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Dear editor,
Target detection at the sea surface is crucial for the
ensuring the security of drilling platforms, ships,
ports, etc. However, the presence of sea clut-
ter poses a challenge to radar detection. Since
the sea surface is a dynamic surface, its scatter-
ing properties are extremely complex. For a high-
resolution radar working at a low grazing angle,
sea clutter usually shows non-homogeneous, non-
stationary, and time-varying properties, especially
in a high sea state [1]. Moreover, the complex
scattering of the sea surface can result in a wide
Doppler spectrum and a large Doppler frequency
migration of sea clutter. Thus, serious false alarms
can be caused when using the traditional Gaussian
noise receiver detector [2]. The conventional meth-
ods for suppressing sea clutter include the noise
subspace algorithm [3], the block-adaptive clut-
ter suppression method [4], and the adaptive filter
method [5], however, the detection performance
of these methods decreases or even fails when the
target signal and sea clutter are aliasing in the fre-
quency domain.

In this study, a target extraction method based
on the application of the morphological compo-
nent analysis (MCA) in conjunction with frac-
tional Fourier transform (FrFT) and short-time
Fourier transform (STFT) is proposed. The MCA
method is an analysis algorithm based on a sparse
model. Its essence is to find two suitable dictionar-
ies to sparsely express the different components.

Radar echoes produced by sea targets can be mod-
eled as sparse signals by FrFT, assuming that the
targets are moving at a constant acceleration dur-
ing the coherent processing interval (CPI). On the
other hand, despite the time-varying Doppler char-
acteristics, sea clutter can be regarded as a station-
ary signal in a short time. Therefore, radar echoes
produced by the sea surface can be modeled as
sparse signals by STFT. First, the cost function to
be minimized can be constructed by using FrFT
and STFT. The fast-converging split augmented
Lagrangian shrinkage algorithm (SALSA) is then
used to minimize the cost function. Finally, we
obtain the target by using the inverse fractional
Fourier transform. To show the effectiveness of
the proposed method, we evaluated the method
using real-world data.

Problem formulation. After coherent demodu-
lation and pulse compression, the slow-time se-
quence x(t) in a certain range cell can be mod-
eled as a summation of potential targets s(t), sea
clutter c(t), and noise n(t), as follows:

x(t) = s(t) + c(t) + n(t), (1)

where t = 0, 1, 2, . . . and N is the order of the
sweep periods in a CPI. Further, s(t) can be mod-
eled as a pulse signal in the appropriate fractional
Fourier domain; that is, s = FrFT−opt(w1), where
w1 is the coefficient corresponding to the fractional
domain. Now, c(t) has a wide Doppler spectrum
and a larger Doppler frequency migration, which
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can be represented as c = ISTFT(w2), where w2 is
the coefficient corresponding to the time-frequency
domain. Here, n(t) satisfies the condition of an in-
dependent and identical distribution and follows
the Gaussian distribution. However, because of
the high clutter-to-noise rate in real-world data,
we used x(t) = s(t) + c(t) for signal representa-
tion. Therefore, the extraction of a target in sea
clutter can be reduced to the following optimiza-
tion problem:

{ŵ1, ŵ2}=arg min
w1,w2

‖λw1‖1+‖(1− λ)w2‖1, (2)

s.t. x = FrFT−opt(w1) + ISTFT(w2), (3)

where ‖ ∗ ‖1 represents the L1-norm (the sum of
the absolute values of vector entries). λ is the
weighting parameter. FrFT−opt(∗) represents the
inverse FrFT corresponding to the optimal chirp
rate, and ISTFT(∗) is the inverse STFT.

Optimization. The problem is to obtain the op-
timization solution using SALSA; the process of
solving this problem is given in Algorithm 1 (see
Appendix A for the detailed derivation steps).

Algorithm 1 Signal separation algorithm

Input: x;
1: initialization w1, w2, d1, d2, λ, µ, N ;
2: Iteration:

3: for i = 1 to N do

4: ➀ Computing sparse coefficient u1, u2:
u1 = soft(w1 + d1, 0.5λ1/µ) − d1,
u2 = soft(w2 + d2, 0.5λ2/µ) − d2;

5: ➁ Refactoring s, c:
s = FrFT

−opt(u1), c = ISTFT(u2);
6: ➂ Calculating residual R:

R = x− s− c;
7: ➃ Calculating residual coefficient d1, d2:

d1 = 1
2
FrFTopt(R), d2 = 1

2
STFT(R);

8: ➄ Updating the sparse coefficient w1, w2:
w1 = d1 + u1, w2 = d2 + u2;

9: end for

Output: s = FrFT
−opt(w1), c = ISTFT(w2).

Here, w and d are the intermediate variables
representing the sparse coefficients before and af-
ter updating, respectively, and they are initialized
as zero vectors with the same length as an input
signal x. Further, λ is a user-specified scalar pa-
rameter for SALSA, and selected empirically. The
optimal value of λ is mainly related to the CPI and
signal-to-clutter ratio (SCR) of the target. How-
ever, for radar echo from a specific time and spe-
cific sea area, significant SCR gains are achieved
for λ values within a wide range [6]. The algorithm
parameter µ is related to the convergence rate of
the cost function, which is usually taken from 0 to

10, and the number of iterations N generally does
not exceed 100. Function soft(y, T ) represents the
soft-threshold rule with the threshold T , which is
defined as follows:

soft(y, T )=ymax(0, 1−T/|y|), y∈C, T ∈R. (4)

As described in the algorithm, the input signal
x is radar echo, and in order to solve this prob-
lem, N iterations are needed until target signal
and sea clutter are separated. In the iterative pro-
cess, the first step is to calculate the sparse coef-
ficient by using the soft threshold rule, and then,
the target signal component and sea clutter com-
ponent are reconstructed by using the sparse coef-
ficient. In the third step, the original radar echo is
differentiated from the target component and sea
clutter to obtain the residual. Subsequently, the
sparse coefficient corresponding to the residual is
calculated. In the last step, the sparse coefficient
is used to correct the sparse coefficient obtained
in the first step. When the separation quality of
radar echo into target signal and sea clutter is not
significantly improved, the iteration ends, and the
target echo s and sea clutter c are output. Further
explanation of this method can be found in [7].

Experimental results. Two datasets-the McMas-
ter IPIX radar datasets and the Council for Sci-
entific and Industrial Research’s (CSIR) datasets-
were used for analysis. Detailed descriptions of
these two datasets can be obtained from web-
site1)2).

For datasets 19931111 163625 and TFC16-023,
Figures 1(a) and (b) represent the two typical
cases of the relationship between target and sea
clutter, namely, the target at the edge of sea clut-
ter and the target covered by sea clutter, respec-
tively. The STFT plot of the radar echo is shown
at the top part of the Figure.

For signal separation, we first estimated the
chirp rate roughly by using discrete polynomial-
phase transform. Then, the cost function was es-
tablished by combining the FrFT and STFT. After
50 iterations with parameters λ = 0.1, µ = 10, and
a window-length of 32 for STFT, the radar echo
was decomposed into two parts, i.e., the sea clut-
ter and the extracted target. The extracted target
is shown in the bottom part of the Figure. As
shown in Figure 1(a), for a target on the edge of
sea clutter, the method effectively extracts the tar-
get from the sea clutter background. Besides, as
shown in Figure 1(b), this method can also extract
the target even when it is covered by sea clutter.

As in [1], the detection performances were inves-
tigated by Monte Carlo methods. Real sea clut-

1) The McMaster IPIX radar dataset. http://soma.ece.mcmaster.ca/ipix/.
2) The CSIR dataset. http://www.csir.co.za/small boat detection/.

http://soma.ece.mcmaster.ca/ipix/
http://www.csir.co.za/small_boat_detection/
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Figure 1 (Color online) (a) Target at the edge of sea clutter; (b) target covered by sea clutter; (c) probability of detection
versus different SCR levels.

ter was added to the manoeuvring target signal,
and Monte Carlo simulations were performed 800
times with false alarm Pfa = 10−3. Figure 1(c)
shows the probability of detection versus differ-
ent SCR levels. As is shown in the figure, the
adaptive normalized matched filter method fails
when the target is covered by sea clutter. Besides,
when SCR > −6 dB, the detection probability of
the proposed method is significantly better than
that of the short-time fractional Fourier transform
method (STFrFT) and STFT method. However,
when SCR < −6 dB, the detection performance
of this method is comparable to that of STFrFT
method because of the mismatch of parameter λ.

Conclusion. The objective of this study was to
develop a method for extracting targets in heavy
sea clutter. By analyzing the difference between
the target signal and sea clutter, we proposed
an MCA algorithm based on FrFT and STFT;
the problem was formulated as an optimization
problem by defining a novel cost function. Fast-
converging SALSA was used to minimize the cost
function. The proposed method was evaluated by
using IPIX radar and CSIR datasets, and two typi-
cal cases of the relationship between target and sea
clutter were considered. The results demonstrated
that the proposed method effectively extracts the
target from a sea clutter background even when
the target signal is covered by sea clutter.

Supporting information Appendix A. The support-

ing information is available online at info.scichina.com and

link.springer.com. The supporting materials are published

as submitted, without typesetting or editing. The respon-

sibility for scientific accuracy and content remains entirely

with the authors.
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