• Supplementary File •

An Enhanced Searchable Encryption Scheme for Secure Data Outsourcing

Rui Zhang^{1,2}, Jiabei Wang^{1,2*}, Zishuai Song^{1,2} & Xi Wang^{1,2}

¹State Key Laboratory of Information Security (SKLOIS), Institute of Information Engineering (IIE), Chinese Academy of Sciences (CAS), Beijing 100093, China; ²School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

Appendix A The Deterministic Blind Signature

We apply the pseudorandom function to this transformation so that the correctness of our concrete SA-SCF-PECKS scheme can be guaranteed. The transformed blind signature scheme is also correct, (one-more) unforgeable and perfectly blind in the standard model. Besides, the scheme is efficient and round-optimal. We first present the deterministic blind signature scheme, then prove that this scheme is a secure blind signature in the standard model briefly.

Appendix A.1 Deterministic Blind Signature Scheme (deBS)

- $KeyGen_{deBS}(1^{\lambda})$:
- It generates parameters $P_{deBS} = (p, g, \hat{g}, G, \hat{G}, T, e, F^1, F^2)$, where G, \hat{G} are two groups with prime order p. g, \hat{g} are the generators of group G and \hat{G} , respectively, and F^1, F^2 are two different pseudorandom functions (PRFs) for the user and the signer respectively. The bilinear map $e: G \times \hat{G} \to T$ is used.
- It selects $\bar{h}, x, y \stackrel{\$}{\leftarrow} \mathbb{Z}_P^*, k_S \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda}$, computes $(H, \hat{H}, \hat{X}, \hat{Y}) = (g^{\bar{h}}, \hat{g}^{\bar{h}}, \hat{g}^x, \hat{g}^y)$, and lets $(pk_{deBS} = (H, \hat{H}, \hat{X}, \hat{Y}), sk_{deBS} = (k_S, \bar{h}, x, y))$ as signer's public/private key pair.
- It selects value $k_U \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$, and sets k_U as user's secret key.
- $User-Request(P_{deBS}, k_U, pk_{deBS}, m)$:
- It returns \perp if $H = 1_G$ or $e(H, \hat{g}) \neq e(g, \hat{H})$;
- It computes $r \leftarrow F_{k_U}^1(m)$, and $Com = g^m H^r$;
- Finally, it returns $(\xi = Com, st = (m, r))$.
- $Signer-Issue(P_{deBS}, sk_{deBS}, \xi)$:
- It first computes $a' \leftarrow F^2_{k_S}(Com)$, and sets $\bar{\sigma} = (A', B', C') = (g^{a'}, (g^x Com)^{\frac{a'}{y}}, H^{\frac{a'}{y}})$;
- It finally returns $\bar{\sigma}$ to the user.
- $User-Process(P_{deBS}, k_U, pk_{deBS}, \bar{\sigma}, st)$:
- It returns \perp if $A' = 1_G$ or $e(C', \hat{Y}) \neq e(A', \hat{H});$
- It sets $B' = B'C'^{-r}$;
- It returns \perp if $e(B', \hat{Y}) \neq e(A', \hat{X}\hat{g}^m)$;
- It computes $a \leftarrow F^1_{k_{II}}(r)$, and returns $\sigma_m = (A, B) = (A'^a, B'^a)$.
- $Verify_{deBS}(P_{deBS}, pk_{deBS}, m, \sigma_m)$:
- It returns 0, if $e(B, \hat{Y}) \neq e(A, \hat{X}\hat{g}^m)$;
- It returns 1, otherwise.

^{*} Corresponding author (email: wangjiabei@iie.ac.cn)

Appendix A.2 Analysis of deBS

Theorem 1. *deBS* is a secure blind signature scheme in the standard model.

Proof. Firstly, the *deBS* scheme is correct. From the algorithms above, we have $Com = g^m H^r$, $B' = (g^x Com)^{\frac{a'}{y}} = g^{\frac{a'x}{y}} (g^m H^r)^{\frac{a'}{y}} = g^{\frac{a'x}{y}} (g^m H^r)^{\frac{a'}{y}}$ and $C' = H^{\frac{a'}{y}}$. Then, in *User-Request* we have $B' = B'C'^{-r} = g^{\frac{a'x}{y}} (g^m H^r)^{\frac{a'}{y}} H^{\frac{-a'r}{y}} = g^{\frac{a'x}{y}} g^{\frac{a'm}{y}}$. So, if (A', B') is valid, then it satisfies $e(B', \hat{Y}) = e(A', \hat{X}\hat{g}^m)$. Besides, it is easy to show that *deBS* is deterministic (satisfies our definition). Combining Lemma 1 and 2, the proof is complete.

Lemma 1 (One-More Unforgeability). deBS is (one-more) unforgeable if the Blind Signature One More (BSOM) assumption (see in [1]) is intractable and the functions F^1, F^2 are pseudorandom.

Proof. The construction I for a single message in [1] has been proven unforgeable based on the BSOM assumption. The only difference between deBS and that scheme is that the randomly chosen values r, a', and a in [1] while in deBS are generated by the pseudorandom functions F^1, F^2 . For the property that the output of pseudorandom function is indistinguishable from the real randomness. We can easily prove deBS is also unforgeable.

Lemma 2 (Blindness). *deBS* is perfectly blind if the functions F^1, F^2 are pseudorandom.

Proof. For the pseudorandomness of functions F^1, F^2 , we can easily follow the proof in [1] to prove *deBS* is also perfectly blind. We omit the details here for the sake of space.

Appendix B A Brief Review to Previous schemes

We take a brief review to Fang *et.al*'s SCF-PEKS scheme [2] and Zhang *et al.*'s PECSK Scheme [3] here, as shown in Table B1 and Table B2.

System Setup:	generate related pa	generate related parameters as $Param = (g, \mathbb{G}, \mathbb{G}_1, p, e, h);$ $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1, p$ is the prime oder of $\mathbb{G}, \mathbb{G}_1, q$ is a generator of $\mathbb{G};$				
	$e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1, p$					
	$h: \{0,1\}^* \to \mathbb{Z}_p^*$ is	a collision resistant hash function, and keyword $w \in \mathbb{Z}_p^*$.				
Key Generation:	Server:	choose $r_{s,1} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, r_{s,2} \stackrel{\$}{\leftarrow} \mathbb{G}^*;$				
		compute $s = g^{r_{s,1}}$, let $pk_S = (s, r_{s,2}), sk_S = r_{s,1}$.				
	Querier:	choose $r_{q,1} \stackrel{\$}{\leftarrow} \mathbb{Z}_n^*, r_{q,2} \stackrel{\$}{\leftarrow} \mathbb{G}^*;$				
	-	compute $q = g^{r_{q,1}}$, let $pk_{QU} = (q, r_{q,2}), sk_{QU} = r_{q,1}$				
Data Owner		Server				
$(Param, pk_S, pk_{QU}, w)$		$(Param, sk_S)$				
Encryption:						
choose $r_{o,1}, r_{o,2} \xleftarrow{\$} \mathbb{Z}_p^*;$						
compute $C_{w,1} = g^{r_{o,1}}; temp = h(e(s, r_{s,2})^{r_o})$	^{,1});					
$C_{w,2} = (q \cdot g^{-w})^{\frac{r_{o,2}}{temp}}; C_{w,3} = e(g,g)^{r_{o,1}};$	ciphertext C_w					
$C_{w,4} = e(q, r_{q,2})^{r_{o,2}};$		\rightarrow Test:				
let $C_w = (C_{w,1}, C_{w,2}, C_{w,3}, C_{w,4}).$		compute $temp = h(e(C_{w,1}, r_{s,2})^{r_{s,1}});$				
		check if $e((C_{w,2})^{temp}, d_{T_{w}})(C_{w,3})^{T_{w}} = C_{w,4};$				
		if yes, output "1";				
Querier		otherwise, output "0".				
$(Param, sk_{QU}, w)$						
Trapdoor generation:						
choose $r_{T_w} \xleftarrow{\$} \mathbb{Z}_p^*$;	trapdoor T_w	\rightarrow				
compute $d_{T_w} = (r_{q,2} \cdot g^{-r_{T_w}})^{\frac{1}{r_{q,1}-w}};$						
let $T_{\cdots} = (r d).$						

Table B1 Fang et.al's SCF-PEKS scheme [2]	
---	--

Table B2	Zhang	et	al.'s	PECSK	Scheme	[3	1
----------	-------	----	-------	-------	--------	----	---

System Setup:	initialize parameters as $Param = (p, G_1, G_2, G_3, e, H_1, H_2);$ $e: G_1 \times G_2 \to G_3, p$ is the prime order of $G_1, G_2, G_3;$ $H_1: \{0, 1\}^* \to \mathbb{Z}_p^*, H_2: G_3 \to \mathbb{Z}_p^*.$				
Key Generation:	let <i>m</i> be the fixed number of keywords in the encryption algorithm; choose $p_0, p_1,, p_m \stackrel{\$}{\leftarrow} G_1, g_{G_1,1}, g_{G_1,2} \stackrel{\$}{\leftarrow} G_1, g_{G_2} \stackrel{\$}{\leftarrow} G_2;$				
	$r_q \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$, and compute $q = (g_{G_2})^{r_q}$;				
	let $pk_{QU} = (g_{G_1,1}, g_{G_1,2}, g_{G_2}, q, p_0, p_1,, p_m), \ sk_{QU} = r_q.$				
Data Owner	Server				
$(Param, pk_{OU}, W = (w_1, \dots, w_m))$	(Param)				
Encryption:					
choose $r_{o,1}, r_{o,2} \xleftarrow{\$} \mathbb{Z}_n^*;$					
construct polynomial as:	ciphertext C_W				
$F(x) = r_{o,1} \cdot (x - H_1(w_1)) \cdots (x - H_1(w_m)) + r_{o,2};$	Test:				
$=\theta_0+\theta_1x+\ldots+\theta_mx^m;$	$\operatorname{compute}$				
choose $r_{o,3} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$, compute $C_0 = (g_{G_0})^{r_{o,3} \cdot r_{o,2}};$	$S_1 = \prod_{i=0}^{m} e(T_i, C_{q,i});$				
$C_1 = H_2(e(g_{G_1,2}, g_{G_2})^{(\theta_0 + \theta_1 + \ldots + \theta_m) \cdot r_{o,3}});$	$S_2 = e((g_{G_{1-1}})^{r_t}, C_0);$				
for $i = 0$ to m , $C_{q,i} = q^{\theta_i \cdot r_{o,3}};$	$S_{3} = \prod_{i=0}^{m} e(C_{p,i}, q^{r_{t}}) = \prod_{i=0}^{m} e(p_{i}^{\theta_{i} \cdot r_{q} \cdot r_{o}, 3}, q^{r_{t}});$				
for $i = 0$ to $m, C_{p,i} = p_i^{\theta_i \cdot r_{o,3}};$					
let $C_W = (C_0, C_1; C_{q,0}, C_{q,1},, C_{q,m}; C_{p,0}, C_{p,1},, C_{p,m}).$	check if $H_2(S_1/(S_2 \cdot S_3)) = C_1$				
	if yes, output "1";				
Querier	otherwise, output "0".				
$(Param, sk_{QU}, Q = (w'_1,, w'_m))$					
Trapdoor generation:					
choose $r_t \xleftarrow{\$} \mathbb{Z}_p^*$;	trapdoor T_Q				
$\operatorname{compute} T_0 = (g_{G_1,2})^{1/r_q} \cdot ((g_{G_1,1})^{(H_1(w_1')^0 + \ldots + H_1(w_s')^0)/r_q \cdot s} \cdot p_0)$	r_t ;				
$T_1 = (g_{G_1,2})^{1/rq} \cdot ((g_{G_1,1})^{(H_1(w_1')^1 + \ldots + H_1(w_s')^1)/rq \cdot s} \cdot p_1)^{rt};$					
$ \begin{array}{l} \dots \\ T_m = (g_{G_1,2})^{1/r_q} \cdot ((g_{G_1,1})^{(H_1(w_1')^m + \ldots + H_1(w_s')^m)/r_q \cdot s} \cdot p_m)^{r_t}; \end{array} \\ \end{array} $					
let $T_Q = (T_0, T_1,, T_m, (g_{G_1,1})^{r_t}, q^{r_t}).$					

References

- 1 Ghadafi E. Efficient round-optimal blind signatures in the standard model. International Conference on Financial Cryptography and Data Security. Springer, Cham, 2017: 455-473
- 2 Fang L, Susilo W, Ge C, et al. A secure channel free public key encryption with keyword search scheme without random oracle. International Conference on Cryptology and Network Security. Springer, Berlin, Heidelberg, 2009: 248-258
- 3 Zhang B, Zhang F. An efficient public key encryption with conjunctive-subset keywords search. Journal of Network and Computer Applications, 2011, 34(1): 262-267