
SCIENCE CHINA
Information Sciences

. Supplementary File .

Analysis of Bitcoin Backbone Protocol in the
Non-Flat Model

Peifang NI1,2,3, Hongda LI1,2,3* & Dongxue PAN1,2,3

1State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing 100093, China;
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China;

3Data Assurance and Communication Security Research Center, CAS, Beijing, China

Appendix A The Bitcoin Backbone Protocol

In this section, we give the detailed description of bitcoin backbone protocol with parties of different computational power

based on the model of [1].

Algorithm 1. This algorithm checks the validation of each block, called chain validation, in a given chain C. First, it

checks the validation of XC with chain content validation predicate V (·), where XC is the records of C. Then, each block

is connected properly and equipped with correct solution of puzzle with respect to hash functions H(·) and G(·). Towards

to the current difficult target, each block with the proper computational power. If any of these validations fails, then C is

discarded.

Algorithm 2. This algorithm aims to select a best local chain, called chain comparison, from a given set of valid chains.

It is parameterized by a functionmax(·) that applies some ordering to the space of blockchains. Functionmax(C1, C2) returns

the chain with the most computational power and if Com(C1) = Com(C2), then other selection criteria can be used.

Algorithm 3. This algorithm is used to extend a chain with hash functions H(·), G(·) and target T called proofs-of -

work. As described in Figure 1, party Pi with computational power Ci, best local chain C and input x, tries to find a

solution by increasing counter ctr that satisfies H(ctr,G(H(head(C), x)) < T .

The Backbone Protocol Π (algorithm 4). The above three algorithms allow us to describe the bitcoin backbone

protocol. It is executed by the parties with different computational power, who are encouraged to solve computational

puzzles and maintain a public log together. Each party maintains a local best valid chain C determined by algorithm 1 and

algorithm 2, and tries to extend chain C via algorithm 3.

Algorithm A1 The Chain V alidation predicate with input chain C, parameterized by Ci, T , two hash functions G(·), H(·)
and chain content validation predicate V (·).

1: Function validate (C)
2: b← V(XC)

3: if b ∧ (C 6= ε) then . The chain is non-empty and meaningful w.r.t. V (·)
4: 〈h, x, ctr, TS〉 ← head(C) and h′ = H(ctr,G(h, x))

5: repeat

6: 〈h, x, ctr, TS〉 ← head(C)
7: if validblockT (〈h, x, ctr, TS〉 ← head(C)) ∧ (ctr 6 Ci) ∧ (h′ < T ))

8: then, h′ ← h, C ← Cd1 . Remove the head from C
9: else, b← False

10: end if

11: until(C = ε) ∨ (b = False)

12: end if

13: return b

14: end function

* Corresponding author (email: lihongda@iie.ac.cn)



Peifang NI, et al. Sci China Inf Sci 2

Algorithm A2 The Chain Comparison predicate with input {C1, ..., Ck}, parameterized by function max(·).

1: Function maxvalid({C1, ..., Ck})
2: temp← ε

3: for i = 1 to k do

4: if validate(Ci), then
5: temp← max(Ci, temp)
6: end if

7: end for

8: return temp

9: end function

max(C1, C2): outputs the chain with the most amount of computational power

Algorithm A3 The proof of work function with input (x, C), parameterized by T,Ci and two hash functions H(·), G(·).

1: Function pow(x, C)
2: if C = ε then . Determine proof of work instance

3: h← 0

4: else

5: 〈h′, x′, ctr′, TS′〉 ← head(C) and h = H(ctr′, G(h′, x′))

6: end if

7: b← 1;B ← ε

8: while b 6 Ci do . The number of queries to H(·)
9: ctr ← b

10: if (H(ctr,G(h, x)) < T ) then

11: B ← 〈h, x, ctr, TS〉, C ← CB . Extend chain

12: Ci ← Ci − b; b← 1 . The party continues to mine the next block

13: else b← b+ 1 . The party continues to mine the block

14: end while

15: return C
16: end function

Algorithm A4 The bitcoin backbone protocol in the non-flat model with local state (h, C), parameterized by input function

I(·) and chain reading function R(·).
1: C ← ε then

2: h← 0 and round ← 1

3: C′ ← maxvalid(C, the chains found in Receive()) . Choose the local best chain

4: if Input() contains Read then . Create the necessary output

5: write R(C′) to Output()

6: end if

7: while True do

8: 〈h, x〉 ← I(h, C′, round, Input(), Receive()) . Determine the x-value

9: Cnew ← pow(x, C′) . Extend chain

10: if C′ 6= Cnew then

11: C ← Cnew and Diffuse (C)
12: else, Diffuse(⊥)

13: end if

14: round ← round+1

15: end while

References

1 Garay J , Kiayias A , Leonardos N . The Bitcoin Backbone Protocol: Analysis and Applications[J]. 2015.


	The Bitcoin Backbone Protocol

