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Dear editor,
Object detection has always been the focus and
challenge in the field of computer vision, especially
the small object detection. With the arrival of
deep convolutional networks (ConvNets [1]), the
performance of object detection [2–5] has been im-
proved significantly. However, small object detec-
tion is still a challenging issue owing to the rela-
tively small area with less information in images.

Recent detection systems such as Faster R-
CNN [2] leverage the top-most feature maps within
ConvNets on a single input scale to predict candi-
date bounding boxes of different scales and aspect
ratios. However, the top-most feature maps have
a fixed receptive field, which conflicts with objects
at different scales in natural images. In addition,
there is little information left on the top-most fea-
ture maps for small objects, which compromises
the detection performance, especially for small ob-
ject detection.

To address the problem of multi-scale object de-
tection, the methods such as SSD [3] utilize the
pyramidal feature hierarchy from bottom to top
layers to detect objects of various sizes. Never-
theless, the features from the bottom layers of
ConvNets have weak semantic information, which
could harm their representational capacity for
small object recognition.

The most recent networks such as FPN [4] try to
make full use of the pyramidal features by building
a top-down architecture with lateral connections.

These networks show dramatic improvements in
accuracy compared with conventional detectors.
These systems, however, first progressively reduce
the input image to small feature maps which retain
little spatial information of small objects, and then
try to reconstruct the spatial resolution. In fact,
it is difficult to restore the lost spatial information
of small objects by upsampling. More details of
the related work are given in Appendix A.

In this study, we design a multi-scale deconvo-
lutional single shot detector (MDSSD), especially
for small object detection. In MDSSD, multiple
high-level feature maps at different scales are up-
sampled simultaneously to increase the spatial res-
olution. Afterwards, we implement the skip con-
nections with low-level feature maps via a Fu-
sion Block. The fusion feature maps, named Fu-
sion Module, are of strong feature representation
power of small instances. It is noteworthy that
these high-level feature maps utilized in the Fu-
sion Block preserve both strong semantic informa-
tion and some fine details of small instances, unlike
the top-most layer where the representation of fine
details for small objects is potentially wiped out.

The main contributions of our study are sum-
marized as follows:

(1) We design the delicate Fusion Block to
build high-level semantic feature maps at different
scales. The new Fusion Modules have both strong
semantic information and accurate location infor-
mation for small object detection.
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Figure 1 (Color online) The architecture of MDSSD. First, we apply deconvolution layers to the high-level semantic
feature maps at different scales (i.e., conv8 2, conv9 2, and conv10 2) simultaneously. Then we build skip connections with
lower-layers (conv3 3, conv4 3, and conv7) through Fusion Block and form 3 new fusion layers (Module 1, Module 2, and
Module 3). Predictions are made on both new fusion layers (Module 1, Module 2, and Module 3) and original SSD layers
(conv8 2, conv9 2, conv10 2, and conv11 2) at the same time.

(2) We propose a novel framework MDSSD for
small object detection. Several Fusion Blocks are
applied on multi-scale convolution layers before
the top-most feature maps where fine details still
exist, providing a significant improvement in small
object detection.

Methodology. To figure out the effect of feature
resolution on small object detection, we conduct
pilot experiments on the benchmark TT100K [6]
with SSD model. First, we fine-tune the overall
SSD512 and SSD300 models and test each predic-
tion layer separately. Second, we fine-tune each
prediction layer of SSD model independently and
test each corresponding layer. The experiments
show that the mAPs of these prediction layers
(from conv4 to conv12) progressively drop to zero
for both SSD512 and SSD300 models. That is to
say, the representational capacity of small objects
becomes worse and worse along with the depth of
network increasing until totally lost on the coarse-
semantic deeper layers (after conv11). The details
are given in Appendix B.

(1) The Architecture of MDSSD. Based on the
aforementioned observation, we devise the over-
all framework of MDSSD, as shown in Figure 1.
To make the feature maps of the shallow layers
contain more semantic information, we build sev-
eral fusion layers between high-level and low-level
feature maps through Fusion Blocks. As the pi-
lot experiments analyzed, conv11 and conv12 have
totally lost the fine details of small objects, and
therefore we apply the Fusion Block before conv11.
In order to share the structure of Fusion Block,
we delicately design symmetric topology between
shallow layers and deep layers. That is to say,
these shallow feature maps should have the same
downsampling factor with the corresponding deep

feature maps in terms of spatial resolution.

Specifically, conv4 3 and conv7 are merged with
conv9 2 and conv10 2 through Fusion Blocks, re-
spectively. The new fusion feature maps, termed
Fusion Module 2 and Fusion Module 3, are used
to replace the original conv4 3 and conv7 of SSD
for detection. In order to further improve the per-
formance of small object detection, it is necessary
to take full advantage of the shallow feature maps.
Therefore, we add Fusion Module 1 which connects
the lower layer conv3 3 and layer conv8 2 to make
predictions. The Fusion Modules can capture both
more fine details and strong semantic information
of small instances, and thus significantly improve
the performance. Note that the three pairs of
fusion layers (conv3 3 and conv8 2, conv4 3 and
conv9 2, conv10 2 and conv7) undergo downsam-
pling by the same factor of 8; therefore they can
share the same structure of Fusion Block.

In summary, we have seven prediction layers at
different depths in total, including three Fusion
Modules (Module 1, Module 2, and Module 3)
and four original SSD prediction layers (conv8 2,
conv9 2, comv10 2, and conv11 2). Fusion Mod-
ules are mainly responsible for accurately detect-
ing relatively small instances, while the rest of the
layers for detecting medium and large objects.

(2) Fusion Block. There are three Fusion Mod-
ules at different depths. We take Module 1 as
an example for interpretation, and the details of
the architecture of Fusion Block are shown in Ap-
pendix B for the 300× 300 input model. The fea-
ture maps should have the same size and channels
if we use the element-wise product or summation
to merge them together. Therefore, in order to
fuse conv3 3 and conv8 2, we need to upsample
the spatial resolution of conv8 2 by a factor of 8.
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Specifically, for conv8 2 with the size of 10 ×

10, we implement three deconvolution layers to
achieve upsampling, with each upsampling the in-
put feature maps by stride 2. The kernel size of
the deconvolution layer is 2 × 2 or 3× 3 with 256
channels. Each deconvolution layer is followed by
one convolution layer. The resolution of feature
maps produced by the upper branch is 75× 75 af-
ter one L2 normalization layer. Conv3 3 undergoes
one 3 × 3 convolution layer with stride 1 and L2
normalization. We fuse the feature maps output
by the upper and lower branches through element-
wise summation. Then we add one convolution
layer to ensure the discriminability of features for
detection. Finally, we obtain the Fusion Module 1
after a ReLU activation function.

As mentioned before, the symmetric connec-
tions enable Fusion Module 2 and Module 3 to
follow the identical structure. The only difference
is that the numbers of channels of the three mod-
ules are 256, 512 and 1024, respectively. As for the
512× 512 input model, there are some tiny modi-
fications. Further details of the Fusion Block with
300× 300 and 512× 512 input are provided in Ap-
pendix B. The training objective is the weighted
sum between localization loss (Smooth L1) and
confidence loss (Softmax). More details of the
training strategies are given in Appendix B.

Experiments. We evaluate MDSSD on small ob-
ject dataset TT100K [6], the benchmark datasets
PASCAL VOC2007 [7] and MS COCO [8].

(1) Results on TT100K. MDSSD512 achieves
an mAP of 77.6% on TT100K, outperforming
SSD512 (68.7%) and RFB Net (74.4%) by 8.9%
and 3.2% respectively with the same input size
(512× 512) and backbone. Moreover, MDSSD512
also exceeds the two-stage detector Faster R-CNN
(52.9% (VGG-based) and 61.1% (ResNet-based))
with a large margin, even though they have a
larger input size of 1000 × 600. Besides, FPN
(69.9%) and Mask R-CNN (70.8%), the variants
of Faster R-CNN, are also inferior to the proposed
model. The results on TT100K demonstrate the
effectiveness of MDSSD for small object detection.

(2) Results on PASCAL VOC2007. MDSSD300
(78.6%) exceeds the latest SSD300* (77.5%)
and is comparable to DSSD321 (78.6%) on
VOC2007. Additionally, by replacing the back-
bone with ResNet-101, MDSSD320* (79.1%) and
MDSSD512* (81.0%) achieve better results than
the original models. Note that, MDSSD320*
yields 0.5% gain compared with DSSD321, while
MDSSD512* is slightly inferior to DSSD513. The
results demonstrate that MDSSD gains greater im-
provements for small input size.

(3) Results on COCO. It is noticeable that

the proposed MDSSD300 and MDSSD512 mod-
els achieve 10.8% and 13.9% AP for small ob-
jects (area <322), respectively. Our models out-
perform SSD (6.6% and 10.9%), DSSD (7.4% and
13%), and DSOD (9.4%) with a large margin.
MDSSD outperforms all one-stage architectures
based on both VGG16 and ResNet-101. The pro-
posed method achieves a higher AR (average re-
call) for small objects as well, which proves that
MDSSD is more powerful for small object detec-
tion. The details of the experimental results are
provided in Appendix C.

Conclusion. This paper proposes a multi-scale
deconvolutional single shot detector for small ob-
jects. We devise several Fusion Modules having
different spatial resolutions to better match small
objects. The skip connections add context infor-
mation to low-level feature maps and make them
more descriptive. While we only take SSD as the
base architecture for demonstration, the principle
can be also applied to other object detectors, such
as Faster R-CNN [2].
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