = (T0, T1, . . . , Tm, (g
G1,1

)rt , qrt).

Step 2. A guesses a possible keyword set W ∗ = {w∗
1 , w

∗
2 , . . . , w

∗
t }.

Step 3. A can carry out this attack in two ways.

- Taking pkQU of the querier and keyword set W ∗, A can generate the ciphertext CW∗ of keyword set

W ∗, then do the Test himself to check if it outputs “1”. If so, such keyword set W ∗ is the correct guess

corresponding to TQ. Otherwise, go back to Step 2.

- More easily, with the querier’s public key pkQU and the guessed keyword set W ∗, A can check

if e(Tj , q) = e(g
G1,2

, g
G2

) · e((g
G1,1

)rt , pj · gG2
) · e((g

G1,1
)(H1(w

∗

1
)j+H1(w

∗

2
)j+···+H1(w

∗

t )
j)/t, p1 · gG2

), where

0 6 j 6 m. If so, the guessed keyword set W ∗ is the underlying keyword set of the trapdoor TQ.

Otherwise, go back to Step 2.
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Figure 1 (Color online) Traditional PEKS system model.

Because the queried keyword space often has low entropy, A can perform the above KGA successfully.

Other PECKS schemes such as Hwang et al.’s scheme [24] claim to be able to resist offline OKGA, but

cannot resist IKGA. Once a malicious server receives the trapdoor from the querier, it can generate a

PECKS ciphertext of the guessed keyword set using its own public key and the public key of the querier

and then verify it. Designing a PECKS scheme that is secure against full KGA is of great significance.

Three main reasons can be summarized for the offline IKGA.

- For the inside attacker, the trapdoor can be obtained easily.

- In real applications, commonly-used keywords are always selected from a low-entropy keyword space,

it is feasible for the attacker with some background knowledge to launch keyword guessing attack.

- The ciphertext generation process is out of the querier and data owner’s control, i.e., the ciphertext

is derived directly from the original keyword (or the keyword set). Thus, an attacker with the public keys

of the target roles can compute the ciphertext of its guess. Moreover, the inside attacker can perform the

Test freely. Both algorithms (Ciphertext generation and Test) can be performed offline.

4 Model of server-aided secure channel free PECKS

In this section, we present the system model and the security definition for SA-SCF-PECKS.

4.1 System model

From the observations in Section 3, we transform the offline ciphertext generation process into an online

one. Motivated by the basic idea for the single keyword search scheme against KGA set forth by Chen

et al. [29], we add a semi-honest keyword server (KS) to assist with keyword preprocessing, which is

essential, before generating the PECKS ciphertext and trapdoor. A system model comparison of the

traditional PEKS and our scheme is shown in Figures 1 and 2. Our model contains three types of roles:

the adversarial user (data owner or querier) who is usually weak in storage and computing, and would like

to outsource his or her data to a cloud server and obtain the corresponding services from it, the adversarial

SS(search server) which provides data storage services for data owners and responds to querier’s search

requests, and the semi-honest KS, who engages in the interactive protocol with the user to generate

valid preprocessed keyword set (PKW). An unmentioned trusted key generation center (KGC) which is

responsible for initializing system parameters and generating keys for corresponding roles, is also needed.

We consider that no secure channel is required between the SS and the querier in our system model.

In our model, the user is adversarial and may try to forge a valid PKW based on the PKWs that he

previously obtained from the KS. Our scheme is secure for the honest party even in this scenario.

4.2 Formal definition

In the SA-SCF-PECKS scheme, we focus on how to generate index according to the keyword fields of

each document. We assume there are m different keywords in each document and denote the keyword set

of the document as D = (w1, w2, . . . , wm). We also write the queried keyword set as Q = (w′
1, w

′
2, . . . , w

′
t),
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where t is the number of keywords in the query Q. Our scheme is a variable keyword field scheme, as

shown in Figure 2.

Definition 1 (SA-SCF-PECKS). A SA-SCF-PECKS scheme Π
SA-SCF-PECKS

is a tuple of the following

polynomial-time algorithms such that:

• GlobalSetup(1λ): Taking as input a security parameter λ, it outputs a global parameter GP =

(PdeBS, PPECKS), where PdeBS and PPECKS are parameters of deBS and PECKS, respectively.

• SA-KeyGenU (1
λ): Taking as input a security parameter λ, it outputs a secret key kU of a user (data

owner and querier share the same secret key).

• SA-KeyGenKS(PdeBS): Taking as input a parameter PdeBS of deBS, it outputs a public/private key

pair of KS as (pkKS, skKS).

• SA-KeyGenSS(PPECKS): Taking as input a parameter PPECKS of PECKS, it outputs a public/private

key pair of SS as (pkSS, skSS).

• SA-KeyGenQU(PPECKS): Taking as input a parameter PPECKS of PECKS, it outputs a public/private

key pair of querier as (pkQU, skQU).

• SA-PKW(PdeBS, kU , pkKS, skKS,W ): Taking as input a parameter PdeBS of deBS, a secret key kU
of a User, a key pair (pkKS, skKS) of KS and a keyword set W (a document D or a conjunctive keyword

query Q), it returns the preprocessed keyword set of W as pkwW .

• SA-dPECKS(PPECKS, pkSS, pkQU, pkwD): Taking as input a parameter PPECKS of PECKS, a public

key pkSS of SS, a public key pkQU of querier, and a preprocessed keyword set pkwD, the algorithm returns

the PECKS ciphertext of D as CTpkwD
.

• SA-dTrapdoor(PPECKS, pkSS, skQU, pkwQ): Taking as input a parameter PPECKS of PECKS, a public

key pkSS of SS, a private key skQU of querier, and a preprocessed keyword set pkwQ, it generates the

trapdoor of Q as TpkwQ
.

• SA-dTest(PPECKS, skSS, TpkwQ
,CTpkwD

): Taking as input a parameter PPECKS of PECKS, a private

key skSS of SS, a trapdoor TpkwQ
, and a PECKS ciphertext CTpkwD

, it outputs “True” if Q ⊆ D or “False”

otherwise.

The first five algorithms are the initial system setup and key generation, which are executed by the

trusted KGC. The algorithm SA-PKW is a protocol between the User and the KS. The algorithms

SA-dPECKS, SA-dTrapdoor, and SA-dTest are executed by the data owner, the querier and the SS,

respectively.

4.3 Security model

We set new security models for the outside attacker (OA), the adversarial search server (KS), the semi-

honest keyword server (KS), and the adversarial user (data owner or querier), respectively.
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Outside attacker (OA). The notion of indistinguishability against keyword guessing attack (IND-

KGA) introduces the trapdoor indistinguishability, it guarantees that an OA who has obtained the

trapdoors of the challenged keyword sets will still be unable to deduce the underlying PKW (or original

keyword set) of the trapdoor, i.e., OA cannot perform the OKGA.

Definition 2 (ExpIND-KGA
A(OA) ). The IND-KGA experiment ExpIND-KGA

A(OA) (1λ) for any Π
SA-SCF-PECKS

, PPT

outside adversary A and security parameter λ is defined as follows:

• Setup. The challenger calls the algorithm GlobalSetup(1λ) to generate the global parameters GP,

then runs the algorithm SA-KeyGenU , SA-KeyGenKS, SA-KeyGenQU and SA-KeyGenSS to generate the

corresponding keys and sends (pkQU, pkKS, pkSS) to A.

• Query-I (Trapdoor query). A could ask the challenger the corresponding trapdoor of any keyword

set Q. The challenger responds to it by performing pkwQ ← SA-PKW(PdeBS, kU , pkKS, skKS, Q) and

TpkwQ
← SA-dTrapdoor(PPECKS, pkSS, skQU, pkwQ).

• Challenge. A chooses two keyword sets Q0, Q1 which have not be queried by A in Query-I stage and

gives them to the challenger. Then, the challenger chooses b ∈ {0, 1} randomly, generates pkwQb
←

SA-PKW(PdeBS, kU , pkKS, skKS, Qb), T ∗ ← SA-dTrapdoor(PPECKS, pkSS, skQU, pkwQb
) and sends T ∗

to A.

• Query-II (Trapdoor query). A again issues the trapdoors of the keyword sets, but the queries on

the challenge keyword sets Q0, Q1 are not allowed.

• Output. A outputs its guess b′ ∈ {0, 1}. The experiment returns 1 if b′ = b which means A wins,

and 0 otherwise.

A’s winning advantage is denoted as AdvIND-KGA
A(OA) (1λ) = |Pr[ExpIND-KGA

A(OA) (1λ) = 1]− 1/2|.

Adversarial search server (SS). We give the definition of indistinguishability against chosen key-

word guessing attack (IND-CKGA) here to guarantee that both PECKS ciphertext and trapdoor do

not leak the corresponding keywords to SS. Different from the case with an OA, the adversarial SS is

allowed to obtain the ciphertext and trapdoor pair of the same challenge keyword set. IND-CKGA also

guarantees that the SS cannot perform the offline IKGA.

Definition 3 (ExpIND-CKGA
A(SS) ). The IND-CKGA experiment ExpIND-CKGA

A(SS) (1λ) for any Π
SA-SCF-PECKS

,

PPT inside adversary (the SS) A and security parameter λ is defined as follows:

• Setup. The challenger calls the algorithm GlobalSetup(1λ) to generate the global parameters GP,

then runs the algorithm SA-KeyGenU , SA-KeyGenKS, SA-KeyGenQU and SA-KeyGenSS to generate the

corresponding keys and sends (pkQU, pkKS, skSS, pkSS) to A.

• Query-I (Ciphertext query & Trapdoor query). A could ask the challenger the PECKS ciphertext

and trapdoor of any keyword setWqI . Assume A has queried qIk distinct keyword sets {W1,W2, . . . ,WqIk
}

in the Query-I stage.

• Challenge. A chooses the challenge keyword sets W ∗
0 ,W

∗
1 which then will be sent to the chal-

lenger. We limit that W ∗
b ∩ (W1 ∪ · · · ∪ WqIk

) = φ, where b ∈ {0, 1}. For W ∗
0 ,W

∗
1 , the challenger

selects b ∈ {0, 1} randomly and generates pkwW∗

b
← SA-PKW(PdeBS, kU , pkKS, skKS,W

∗
b ), CT∗ ←

SA-dPECKS(PPECKS, pkSS, pkQU, pkwW∗

b
), T ∗ ← SA-dTrapdoor(PPECKS, pkSS, skQU, pkwW∗

b
) and sends

(CT∗, T ∗) to A.

• Query-II (Ciphertext query & Trapdoor query). A again asks for the ciphertext and trapdoor of any

keyword set WqII . Assume A has queried qIIk distinct keyword sets {W1,W2, . . . ,WqIIk
} in the Query-II

stage, we require that any keyword set WqII ∩ (W ∗
1 ∪W ∗

0 ) = φ.

• Output. A outputs its guess b′ ∈ {0, 1}. The experiment returns 1 if b′ = b which means A wins,

and 0 otherwise.

A’s winning advantage is denoted as AdvIND-CKGA
A(SS) (1λ) = |Pr[ExpIND-CKGA

A(SS) (1λ) = 1]− 1/2|.

Semi-honest keyword server (KS). We introduce the definition of indistinguishability against

chosen keyword attack (IND-CKA) for the consideration that the interactive keyword preprocessing

involving by User and KS should not leak User’s private input (i.e., the original keyword set) to the

semi-honest KS (or outside snoopers).
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Definition 4 (ExpIND-CKA
A(KS) ). The IND-CKA experiment ExpIND-CKA

A(KS) (1λ) for any Π
SA-SCF-PECKS

, PPT

adversary (the KS) A and security parameter λ is defined as follows:

• Setup. The challenger first initializes the system global parameters GP by running algorithm

GlobalSetup(1λ), then runs the algorithm SA-KeyGenU , SA-KeyGenKS and sends A the key pair (pkKS,

skKS). A then sends two challenge keyword sets W0, W1 to the challenger.

• Challenge. Upon receiving W0, W1, the challenger selects a random bit b ∈ {0, 1}, interacts with A

in the keyword preprocessing protocol to get the PKW pkwWb
of Wb, and send pkwWb

to A.

• Output. Finally, A outputs its guess b′ ∈ {0, 1}. The experiment returns 1 if b′ = b which means A

wins, and 0 otherwise.

A’s winning advantage is denoted as AdvIND-CKA
A(KS) (1λ) = |Pr[ExpIND-CKA

A(KS) (1λ) = 1]− 1/2|.

Adversarial users. In our system model, we require only KS is able to produce valid PKWs, or else

the scheme would be insecure against IKGA. This protocol is also expected to prevent the adversarial

user from forging a valid PKW based on the PKWs received from the KS before. We define a definition

called one-more unforgeability under chosen keyword attack (OMU-CKA) for this consideration.

Definition 5 (ExpOMU-CKA
A(U) ). The OMU-CKA experiment ExpOMU-CKA

A(U) (1λ) for any Π
SA-SCF-PECKS

,

PPT adversary (the user) A and security parameter λ is defined as follows:

• Setup. The challenger first generates the global parameters GP , the secret key kU and the key pair

(pkKS, skKS) by running the algorithm GlobalSetup(1λ), SA-KeyGenU and SA-KeyGenKS, respectively.

A is given kU and pkKS.

• PKW-Query. A can adaptively issue the corresponding PKWs of at most qk different unprocessed

keyword sets W1,W2, . . . ,Wqk of his choice.

• Output. Finally, A outputs qk pairs {Wi, pkwWi
}qki=1 and another pair {W, pkwW }. The experiment

returns 1 if (1) Wi 6= Wj , ∀i, j ∈ [1, qk] where i 6= j, (2) W ∩ (W1 ∪ · · · ∪Wi ∪ · · · ∪Wqk) = φ, and (3)

∀i ∈ [1, qk], pkwWi
and pkwW are all valid PKWs, which means A wins, and 0 otherwise.

The adversary A’s advantage of winning the above experiment is denoted as AdvOMU-CKA
A(U) (1λ).

Finally, combining Definitions 2–5, the security model of SA-SCF-PECKS is shown in Definition 6.

Definition 6 (Secure SA-SCF-PECKS). A SA-SCF-PECKS scheme Π
SA-SCF-PECKS

is secure if for any

PPT attacker Ai (i = 1, 2, 3, 4), the advantages AdvIND-KGA
A1(OA) (1λ), AdvIND-CKGA

A2(SS) (1λ), AdvIND-CKA
A3(KS) (1λ),

and AdvOMU-CKA
A4(U) (1λ) are all negligible in the security parameter λ.

5 SA-SCF-PECKS scheme in the standard model

5.1 Overview

The most common and convenient method to avoid expensive secure channels is to let the cloud server

keep a key pair of its own [30]. We apply this basic idea in our scheme. To enable the querier to perform

conjunctive keyword search on the encrypted documents efficiently and flexibly, we construct a variable

keyword field scheme. We then modify the construction for shared multi-owner settings in [14] which can

only resist OKGA.

In our scheme, upon giving a keyword set W , the user first performs mutual authentication with KS

(via HTTP, for example) and then runs a protocol with KS to get PKW pkwW . Later, the data owner (or

querier) generates the corresponding PECKS ciphertext (or trapdoor) of the PKW. Some requirements

should be met by the interactive protocol. Firstly, the protocol must take the private information of the

KS so that an adversary is unable to forge a valid PKW. Secondly, the KS should know nothing about

the input keyword set of the User and the PKW’s validity can be checked efficiently. Finally, the protocol

transforming the original keyword set to the preprocessed one should be deterministic which means if we

have W1 = W2, then pkwW1
= pkwW2

. The first two requirements ensure the security of keywords while

the last one is to guarantee the correctness of SA-SCF-PECKS scheme. In this way, the inside attacker

in our scheme can no longer generate the PECKS ciphertext of his guess offline. Besides, the KS can also

apply some mechanisms to monitor abnormal requests or control the online KGA rate.
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Deterministic blind signatures with unforgeability and blindness can well capture the above require-

ments. We transform the round-optimal blind signature scheme in [31] into a deterministic one (as defined

in Section 2) by pseudorandom functions (PRFs). The transformed scheme (deBS) is also correct, (one-

more) unforgeable and perfectly blind in the standard model (more details are provided in Appendix

A). The scheme can achieve desirable efficiency and has a very low communication overhead on both

sides which is crucial for users to reduce their costs in the keyword preprocessing. Our solution is fairly

general and requires slight modification to the original PECKS scheme only, which allows it have better

scalability than PAEKS [21].

5.2 Concrete SA-SCF-PECKS scheme Π
SA-SCF-PECKS

We now present our concrete construction of Π
SA-SCF-PECKS

.

• GlobalSetup(1λ): Taking as input the security parameter λ, the algorithm generates parameters

PPECKS = (p, g1, g2, G1, G2, GT , e1, h), PdeBS = (p̂, g, ĝ, G, Ĝ, T, e2, F
1, F 2), where G1, G2, GT are groups

with prime order p; G, Ĝ, T are groups with prime order p̂; g1, g2, g, and ĝ are the generators of group

G1, G2, G and Ĝ, respectively. h : {0, 1}∗ → Z
∗
P is a cryptographic collision-resistant hash function, and

F 1, F 2 are two PRFs for the User and KS, respectively. We use the bilinear map e1 : G1×G2 → GT and

e2 : G× Ĝ→ T . Finally, it sets the global parameters GP as GP = (PdeBS, PPECKS).

• SA-KeyGenU (1
λ): The algorithm selects a value kU

$
←− {0, 1}λ. The data owner and querier share

the same key kU .

• SA-KeyGenKS(PdeBS): The algorithm selects values h̄, x, y
$
←− Z

∗
P , kKS

$
←− {0, 1}λ and sets private

key skKS = (h̄, x, y, kKS). Then, it computes public key pkKS = (H, Ĥ, X̂, Ŷ ) = (gh̄, ĝh̄, ĝx, ĝy). Finally,

it outputs the KS’s public/private key pair (pkKS, skKS).

• SA-KeyGenSS(PPECKS): The algorithm selects values aSS
$
←− G2, α

$
←− Z

∗
P and sets the private

key skSS = α. Then it computes public key pkSS = (aSS, bSS) = (aSS, g
α
1 ). Finally, it outputs SS’s

public/private key pair (pkSS, skSS).

• SA-KeyGenQU(PPECKS): The algorithm selects a value β
$
←− Z

∗
P and sets private key skQU = β. Then

it computes public key pkQU = gβ1 . Finally, it outputs querier’s public/private key pair (pkQU, skQU).

• SA-PKW(PdeBS, kU , pkKS, skKS,W ): The algorithm is the keyword preprocessing protocol between

the user (data owner or querier) and the aided KS. At the end of the protocol, the user acquires the valid

processed keyword set pkwW of W = (w1, . . . , wk). W can be a document D = (w1, . . . , wm) of the data

owner or a conjunctive keyword query Q = (w′
1, . . . , w

′
t) of the querier.

User-Request (PdeBS, kU , pkKS,W = (w1, . . . , wk)):

- It returns ⊥ if H = 1G or e2(H, ĝ) 6= e2(g, Ĥ);

- For i = 1 to k, it computes ri ← F 1
kU

(wi), and sets R = (r1, . . . , rk);

- Com = (Com1, . . . ,Comk) = (gw1Hr1 , . . . , gwkHrk);

- It returns (ξ = Com, st = (W,R)), and sends ξ to the keyword server.

KeywordServer-Issue (PdeBS, skKS = (h̄, x, y, kKS), ξ):

- For i = 1 to k, it computes a′i ← F 2
kKS

(Comi), and sets a′ = (a′1, . . . , a
′
k), and σ̄ = {σ̄i}

k
i=1 =

{(A′
i, B

′
i, C

′
i)}

k
i=1, where σ̄i = (A′

i, B
′
i, C

′
i) = (ga

′

i , (gxComi)
a′

i
y , H

a′

i
y );

- It returns σ̄ to the user.

User-Process (PdeBS, kU , pkKS, σ̄, st = (W,R)):

- It returns ⊥ if {A′
i}

k
i=1 = 1G or {e2(C

′
i, Ŷ ) 6= e2(A

′
i, Ĥ)}ki=1;

- It then computes {B′
i = B′

iC
′−ri
i }ki=1;

- It returns ⊥ if {e2(B
′
i, Ŷ ) 6= e2(A

′
i, X̂ĝwi)}ki=1;

- For i = 1 to k, it computes ai ← F 1
kU

(ri), and sets a = (a1, . . . , ak).

Finally, it outputs σW = {σwi
}ki=1, where σwi

= (Ai, Bi) = (A
′ai

i , B
′ai

i ). The user obtains the PKW

pkwW = {pkwwi
}ki=1 = {Ai||Bi}

k
i=1.

• SA-dPECKS(PPECKS, pkSS, pkQU, pkwD): For the PKW pkwD = {pkwwi
}mi=1, an m-degree polyno-

mial f(X) = bmXm+ bm−1X
m−1+ · · ·+ b1X+ b0 is constructed so that βh(pkww1

), . . . , βh(pkwwm
) are
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m roots of the equation f(X) − 1 = 0. This polynomial would accompany pkwD as a default input to

the algorithm which can be predefined by the querier for each document’s PKW (in fact, the data owner

and querier are the same person in most scenarios). Then, it selects values τ, µ
$
←− Z

∗
P , and computes

v1 = γ · e1(g1, g2)
−µ, v2 = gτ1 , Cj = g

µ·bj
2 (0 6 j 6 m), where γ = e1(bSS, aSS)

τ . Finally, it sets PECKS

ciphertext CTpkwD
= {v1, v2, C0, C1, . . . , Cm}.

• SA-dTrapdoor(PPECKS, pkSS, skQU, pkwQ): For the PKW pkwQ = {pkww′

r
}tr=1, the algorithm se-

lects ϕ, π
$
←− Z

∗
P , and lets TQ,O1

= ϕ. Then it computes TQ,O2
= gπ1 and TQ,j = g

t−1·TQ,O1
·βj ·

∑
t
r=1

h(pkww′
r
)j

1 ·

(bSS)
π , where 0 6 j 6 m. It returns the trapdoor TpkwQ

= (TQ,O1
, TQ,O2

, TQ,0, TQ,1, . . . , TQ,m) and sends

TpkwQ
to the SS.

• SA-dTest(PPECKS, skSS, TpkwQ
,CTpkwD

): First, the algorithm computes γ = e1(v2, aSS)
skSS = e1(v2,

aSS)
α, and computes u =

∏m
j=0 e1(TQ,j/T

α
Q,O2

, Cj). Then, it checks if v
TQ,O1

1 · u = γTQ,O1 . If so, output

“True”, and “False” otherwise.

6 Analysis of our scheme

We now demonstrate that our SA-SCF-PECKS scheme is correct and secure under our security model.

6.1 Correctness

Theorem 1. The correctness of Π
SA-SCF-PECKS

holds if the deBS scheme is deterministic.

Proof. Firstly, for the deBS scheme is deterministic, the algorithm SA-PKW(PdeBS, kU , pkKS, skKS,W )

in our scheme is also deterministic. Then we have that for any keyword set W,W ′, for a User’s secret key

kU , if W = W ′, σW = σW ′ , then pkwW = pkwW ′ . Next, we have v
TQ,O1

1 = e1(bSS, aSS)
τϕ · e1(g1, g2)

−µϕ.

Based on equation f(X),

u =

m
∏

j=0

e1

(

TQ,j

Tα
Q,O2

, Cj

)

=

m
∏

j=0

e1

(

g
t−1·ϕ·βj·

∑t
r=1

h(pkww′
r
)j

1 , g
µ·bj
2

)

= e1(g
t−1·ϕ
1 , gµ2 )

∑m
j=0

bj ·β
j ·
∑t

r=1
h(pkww′

r
)j

= e1(g1, g2)
µϕ.

Thus, if v
TQ,O1

1 ·u = e1(bSS, aSS)
τϕ = γTQ,O1 , we have pkwQ ⊆ pkwD, so Q ⊆ D. The algorithm SA-dTest

will output “True”; otherwise, it will output “False”.

6.2 Security

Theorem 2. Π
SA-SCF-PECKS

is secure in the standard model if the DDH problem is intractable and the

underlying blind signature deBS has the property of blindness and one-more unforgeability.

The proof of Theorem 2 follows from Lemmas 3–6.

Lemma 3. Π
SA-SCF-PECKS

is IND-KGA secure in the standard model if the DDH problem is hard.

Proof. Let the winning advantage of a PPT adversary A1 in ExpIND-KGA
A(OA) (1λ) be AdvIND-KGA

A1(OA) (1λ) and

the advantage of a PPT adversaryB1 successfully solving the DDH problem be AdvDDH
B1

(1λ). We construct

the algorithm B1 by taking A1 as a subroutine. Assume B1 has been given an instance (g1, g
δ1
1 , gδ21 , Z) of

the DDH problem. Then the experiment between A1 and B1 can be executed as follows.

• Setup. B1 chooses a value aSS
$
←− G2, computes bSS = gδ21 , and sets pkSS = (aSS, bSS), skSS = δ2.

Then, B1 selects a value β
$
←− Z

∗
P , sets private key skQU = β, and computes pkQU = gβ1 . B1 continues to

select values h̄, x, y
$
←− Z

∗
P , kKS

$
←− {0, 1}λ and sets private key skKS = (h̄, x, y, kKS). Then it computes

public key pkKS = (H, Ĥ, X̂, Ŷ ) = (gh̄, ĝh̄, ĝx, ĝy). Finally, B1 sends (pkQU, pkSS, pkKS) to A1.

• Query-I. A1 adaptively issues B1 the trapdoor of the conjunctive keyword query Q = {W ′
1, . . . ,W

′
t}

(t 6 m). B1 first runs the SA-PKW(PdeBS, kU , pkKS, skKS, Q) to generate pkwQ. Then it chooses
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values ϕ, π
$
←− Z

∗
P , and sets TQ,O1

= ϕ. For 0 6 j 6 m, it computes TQ,O2
= gπ1 and TQ,j =

g
t−1·TQ,O1

·βj·
∑

t
r=1

h(pkww′
r
)j

1 ·(bSS)
π , and responds the trapdoor TpkwQ

=(TQ,O1
, TQ,O2

, TQ,0, TQ,1, . . . , TQ,m).

• Challenge. A1 chooses two keyword sets Q0, Q1 which have not been queried in the Query-I

stage and sends them to B1. B1 chooses b ∈ {0, 1}, runs SA-PKW(PdeBS, kU , pkKS, skKS, Qb) to gen-

erate pkwQb
. Then B1 selects an element ϕ∗ $

←− Z
∗
P and lets T ∗

Qb,O1
= ϕ∗, T ∗

Qb,O2
= gδ11 , T ∗

Qb,j
=

g
t−1·T∗

Qb,O1
·βj ·

∑t
r=1

h(pkww∗
r
)j

1 · Z. Finally, B1 sends T ∗ = (T ∗
Qb,O1

, T ∗
Qb,O2

, {T ∗
Qb,j
}mj=1) to A1. If T ∗ is

a valid trapdoor for the conjunctive keyword query Qb, then Z = gδ1δ21 , so T ∗
Qb,O2

= gπ
∗

1 , T ∗
Qb,j

=

g
t−1·T∗

Qb,O1
·βj ·

∑
t
r=1

h(pkww∗
r
)j

1 · (bSS)
π∗

, where π∗ = δ1.

• Query-II. A1 repeats the process as in the Query-I stage, the restriction is Q0, Q1 cannot be queried.

• Output. A1 outputs its guess b′, if b = b′, B1 returns 1 meaning Z = gδ1δ21 ; else, it outputs 0 meaning

Z is a random element in group G1.

From the experiment above, we have AdvDDH
G1,B1

(1λ) > AdvIND-KGA
A1(OA) (1λ). As the DDH problem is

intractable, that is AdvDDH
G1,B1

(1λ) 6 negl(1λ), then AdvIND-KGA
A1(OA) (1λ) 6 negl(1λ).

Lemma 4. Π
SA-SCF-PECKS

is IND-CKGA secure in the standard model if the underlying blind signature

deBS has the property of one-more unforgeability.

Proof. Assume A2 is a PPT adversary in ExpIND-CKGA
A(SS) (1λ) with the winning advantage

AdvIND-CKGA
A2(SS) (1λ), then a PPT adversary B2 can be built to break the one-more unforgeability of deBS

with the winning advantage AdvOMU
deBS,B2

(1λ), who also simulates the challenger in ExpIND-CKGA
A(SS) (1λ). Let

the challenger in the one-more unforgeability security breaking experiment be C2.

• Setup. A public key pkKS is generated and sent to B2 by C2. B2 then runs GlobalSetup(1λ) to

generate the global parameters GP = (PdeBS, PPECKS), calls the algorithms SA-KeyGenU , SA-KeyGenQU

and SA-KeyGenSS to generate the corresponding keys, and sends (pkQU, pkKS, skSS, pkSS) to A2.

• Query-I. A2 can adaptively ask B2 for the PECKS ciphertext (or the trapdoor) of its query key-

word set WqI = {w1, w2, . . . , wk}. For the query, B2 first interacts with C2 to get the signature σWqI
=

{σwi
}ki=1 = {(Ai, Bi)}

k
i=1, and sets pkwWqI

= {pkwwi
}ki=1 = {Ai||Bi}

k
i=1. Then it runs SA-dPECKS

(PPECKS, pkSS, pkQU, pkwWqI
) to generate CTpkwWqI

(or runs SA-dTrapdoor(PPECKS, pkSS, skQU, pkwWqI
)

to generate TpkwWqI

), and responds the result to A2. Assume A2 has queried qIk distinct keyword sets

in this stage.

• Challenge. The challenge keyword sets W ∗
0 ,W

∗
1 are chosen by A2 with the constraintW ∗

b ∩(W1∪· · ·∪

WqIk
) = φ, where b ∈ {0, 1}, W ∗

b = {w∗
b1
, . . . , w∗

bk
}, and sent to B2. B2 chooses b ∈ {0, 1} randomly. In-

stead of queryingW ∗
b to C2 for the signature σW∗

b
, B2 just randomly picks r = {(r1L, r1R), . . . , (rkL, rkR)},

where riL, riR
$
←− G, i ∈ [1, k], and sets pkwW∗

b
= {pkww∗

bi

}ki=1 = {riL||riR}
k
i=1. Finally, it generates the

corresponding ciphertext and trapdoor (CT∗, T ∗) as before, and sends (CT∗, T ∗) to A2.

• Query-II. A2 again asks for the ciphertexts and trapdoors of any keyword set WqII . B2 simulates as

in the Query-I stage. Assuming that A2 has queried qIIk distinct keyword sets {W1,W2, . . . ,WqIIk
} in

Query-II stage, we require that any keyword set WqII ∩ (W ∗
1 ∪W ∗

0 ) = φ.

• Output. A2 outputs its guess b′ on b. If b = b′, then pkwW∗

b
is a valid PKW of W ∗

b , B2 outputs

qIk+qIIk pair {Wi, σWi
}
qIk+qIIk
i=1 and another pair {W ∗

b , r} which meet the following three requirements: (1)

∀i, j ∈ [1, qIk+qIIk ] and i 6= j, Wi 6= Wj , (2)W
∗
b ∩(W1∪· · ·∪WqIk+qIIk

) = φ, and (3) ∀i ∈ [1, qIk+qIIk ], σWi

and σW∗

b
= r are all valid signatures. Then, B2 directly outputs these qIk + qIIk +1 valid {keyword sets,

signature} pairs as its valid forgeries; else, B2 returns ⊥.

From the experiment, we have AdvOMU
deBS,B2

(1λ) > AdvIND-CKGA
A2(SS) (1λ). As deBS has the property of

one-more unforgeability, i.e., AdvOMU
deBS,B2

(1λ) 6 negl(1λ), then AdvIND-CKGA
A2(SS) (1λ) 6 negl(1λ).

Lemma 5. Π
SA-SCF-PECKS

is IND-CKA secure in the standard model if the underlying blind signature

deBS has the property of blindness.

Proof. SupposeA3 is a PPT adversary in ExpIND-CKA
A(KS) (1λ) with the winning advantage AdvIND-CKA

A3(KS) (1λ),

then we can invoke A3 to construct a PPT adversary B3 (i.e., the adversarial signer who is curious about
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the information of User’s private input (keyword set)) to break the blindness of deBS with the winning

advantage AdvBlindness
deBS,B3

(1λ), who also simulates the challenger in ExpIND-CKA
A(KS) (1λ). Let the challenger in

the blindness breaking experiment be C3.

• Setup. C3 sends (pkKS, skKS) to B3 who then forwards this key pair to A3. Upon receiving the

challenge keyword sets (W0,W1) from A3, B3 passes (W0,W1) on to C3 as the challenge messages.

• Challenge. Two executions are simulated. During the first execution of deBS, once C3 starts ex-

ecuting deBS, B3 begins interacting with A3 to run the keyword preprocessing protocol and delivers

the message between A3 and C3. In the second execution, B3 engages with C3 by honestly utilizing

(pkKS, skKS).

• Output. A3 returns its guess b′, then B3 returns b′ as its guess to C3.

From the view of A3, the IND-CKA experiment ExpIND-CKA
A(KS) (1λ) is clearly indistinguishable from this

simulation. Thus, we have AdvBlindness
deBS,B3

(1λ) > AdvIND-CKA
A3(KS) (1λ). As the underlying scheme deBS has the

property of blindness, i.e., AdvBlindness
deBS,B3

(1λ) 6 negl (1λ), then AdvIND-CKA
A3(KS) (1λ) 6 negl(1λ).

Lemma 6. Π
SA-SCF-PECKS

is OMU-CKA secure in the standard model if the underlying blind signature

deBS has the property of one-more unforgeability.

Proof. AssumeA4 is a PPT adversary in ExpOMU-CKA
A(U) (1λ) with the winning advantage AdvOMU-CKA

A4(U) (1λ),

then a PPT adversary B4 (i.e., the adversarial user who attempts to generate a new valid signature based

on the signatures obtained previously) can be constructed to break the one-more unforgeability of deBS

with the winning advantage AdvOMU
deBS,B4

(1λ), who also simulates the challenger in ExpOMU-CKA
A(U) (1λ). Let

the challenger in the one-more unforgeability breaking experiment be C4.

• Setup. B4 receives the secret key kU and the public key pkKS from C4, and forwards keys to A4.

• PKW-Query. Once A4 issues a query about the keyword set W , B4 queries W to C4 to get the

signature σW = {σwi
}ki=1 = {(Ai, Bi)}

k
i=1, and sets pkwW = {pkwwi

}ki=1 = {Ai||Bi}
k
i=1. Finally, B4

returns the corresponding PKW pkwW of W to A4.

• Output. If A4 outputs qk pairs {Wc, pkwWc
}qkc=1 and another pair {W, pkwW } that satisfy the

conditions: (1) Wc 6= Wn, for any c, n ∈ [1, qk] where c 6= n, (2) W ∩ (W1 ∪ · · · ∪Wc ∪ · · · ∪Wqk ) = φ, and

(3) pkwWc
for any c ∈ [1, qk] and pkwW are all valid PKWs, where qk is the number of the PKW-Queries.

Then, B4 parses each pkwWc
and pkwW as the signatures {{(Ac,i, Bc,i)}

k
i=1}

qk
c=1, {(Āi, B̄i)}

k
i=1. Finally

B4 outputs these qk + 1 valid {keyword sets, signature} pairs as its valid forgeries. Else, B4 returns ⊥.

From the experiment, B4’s simulation is indistinguishable from ExpOMU-CKA
A(U) (1λ) in the perspective of

A4 such that AdvOMU
deBS,B4

(1λ) > AdvOMU-CKA
A4(U) (1λ). As the underlying scheme deBS has the property of

one-more unforgeability, i.e., AdvOMU
deBS,B4

(1λ) 6 negl(1λ), then AdvOMU-CKA
A4(U) (1λ) 6 negl(1λ).

Discussions on (offline) OKGA and IKGA. In our SA-SCF-PECKS scheme, the user must per-

form mutual authentication with KS and interact with it to get the PKW before computing the ciphertext.

Due to the one-more unforgeability of the underlying scheme deBS, the advantage of adversary A in forg-

ing a valid keyword set/signature pair based on the previously obtained PKWs is negligible, i.e., the

adversary cannot generate the ciphertext of his guessed keyword set by himself. We note that A can-

not even produce a valid PKW in an online manner since the keyword set preprocessing requires the

User (i.e., data owner and querier) to share the same secret key. Therefore, A is unable to attack our

SA-SCF-PECKS scheme successfully by performing such OKGA and IKGA.

7 Implementation and performance

We theoretically compare the performance of our scheme with some related schemes (in Table 2 [6,9,11,

13, 14]). Compared with variable keyword field schemes, our scheme has relatively lower computational

cost.

We implement our proposed SA-SCF-PECKS scheme and the PECSK scheme in ZZ11 [13], which is an

efficient variable keyword field scheme and has application scenarios similar to that for our scheme. Our

experiments are conducted on a laptop with a 3.40 GHz ×8 Intel Core i7-3770 CPU, 24 GB memory and

Ubuntu 16.04 LTS 64-bit operating system. We use the C language and PBC Library. The experimental
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Table 2 Performance comparison of various PECKS schemesa)

|pk| |sk| |CT| |T | Encryption Trapdoor Test Type

GSW04 [9] − |λ| (m+ 1)|G1|b (n+ 1)|Z∗
P |b (m+ 1)E (n)E + (n)H 2E +H Fixed keyword field

PKL05 [6] (Scheme 1) 3|G1|b 2|Z∗
P |b 2|G1|b + (m)|GT |b |G1|b + |Z

∗
P |b (m)P + (m)H + (m+ 2)E (t)H + E P Fixed keyword field

CH09 [11] 2|G1|b + |GT |b |Z∗
P |b (m+ 1)|G1|b 3|GT |b (m)H + (m+ 1)E (t)H + 2E 2P Fixed keyword field

ZZ11 [13] (m+ 3)|G1|b + 2|GT |b |Z∗
P |b (m+ 1)|G1|b + (m+ 2)|GT |b + |Z

∗
P |b (m+ 2)|G1|b + |GT |b (m+ 1)H + P + (2m+ 4)E (t)H + (2m+ 5)E (2m+ 3)P Variable keyword field

MML17 [14]

CSP: 2|G1|b

Data owner: |G1|b

Querier: |G1|b

CSP: |Z∗
P |b

Data owner: |Z∗
P |b

Querier: |Z∗
P |b

(m+ 3)|G1|b + |GT |b (m+ 2)|G1|b + |Z
∗
P |b 2P + (m+ 6)E + (m+ 2)H (t)H + (m+ 2)E 4E + (m+ 2)P Variable keyword field

Our scheme

KS: 4|G1|b

SS: 2|G1|b

Querier: |G1|b

KS: 3|Z∗
P |b + |λ|

SS: |Z∗
P |b

Querier: |Z∗
P |b

(m+ 2)|G1|b + |GT |b (m+ 2)|G1|b + |Z
∗
P |b 2P + (m+ 4)E + (m)H (t)H + (m+ 2)E 4E + (m+ 2)P Variable keyword field

a) Assume |G1|b = |G2|b, the symmetric bilinear pairing is e′ : G1 × G1 → GT and the Type-III bilinear pairing is

e1 : G1 × G2 → GT . E, P , and H denote modular exponentiation, pairing and hash operation, respectively. m (respectively, t):

the number of different keywords in the document (respectively, the query). We consider the case in MML17 [14] where there are

only one data owner, one querier and the data owner just deals with one document (EHR).
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Figure 3 (Color online) Running time of (a) PECKS, (b) PKW, (c) Test, (d) Trapdoor (fixed m = 100), (e) Trapdoor

(fixed t = 5).

results are shown in Figures 3(a)–(e).

Figure 3(a) shows the running time of the encryption algorithm (SA-dPECKS in our scheme and

PECSK in ZZ11) executed by the data owner. The encryption time of PECSK in ZZ11 and our scheme

increases with the number of keywords m. Our SA-SCF-PECKS scheme is much more efficient than the

PECSK scheme.

Theoretical observation reveals that the efficiency of the algorithm Trapdoor is related to two param-

eters: the number of keywords (m) in the documents and the number of keywords (t) in the query. We
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conducted two experiments: one when m = 100 (in Figure 3(d)) and the other when t = 5 (as shown in

Figure 3(e)). However, Figure 3(d) shows the running time of both schemes is nearly independent of t

when m = 100. Because the operations associated with parameter t are hash, add, and multiplication

operations. These operations are much faster than the modular exponentiation and pairing operations.

Therefore, as the number of keywords (t) increases, these operations have little impact on the execu-

tion time of the algorithm Trapdoor and can be omitted. Figure 3(e) shows that the running time of

algorithm Trapdoor in both schemes increases with the number of keywords m. We observe the running

time of algorithm Trapdoor in our scheme is slightly longer than that of the corresponding algorithm

in ZZ11 which differs from the results in Table 2. We attribute this variance to our omission of less

time-consuming operations, such as add and multiplication, in the theoretical analysis. As shown in

Figure 3(c), the algorithm Test executed by the SS in our scheme performs very well. In other words,

our scheme can achieve quick search responses, which is crucial for searchable encryption schemes.

The algorithm PKW in our scheme is a three-phase protocol between the User and the KS. As shown

in Figure 3(b), the running time of the whole algorithm is proportional to the number of keywords m.

The main overhead occurs in the User-Process phase because the pairing operation needed in this phase

is time-consuming. However, the scheme is also efficient, and its running time is less than 3 s when the

number of keywords is 100. Algorithm PKW has little impact on the search efficiency of the SS. It is

worth stressing that this keyword preprocessing protocol can be conducted ahead of time for later use.

On the basis of the experimental results, we conclude our SA-SCF-PECKS scheme is efficient and the

resistance against full KGA has little influence on its efficiency.

8 Conclusion

In this paper, based on the in-depth discussion of the OKGA and IKGA, we propose a new framework

called SA-SCF-PECKS for secure data outsourcing with enhanced privacy protection, which can resist

full KGA. Under this framework, we construct the first PECKS scheme that is secure against both OKGA

and IKGA in the standard model. No secure channel between the SS and the querier is needed. A detailed

proof of security and theoretical and practical performance analyses are provided for our scheme. Our

SA-SCF-PECKS scheme shows good performance in terms of security and efficiency. Moreover, it can be

integrated to the cloud platform, such as ownCloud, for further applications.
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