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Dear editor,
The exponentially convergent angular velocity es-
timator on SO(3) is of great importance for the
control of rigid body [1]. Based on the idea of
adaptive technique, the angular velocity observer
on SO(3) was firstly proposed in [2]. Refs. [3, 4]
and references therein mainly focus on construct-
ing different attitude error functions to improve
convergence rate. In those studies, based on
the Lyapunov stability method, the final form of
time derivative of Lyapunov function, consisting of
quadratic terms of attitude and angular velocity
estimation errors, does not contain the quadratic
angular velocity estimation error terms, and the
asymptotic convergence is obtained based on Bar-
balat’s lemma. Although the exponential conver-
gence can be obtained by Lyapunov function which
consists of quadratic and cross terms of estimation
errors, we expect that the exponential convergence
rate is obtained by only quadratic terms of esti-
mation errors in a Lyapunov function. One of the
feasible approaches is that the convergence rate of
estimation errors can be speeded up by designing
different estimator structures. As well known, the
rotation matrix SO(3) is a nonlinear manifold, and
the corresponding operational rules are group op-
erations rather than linear operations. Therefore,
the properties of SO(3) and corresponding exten-

sion matrices play an important role in designing
a novel estimator. Specifically, the attitude error
function proposed in [3] provides us with the foun-
dation to design a novel estimator structure.

Inspired by the form of disturbance observers
proposed in [5, 6], a novel estimator structure is
proposed in this study, whose main contributions
are twofold. Firstly, a novel angular velocity es-
timator scheme on SO(3) × R

3 is proposed. An
intermediate variable introduced in the estimator
design makes the exponential convergence rate of
estimation errors be achieved through Lyapunov
functions in quadratic form, which is more concise
than those proposed in [2–4,7]. Different from the
estimators which improve the convergence rate by
constructing different attitude error functions in
previous studies, the estimator proposed in this
study is realized by using a new estimator struc-
ture. Secondly, by studying the properties of
SO(3) and corresponding extension matrices, the
singular perturbation approach is used in stability
analysis of proposed estimator and it proves that
the convergence rate of estimated angular velocity
mainly depends on a single gain.

Problem formulation. The equation of rigid
body’s rotation is given by

Ṙ =RΩ̂, (1)

Ω̇ =J−1((JΩ)∧Ω+ τ) , f(Ω) + J−1τ, (2)
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where R ∈ SO(3) is the rigid body’s attitude,
Ω ∈ R

3 is the angular velocity expressed in the
body frame FB, J = diag{J1, J2, J3} ∈ R

3×3 is the
inertia matrix, and τ ∈ R

3 is the control torque.
Some notions and mathematical preliminaries are
provided in Appendix A. Regarding the angular
velocity, we give the following assumption.

Assumption 1. The angular velocity Ω is
bounded; namely, ‖Ω‖ 6 Ωmax holds all the time.

Based on rotation matrix directly, the objective
of this study is to design a novel estimator to es-
timate angular velocity Ω.

Main results. As the rate gyroscope measure-
ment is unavailable, the attitude estimator needs
to be designed. The conventional nonlinear angu-
lar velocity estimator is based on adaptive meth-
ods. In this study, from the view of estimator
structures, a novel estimator is designed as follows:

˙̃R = R̃(Ω̃− k2Ee)
∧, (3a)

Ω̃ = z − k1Ee, (3b)

ż = −k1Φ
T
e Ω̃ + k1Φe(Ω̃− k2Ee) + f(Ω̃) + J−1τ,

(3c)

where R̃ ∈ SO(3) is the estimation of attitude ro-
tation matrix R, Ω̃ ∈ R

3 is the estimation of the
real angular velocity Ω ∈ R

3, z ∈ R
3 is an inter-

mediate variable and z(t0) = [0, 0, 0]T, k2 > 0, k1
is a positive gain to be determined, Ee ∈ R

3 is the
attitude error vector and E = R̃TR is the attitude
error matrix, and Φe ∈ R

3×3 is a matrix associated
with the attitude error and is defined as

Ee =
−1

2[1 + tr(E)]
(E − ET)∨, (4)

Φe =
4[1 + tr(E)]EeE

T
e + [tr(E)I3 − E]

2[1 + tr(ET)]
. (5)

In this study, the properties of Ee will be used
for the estimator design and stability analysis.
The properties are given in the following propo-
sition and its proof is provided in Appendix B.

Proposition 1. Let D = {E ∈ SO(3)|tr(E) >
−1} be a subset of SO(3) and assume that the tra-
jectory E(t) ∈ D for all time t > 0. The following
statements about attitude error vector Ee in (4)
hold.

(i) In the set D, ‖Ee‖22 = 1
4 tan

2( θe2 ).

(ii) In the set D, EeE
T
e
= 1

4 tan
2( θe2 )(nen

T
e
).

(iii) In the set D, the time derivative of Ee sat-
isfies

Ėe = −ΦeΩ+ ΦT
e (Ω̃− k2Ee). (6)

(iv) In the set D, Φe can be rewritten as

Φe =
ET + I3

8 cos2( θe2 )
, (7)

the spectrum of symmetric matrix ΦT
e

+ Φe

is located in the set { 1
2 ,

1
2 , 1/(2 cos

2( θe2 ))}, and
λmin(Φ

T
e +Φe) =

1
2 , where |θe| ∈ [0,π).

Based on the fact that the symmetric matrix
ΦT

e +Φe is positive definite in the set D, the moti-
vation of estimator (3) can be discussed as follows.

Proposition 2. Consider the estimator (3) and
the attitude kinematics (1). The dynamics of at-
titude estimation error E and angular velocity es-
timation error Ωe are given by

Ė = −(Ω̃− k2Ee)
∧E + EΩ̂, (8a)

Ω̇e = −k1Φ
T
e Ωe + f(Ω̃)− f(Ω), (8b)

where Ωe = Ω̃ − Ω ∈ R
3 is the angular velocity

estimation error, and f(Ω̃) − f(Ω) ∈ R
3 can be

viewed as a disturbance term.

Proof. Using (1) and (3a), the time derivative
of E is given as

Ė = −R̃T ˙̃RR̃TR+ R̃TṘ

= −(Ω̃− k2Ee)
∧E + EΩ̂. (9)

Then, using (2), (3b) and (3c), the time derivative
of Ωe is given as

Ω̇e =ż − k1Ėe + J−1τ − Ω̇

=− k1Φ
T
e
Ω̃ + k1Φe(Ω̃− k2Ee) + f(Ω̃) + J−1τ

+ k1Φ
T
e Ω− k1Φe(Ω̃− k2Ee)− Ω̇

=− k1Φ
T
e
Ωe + f(Ω̃)− f(Ω). (10)

Remark 1. The dynamics equation (8b) plays
a crucial role in the behavior of estimated an-
gular velocity. Without the perturbation term
f(Ω̃)− f(Ω), the dynamics of Ωe is a linear time-
varying system. Further assume that the matrix
ΦT

e
is slow-varying and can be seen as a constant

matrix; then the dynamics of Ωe is a linear time
invariant system, and the convergence rate can be
controlled by the gain k1 because the real part of
eigenvalues of matrix ΦT

e are positive in the set D.
This is the basic idea why we design such a novel
estimator.

For a rigid body which is only installed with di-
rection sensors, Proposition 1 shows that the sym-
metric matrix ΦT

e
+ Φe is positive definite in the

set D, and this indicates that xTΦex > 0 for all
nonzero vector x (the matrix is not necessarily
symmetric). Throughout this study, the matrix
Φe and intermediate variable z allow the estimator
to have an exponential convergence, and the con-
vergence rate of estimated angular velocity mainly
depends on a gain. Thus, we present the following
theorem.
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Theorem 1. Consider the rigid body (1) and (2)
without the gyroscopes. For E(t0) ∈ D, there ex-
ists a small positive constant ε∗ ∈ (0, 1) such that
for any ε ∈ (0, ε∗) and the gain k1 satisfying (11),
the almost global estimator (3) can exponentially
estimate the attitude R and angular velocity Ω,
and the convergence rate of the estimated angular
velocity mainly depends on k1, that is

k1
4

− d((
√
2 + 1)Ωmax + k1‖Ee(t0)‖) >

1

ε
, (11)

where d is defined as

d , max

{

∣

∣

∣

J3 − J2
J1

∣

∣

∣
,
∣

∣

∣

J1 − J3
J2

∣

∣

∣
,
∣

∣

∣

J2 − J1
J3

∣

∣

∣

}

.

(12)

The proof of Theorem 1 will be solved in a two-
time-scale frame, where Ωe is the fast variable and
E is the slow variable. As for singularly perturbed
approach, it is required that the fast varying Ωe

converges to a positively invariant set in a short
time so that the slow varying E can always stay
in the set D all the time. Then, the exponential
convergence is obtained by Lyapunov analysis for
overall closed loop system. The proof process is
provided in Appendix C. Besides, the numerical
simulation is provided in Appendix D.

Remark 2. Following the adaptive approach, an
angular velocity estimator can be designed as

˙̃R =R̃(Ω̃− α2Ee)
∧, (13a)

˙̃Ω =EJ−1(τ − (ETΩ̃)∧JETΩ̃− α1Ee

+ α2ÊeE
TΩ̃), (13b)

where α1, α2 > 0 are positive gains, and Ω̄e = Ω−
ETΩ̃. Consider a Lyapunov function which con-
sists of quadratic terms of estimation errors such
that V0 = Ψ+W , where Ψ = ln(2)− 1

2 ln(1+tr(E)),

and W = 1
2α1

Ω̄T
e
JΩ̄e. Then, its time derivative

is V̇0 = −α2‖Ee‖2, and the asymptotic stability
can be obtained by Barbalat’s lemma. Further-
more, consider the Lyapunov function which con-
sists of quadratic and cross terms of estimation
errors such that V = V0 + pET

e
Ω̄e for some scalar

p > 0. It follows that xTW1x 6 V 6 xTW2x,

and V̇ 6 −xTW3x, where x = [‖Ee‖, ‖Ω̄e‖]T,
W1,W2,W3 are positive definite constant matrix,
and the exponential stability is obtained. It shows
that the convergence rate of estimated angular ve-
locity is controlled by a coordinated selection of
two gains α1, α2. In this study, the exponential
stability of estimator (3) can be achieved with only
quadratic terms of estimation errors in Lyapunov

function so that it has desired convergence prop-
erties. By introducing an intermediate variable z
in the design process of the estimator, the con-
vergence rate of estimated angular velocity mainly
depends on the gain k1. The singularly perturbed
method is used in the stability analysis, and the
estimator (3) can be seen as a high gain observer
[8]. Based on singular perturbation approach, the
gain k1 exists and depends on the initial condition
ΦT

e +Φe.

Conclusion. A nonlinear angular estimator for
rigid body whose kinematics evolves on SO(3),
which can describe the rigid body’s rotation glob-
ally and uniquely, is studied. By introducing an in-
termediate variable, a novel estimator framework
is proposed. The singular perturbation method,
which divides the closed loop systems into a fast
system and a slow system, proves a rapid conver-
gence properties of angular velocity estimation er-
ror, and the convergence rate of estimated angular
velocity is mainly determined by a single control
gain.
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