
SCIENCE CHINA
Information Sciences

. Supplementary File .

MDSSD: Multi-scale Deconvolutional Single
Shot Detector for Small Objects

Lisha CUI, Rui MA*, Pei LV, Xiaoheng JIANG, Zhimin GAO, Bing ZHOU & Mingliang XU

Center for Interdisciplinary Information Science Research, Zhengzhou University, Zhengzhou 450000, China

Appendix A Related Work

Most of the traditional object detectors are based on hand-crafted features, such as Haar [1] and DPM [2]. With the

development of ConvNets in recent years, the accuracy and inference speed of object detection [3–7] have been greatly

improved by integrating feature learning and classifier into one framework. We classify these works based on ConvNets into

the following three categories:

Detectors based on the top-most feature maps. OverFeat [3] applies a sliding window to the feature maps to create

bounding boxes. It decomposes the detection into localization and classification, which tends to be costly. SPPnet [8]

designs the Spatial Pyramid Pooling layer where the input images of any sizes are feasible, which is efficient in computation.

R-CNN [9] and Fast R-CNN [4] use selective search to generate bounding boxes and then classify them by SVM. Faster

R-CNN [10] introduces RPN (Region Propose Network) to directly generate the anchor boxes with different scales and

aspect ratios on the feature maps, and thus improves effectiveness and efficiency.

YOLO [11] divides the feature maps into n regions, and then regresses and classifies the bounding boxes in each region

at real-time speed. However, all these methods are based on the top-most feature maps of the convolutional neural network

to locate and classify the objects. They rely on the information extracted by the upper features to a large extent and do

not make full use of the bottom details.

Detectors based on multi-scale feature maps. To make full use of the multifarious information from different

convolution layers to cover the objects with different scales and shapes, a set of approaches [12–17] make predictions on

multi-scale feature maps. SSD [12], a single shot detector, makes predictions from multiple feature maps at different depths

from bottom to top to naturally handle objects of various sizes. It is one of the state-of-the-art detectors considering

both accuracy and speed. MS-CNN [13] proposes a framework which consists of a proposal sub-network and a detection

sub-network. In the proposal sub-network, detection is performed at multiple output feature maps. [16] applies multiple

layers derived from the backbone network for detection. M2Det [17] proposes a Multi-Level Feature Pyramid Network

(MLFPN) to enhance the effectiveness of feature pyramids for detecting objects of different scales. The deconvolution

layer is introduced to upsample feature maps and add context information in these methods. Nevertheless, the layers from

the bottom of a ConvNet have weak semantic information, which harms their representational capacity for small object

recognition.

Detectors based on connections of multi-scale feature maps. In order to enhance the representational capacity

of feature maps, a number of approaches [18–22] concatenate multi-scale feature maps of ConvNets to increase context

information. DSSD [23] applies successive deconvolution layers to the top of SSD to realize upsampling and then achieves

connections with convolution layers. The recent methods, FPN [24] and TDM [25], adopt a top-down pathway and conduct

skip connections in their architectures to enhance the power of features. Sun et al. [26] design a FishNet by combing

features from different resolutions or depths. Libra R-CNN [27] utilizes the refining balanced semantic features at different

resolutions for object detection. These algorithms [25–27], however, have cumbersome architectures which apply bottom-up

and top-down pathway within the network, failing to achieve real-time processing.

Inspired by these researches, we propose MDSSD for small object detection. It combines high-level and low-level feature

maps through Fusion Block to add context information for small object detection. Different from other fusion-based

detectors, our Fusion Blocks are applied to multiple high-level feature maps which still remain fine details for small instances,

rather than the top-most layer of the ConvNet.
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Figure B1 The detection results of SSD model on TT100K using different training and testing policies. The mAP in

both ways dramatically declines to zero when the convolution layers go deeper and the feature maps get smaller, meaning

that top convolutional layers are incapable of recognizing small objects, especially the last two layers.

Appendix B Methodology

Appendix B.1 Performance Analysis of Multi-scale Feature Maps

To figure out the effect of feature resolution on small object detection, we conduct pilot experiments on the benchmark

TT100K with SSD model. SSD utilizes the pyramidal feature hierarchy within a ConvNet to predict objects at differ-

ent scales. Predictions at multiple scales improve the mAP and single-shot architecture achieves real-time requirements.

However, it is hard for SSD to detect small objects owing to the weak semantic information on shallow feature maps.

First, we fine-tune the overall SSD512 and SSD300 model where predictions are produced on several layers at different

resolutions. As depicted in Figure B1, SSD512 and SSD300 achieve 68.7% and 29.2% mAP on TT100K respectively. Then

by utilizing the well-trained models, we test each prediction layer separately. The mAPs of conv4 are 68.4% for SSD512 and

27.6% for SSD300, respectively. Nevertheless, the mAPs of layers after conv7 are zero, which means that shallow layers are

mainly responsible for detecting small objects due to their rich fine details, and deep layers contribute little to the results

of small object detection.

To further demonstrate the observation above, we fine-tune each prediction layer of SSD model independently on TT100K

and test each corresponding layer. As shown in Figure B1, the mAPs of these prediction layers (from conv4 to conv12)

progressively drop until zero for both SSD512 and SSD300 models. That is to say, the representational capacity of small

objects becomes worse and worse along with the increasing depth of network until totally lost on the coarse, semantic

deeper layers (after conv11). Inspired by the above observation, we intend to make full use of the shallow layers with rich

fine details and the relatively deep layers with semantic information as well as some fine details of small objects.

Appendix B.2 Fusion Block

There are three Fusion Modules at different depths in total. We take Module 1 as an example. Figure B2 illustrates the

structure of Module 1 for the 300 × 300 input model. Module 2 and Module 3 follow the same structures except the channel

number. The Fusion Modules are of strong feature representational power of small instances. It is noteworthy that these

high-level feature maps utilized in Fusion Block preserve both strong semantic information and some fine details of small

instances, rather than the top-most layer where the representation of fine details of small objects are potentially wiped out.

As for the 512×512 input model, there are some tiny modifications. Table B1 sketches the structure details of Fusion Block

with 300×300 and 512×512 input.

Appendix B.3 Training

Data Augmentation. The data augmentation strategies utilized in SSD are also applied in our framework for building a

robust model. In the latest version of SSD, a “zoom out” operation is implemented to improve the small object detection.

We exploit both the original images and generated samples by randomly expanding and cropping for training. Please refer

to SSD for more details.

Default Boxes. For Fusion Module 2 and Module 3 in MDSSD, the scales and aspect ratios of default boxes are

consistent with conv4 3 and conv7 in SSD, respectively. To be specific, the scale of Module 2 and conv11 are set to 0.2 and

0.9, respectively. For a given scale, default boxes with aspect ratios of 1, 2, 3, 1
2

, and 1
3

are generated to better match the

object shape. For Module 2, conv10 2, and conv11 2, each cell of the feature maps predicts four default boxes. Others have

six default boxes per each location. As for default boxes generated by Module 1, we keep them the same with Module 2

* Corresponding author (email: maruifirst@zzu.edu.cn)
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Figure B2 The architecture of Fusion Block. The top layer, i.e. Conv8 2, undergoes 3 deconvolution layers to achieve

upsampling, each followed by one convolution layer. Then we apply one convolution layer with stride 1 to the bottom layer

Conv3 3. The outputs of both branches are of the same size and integrated into one by element-wise summation. Finally,

we obtain Fusion Module 1 after one convolution and Relu layer.

Table B1 The detailed structure of three Fusion Blocks with 300 × 300 and 512 × 512 input. [·]×2 indicates double

identical operations. We set the stride to 2 for all deconvolution layers and 1 for convolution layers

Fusion

Module
Module 1 Module 2 Module 3

Connection

Layers
conv3 3 conv8 2 conv4 3 conv9 2 conv7 conv10 2

Structure

300×300

3×3×256 Conv

L2 Norm


2×2×256 Deconv

3×3×256 Conv

Relu

×2

3×3×256 Deconv

3×3×256 Conv

L2 Norm

3×3×512 Conv

L2 Norm


2×2×256 Deconv

3×3×256 Conv

Relu

×2

2×2×512 Deconv

3×3×512 Conv

L2 Norm

3×3×1024 Conv

L2 Norm


2×2×512 Deconv

3×3×512 Conv

Relu

×2

3×3×1024 Deconv

3×3×1024 Conv

L2 Norm

Structure

512×512

3×3×256 Conv

L2 Norm


2×2×256 Deconv

3×3×256 Conv

Relu

×2

2×2×256 Deconv

3×3×256 Conv

L2 Norm

3×3×512 Conv

L2 Norm


2×2×256 Deconv

3×3×256 Conv

Relu

×2

2×2×512 Deconv

3×3×512 Conv

L2 Norm

3×3×1024 Conv

L2 Norm


2×2×512 Deconv

3×3×512 Conv

Relu

×2

2×2×1024 Deconv

3×3×1024 Conv

L2 Norm

Fusion

Eltw-sum

Relu

3×3×256 Conv

Relu

Eltw-sum

Relu

3×3×512 Conv

Relu

Eltw-sum

Relu

3×3×1024 Conv

Relu

both in scale and aspect ratio. Following the strategy in SSD, we add extra conv12 2 for the 512×512 input model to make

predictions due to its larger input images.

Matching and Hard Negative Mining. We match each ground truth box to the default box with the best jaccard

overlap. Then we match the remaining default boxes to any ground truth with Jaccard overlap higher than a threshold

(0.5). This strategy is beneficial to predict multiple bounding boxes with high scores for overlapped objects. The negative

samples with top loss value are selected from the non-matched default boxes so that the ratio of positive and negative

samples is 1:3.

Loss Function. The training objective is the weighted sum between localization loss (Smooth L1 [4]) and confidence

loss (Softmax). More details can be found in [12].

Appendix C Experiments

We first evaluate MDSSD on small object dataset TT100K, and then the benchmark datasets PASCAL VOC2007 and MS

COCO. All the experiments are implemented on Caffe platform on the machine with two 1080Ti GPUs. We use the model

pre-trained on ImageNet for initialization, and then fine-tune our model on TT100K, PASCAL VOC, and MS COCO. The

performance is measured by mean average precision (mAP) and we compare the results with state-of-the-art detectors about

the mAP and inference speed.
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Table C1 Comparisons of mAP and AP for each class on TT100K. Faster R-CNN [10], SSD512, and RFB Net are

based on VGG16, while Faster R-CNN [29], FPN and Mask R-CNN utilize the deeper network ResNet101. MDSSD512

outperforms both VGG-based and ResNet-based detectors. The proposed method, RFBNet, and SSD train the models

with the input size 512×512, while other approaches have larger input size 1000 × 600 or 1000 × 800

Method mAP i2 i4 i5 il100 il60 il80 io ip p10 p11 p12 p19 p23 p26 p27 p3 p5 p6 pg ph4 ph4.5 ph5

Faster [10] 52.9 44 46 45 41 57 62 41 39 45 38 60 59 65 50 79 48 57 75 80 68 58 51

Faster [29] 61.1 59.3 73.8 79.7 76.6 76.3 68.5 64.9 66.8 52.2 58.5 45.9 48.2 74.4 66.1 64.3 65.4 74.9 39.1 78.2 58.0 36.5 69.1

FPN [24] 69.9 72.5 79.6 88.3 90.2 88.2 84.9 77.4 75.8 62.7 75.9 60.2 53.7 75.8 76.0 84.8 71.6 79.2 43.5 79.9 50.6 51.0 72.2

Mask R-CNN [30] 70.8 71.4 85.6 89.0 89.4 86.3 82.3 78.0 77.6 59.6 76.9 63.8 52.0 72.9 81.7 87.5 78.5 78.9 48.3 88.5 63.9 58.1 75.5

SSD512 [12] 68.7 70.1 79.3 85.3 77.1 86.4 78.7 72.3 71.6 64.5 57.1 67.7 73.0 80.4 70.7 76.2 66.5 74.9 63.9 84.2 62.1 51.2 78.6

RFBNet512 [31] 74.4 75.6 79.4 87.9 87.4 89.9 88.4 77.2 79.0 66.1 66.9 71.1 72.8 83.4 74.9 79.8 69.0 77.6 68.8 88.9 67.6 63.0 76.3

MDSSD512 77.6 84.7 88.3 88.8 82.1 88.1 78.4 84.1 83.0 68.4 75.7 76.3 82.3 85.9 81.7 90.2 69.4 85.8 73.2 85.4 73.7 59.4 81.4

Method pl100 pl120 pl20 pl30 pl40 pl5 pl50 pl60 pl70 pl80 pm20 pm30 pm55 pn pne po pr40 w13 w32 w55 w57 w59 wo

Faster [10] 68 67 51 43 52 53 39 53 61 52 61 67 61 37 47 37 75 33 54 39 48 39 37

Faster [29] 77.6 74.6 40.5 48.5 60.2 65.4 49.0 51.2 61.2 59.0 50.5 29.1 68.5 77.8 87.5 47.7 86.9 30.9 57.2 62.1 67.0 57.2 42.7

FPN [24] 87.5 85.5 55.7 55.6 71.5 77.3 60.8 58.7 63.5 70.9 55.5 40.1 75.7 89.0 89.8 60.2 87.6 45.3 67.8 65.9 70.3 62.3 53.2

Mask R-CNN [30] 86.7 82.4 58.6 53.3 68.2 76.4 63.5 56.6 66.3 71.5 58.0 41.5 68.8 88.6 90.5 63.0 87.5 51.3 60.6 66.6 71.1 61.8 47.6

SSD 512 [12] 85.1 84.2 45.4 66.6 65.7 60.5 58.3 64.0 70.6 70.5 69.6 51.3 71.2 71.7 86.4 51.8 87.9 46.1 57.1 64.6 74.0 58.8 39.7

RFB Net 512 [31] 88.8 84.9 66.8 71.8 71.6 75.0 62.9 70.4 64.9 71.9 73.7 54.0 86.5 78.0 88.2 59.8 84.5 64.8 70.1 72.4 81.5 69.3 43.7

MDSSD512 84.9 88.0 66.6 73.9 76.4 78.5 70.7 72.1 70.4 79.2 72.7 49.5 77.5 85.4 88.2 68.1 90.0 67.0 73.3 78.9 82.1 80.6 50.1

Table C2 The detection results over multi-scale small objects which are less than 100× 100 pixels in 2048× 2048 images.

‘A’ refers to the areas of objects, where the area is measured as the number of pixels in the segmentation mask. ‘P’ denotes

the percentage of objects in the images

Object Size 0<A 6 202 202<A 6 402 402<A 6 602 602<A 6 1002

Percentage 0<P 6 0.98% 0.98%<P 6 1.95% 1.95%<P 6 2.93% 2.93%<P 6 4.88%

Accuracy 43.4% 75.0% 81.6% 90.9%

Appendix C.1 Results on TT100K

TT100K is a traffic-sign benchmark dataset where target objects typically occupy a very small proportion of each image. For

instance, a traffic sign may be only 20 × 20 pixels in a 2048 × 2048 image. Therefore, we only evaluate the MDSSD model

with 512 × 512 input, termed MDSSD512. Following [28], we only reserve the categories with more than 100 instances,

which leaves 45 classes of traffic signs to detect. MDSSD512 model is trained on the original training set (including 6105

images) and evaluated on the test set (including 3071 images). We train MDSSD512 with the initial learning rate of 10−3

for the first 200k iterations, then decrease it to 10−4 for the next 100k iterations and 10−5 for another 40k iterations.

Because of the relatively large images in TT100K, the batch size is set to 8 considering the GPU memory. The momentum

and weight decay are set to 0.9 and 0.0005 respectively by using SGD.

Table C1 demonstrates the results of MDSSD512 compared with other object detectors. Faster R-CNN [10], SSD512,

and RFB Net are based on VGG16, while Faster R-CNN [29], FPN and Mask R-CNN utilize the deeper network ResNet101.

Additionally, Faster R-CNN [10,29], FPN, and Mask R-CNN are trained on Detectron 1), and we change the scale of anchors

from [322, 642, 1282, 2562, 5122] to [162, 322, 642, 1282, 2562] for better matching the small traffic signs in TT100K.

It can be observed that MDSSD512 achieves an mAP of 77.6%, outperforming SSD512 (68.7% mAP) and RFB Net

(74.4 % mAP) by 8.9 and 3.2 points respectively with the same input size of 512 × 512 and the same backbone network.

Moreover, MDSSD512 can also exceed the two-stage detectors Faster R-CNN [10,29] (52.9% and 61.1% mAP) with a large

margin, even though they have larger input size of 1000 × 600. FPN and Mask R-CNN, the variants of Faster R-CNN,

apply ResNet101 as the backbone network and perform well on small object detection. They achieve 69.9% and 70.8%

mAP, which are still inferior to the proposed model. The results on TT100K demonstrate the effectiveness of MDSSD for

small object detection.

To further analyze MDSSD over different object sizes on TT100K, we test 1000 images using the well-trained model. The

object instances smaller than 100×100 pixels in 2048×2048 images are categorized into 4 classes (i.e., (0, 202], (202, 402], (402,

602], and (602, 1002]) according to their areas, where the area is measured as the number of pixels in the segmentation

mask. We calculate the percentage of these small objects which are all less than 5% of the images as well, as displayed in

Table C2. The accuracies of the 4 classes are 43.4%, 75.0%, 81.6% and 90.9%, respectively. The accuracy of the first class

is less than satisfactory because the objects are particularly small, occupying less than 1% of an image. These objects can

hardly be found even by naked eyes. As the objects get larger, the accuracy increases dramatically.

Appendix C.2 Results on PASCAL VOC2007

To validate the performance of MDSSD for general object detection, we train MDSSD on PASCAL VOC2007 and VOC2012

trainval (16551 images), and test on VOC2007 test (4952 images). Batch size is set to 32 for 300×300 input and 16 for

1) https://github.com/facebookresearch/Detectron
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Table C3 Detection results on PASCAL VOC2007 test set. All the methods are trained on VOC2007 train and VOC2012

trainval, and tested on VOC2007 test. SSD300* and SSD512* indicate the latest version updated by the authors

Method Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster [10] VGG 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

ION [19] VGG 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4

Faster [29] ResNet-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

MR-CNN [13] VGG 78.2 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0

R-FCN [32] ResNet-101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

SSD300* [12] VGG 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8

SSD512* [12] VGG 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0

DSSD321 [23] ResNet-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4

DSSD513 [23] ResNet-101 81.5 86.6 86.2 82.6 74.9 62.5 89.0 88.7 88.8 65.2 87.0 78.7 88.2 89.0 87.5 83.7 51.1 86.3 81.6 85.7 83.7

MDSSD300 VGG 78.6 86.5 87.6 78.9 70.6 55.4 86.9 87.0 88.3 58.5 84.8 73.4 84.8 89.2 88.1 78.0 52.4 78.6 74.5 86.8 80.7

MDSSD512 VGG 80.3 88.8 88.7 83.2 73.7 58.3 88.2 89.3 87.4 62.4 85.1 75.1 84.7 89.7 88.3 83.2 56.7 84.0 77.4 83.9 77.6

MDSSD320* ResNet-101 79.1 85.3 88.1 78.0 64.1 45.3 89.4 89.3 93.4 60.3 80.4 74.2 90.2 91.4 86.6 81.4 50.4 79.0 83.9 91.0 79.5

MDSSD512* ResNet-101 81.0 87.0 89.9 81.6 63.7 46.9 92.7 91.8 92.8 61.7 83.6 73.9 91.3 94.2 88.8 84.8 52.1 80.4 86.6 94.0 82.8
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Figure C1 Sensitivity and impact of object size on VOC2007 test set using [33], including 7 object categories. The top

row shows the effects of BBox Area per category for the latest SSD300* and SSD512* model respectively, and the bottom

row shows our results. Key: BBox Area: XS=extra-small; S=small.

512×512 input. We use 10−3 learning rate for the first 60k iterations, then decrease it to 10−4 for the next 40k iterations

and 10−5 for another 20k iterations.

Table C3 shows our detection results on VOC2007 test compared with other state-of-the-art architectures. Our model

with 300×300 input has achieved 78.6% mAP. It exceeds the latest SSD300* by 1.1 points and can be comparable to

DSSD321 with 321×321 input. By increasing the image size to 512×512, MDSSD achieves better performance, improving

mAP from 79.5% to 80.3%. The mAP of DSSD513 is higher than that of MDSSD512, but we argue that this is because

DSSD utilizes ResNet-101 as the backbone network. However, it should be noted that MDSSD512 is much faster than

DSSD513 (see Table C6).

For a fair comparison with other methods, we replace the backbone from VGG16 to ResNet-101 for training MDSSD on

VOC2007 as well, denoting as MDSSD320* and MDSSD512*. As shown in Table C3, MDSSD320* (79.1%) and MDSSD512*

(81.0%) achieve better results than the original models, improving MDSSD300 and MDSSD512 by 0.5 and 0.7 points

respectively. Additionally, MDSSD320* yields 0.5 points gain compared with DSSD321, while MDSSD512* is slightly

inferior to DSSD513. The results demonstrate that MDSSD is more effective for small input size. Nevertheless, the deep

backbone network hampers the inference speed of MDSSD in the meantime, as shown in Table C6.

In order to verify the performance of MDSSD on small object detection, we also utilize the detection analysis tool

from [33]. Following the definition of [33], each object is assigned to a size category depending on the object’s percentile

size within its category: extra-small (XS: bottom 10%); small (S: next 20%); medium (M: next 40%); large (L: next 20%);

extra-large (XL: next 10%). To clearly demonstrate the improvement for small object detection, we only show the results

of category XS and S.

Figure C1 shows the comparison between our methods and SSD for sensitivity and impact of object size, including 7

object categories. For better visualization, we calculate mAP of the 7 categories for S and XS, as shown in Table C4.

MDSSD300 achieves 56% mAP and 79% mAP for category XS and S, respectively. Our models improve baseline SSD300*

with 49% mAP and 77% mAP by 7 and 2 points, respectively. The mAPs of category XS and S are 66% and 81%

for MDSSD512, while 63% and 81% for SSD512*. That is to say, our MDSSD300 model shows significant improvement

compared with SSD300* model, while MDSSD512 brings marginal performance gain compared with SSD512* model. This

performance proves that the proposed MDSSSD is much more effective for detecting small objects. The AP of some specific
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Table C4 Comparison of mAP between SSD and MDSSD for object XS and S, which includes 7 object categories shown

in Figure C1. MDSSD300 shows significant improvement compared with SSD300* model, while MDSSD512 brings slightly

performance gain compared with SSD512* model. The results demonstrate that the proposed MDSSSD is much more

effective for small input size.

Method
mAP(%)

XS S

SSD300* 49 77

SSD512* 63 81

MDSSD300 56 79

MDSSD512 66 81

Table C5 The comparison of detection results among different methods on COCO test-dev2015. MDSSD improves the

original SSD models with a large margin. It is obvious that MDSSD models achieve the highest AP (the 5th column) and

AR (the 7th column) for S, which demonstrates the effectiveness of MDSSD for small object detection

Method Data Backbone
Avg.Precision, IoU: Avg.Precision Avg.Recall, #Dets: Avg. Recall

0.5:0.95 0.5 0.75 Area: S 1 10 100 Area: S

Faster [10] trainval VGGNet 21.9 42.7 - - - - - -

ION [19] train VGGNet 23.6 43.2 23.6 6.4 23.2 32.7 33.5 10.1

Faster [29] trainval ResNet-101 34.9 55.7 37.4 15.6 - - - -

R-FCN [32] trainval ResNet-101 29.9 51.9 - 10.8 - - - -

YOLOv2 [21] trainval35k Darknet-19 21.6 44.0 19.2 5.0 20.7 31.6 33.3 9.8

SSD300* [12] trainval35k VGGNet 25.1 43.1 25.8 6.6 23.7 35.1 37.2 11.2

SSD512* [12] trainval35k VGGNet 28.8 48.5 30.3 10.9 26.1 39.5 42.0 16.5

DSSD321 [23] trainval35k ResNet-101 28.0 46.1 29.2 7.4 25.5 37.1 39.4 12.7

DSSD513 [23] trainval35k ResNet-101 33.2 53.3 35.2 13.0 28.9 43.5 46.2 21.8

DSOD300 [15] trainval DS/64-192-48-1 29.3 47.3 30.6 9.4 27.3 40.7 43.0 16.7

MDSSD300 trainval35k VGGNet 27.8 46.0 28.7 10.8 24.3 36.6 38.8 15.8

MDSSD512 trainval35k VGGNet 31.1 52.5 33.4 13.9 27.3 42.3 45.9 22.4

classes improves significantly as well, such as airplane with the background of the sky. This may benefit from the Fusion

Modules with context information.

Appendix C.3 Results on MS COCO

To further validate our model, we train MDSSD300 and MDSSD512 on MS COCO as well. We use the trainval35k (118287

images) for training and evaluate the results on the standard test-dev2015 split (20288 images). The batch size is set to

16 for 300×300 input and 8 for 512×512 input. We train the model with 10−3 for the first 160k iterations, then 10−4 and

10−5 for another 120k and 40k iterations.

MS COCO defines that the objects are small (area < 322), medium (322 < area < 962), large (area > 962), where the

area is measured as the number of pixels in the segmentation mask. To obtain results on COCO test-dev2015 where the

ground-truth annotations are hidden, we upload generated results to the evaluation server to get the performance analysis.

In Table C5, we observe that MDSSD300 achieves 27.8% AP@[0.5:0.95], 46.0% AP@0.5, and 28.7% AP@0.75, which

improves the conventional SSD300* by 2.7, 2.9, and 2.9 points, respectively. MDSSD512 also outperforms the baseline

SSD512* by 2.3, 4.0, and 3.1 points, respectively. Even though our models do not perform as well as DSSD, it should be

noticed that the backbone network of MDSSD is VGG16 and MDSSD is about 4 times faster than DSSD. Compared with

the other detectors based on VGG16 such as Faster R-CNN and ION with 1000 × 600 input, MDSSD achieves the best

results.

It is noticeable that our MDSSD300 and MDSSD512 model achieve 10.8% AP and 13.9% AP for small objects (area

<322), respectively. Our models improve SSD (6.6% and 10.9%), DSSD (7.4% and 13%), and DSOD (9.4%/-) with a large

margin. MDSSD outperforms all one-stage architectures based on both VGG16 and ResNet-101. Our method achieves a

higher AR (average recall) for small objects as well, which proves that MDSSD is more powerful for small object detection.

Appendix C.4 Inference Time

New parameters need to be learned due to additional layers in MDSSD, therefore the inference speed of the network being

hampered. We use 2000 images with batch size 1 to evaluate the inference speed of MDSSD on a machine with one

1080Ti GPU. The results are presented in the 5th column of Table C6, including other state-of-the-art methods. For a fair

comparison, we verify SSD on the same single Nvidia 1080Ti GPU as well. MDSSD300 and MDSSD512 model run at 38.5

FPS and 17.3 FPS, respectively. Although the speed is a little lower than SSD, it can still meet the real-time application.
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Table C6 The comparison of Speed and Accuracy on PASCAL VOC2007 dataset. All the methods are trained on the

union of VOC2007 and VOC2012 trainval and tested on VOC2007 test

Method Backbone GPU Input Size speed(FPS)
mAP(%)

VOC2007

Faster [10] VGG16 Titan X ∼ 1000×600 7 73.2

Faster [29] ResNet-101 K40 ∼ 1000×600 2.4 76.4

R-FCN [32] ResNet-101 Titan X ∼ 1000×600 9 80.5

SSD300* [12] VGG16 Titan X 300×300 46 77.5

SSD512* [12] VGG16 Titan X 512×512 19 79.8

DSSD321 [23] ResNet-101 Titan X 321×321 9.5 78.6

DSSD513 [23] ResNet-101 Titan X 513×513 5.5 81.5

DSOD300 [15] DS/64-192-48-1 Titan X 300×300 17.4 77.7

MDSSD300 VGG16 1080Ti 300×300 38.5 78.6

MDSSD512 VGG16 1080Ti 512×512 17.3 80.3

MDSSD320* ResNet-101 1080Ti 320×320 14.7 79.1

MDSSD512* ResNet-101 1080Ti 512×512 9.3 81.0

Our method exceeds the two-stage networks with a large margin in terms of speed, and it can also outperform one-stage

methods DSSD and DSOD.

The speeds of MDSSD320* and MDSSD512* are 14.7 and 9.3 FPS respectively, which declines dramatically compared

with MDSSD300 and MDSSD512. However, they are still faster than DSSD321 (9.5 FPS) and DSSD513 (5.5 FPS) which

are based on ResNet-101 as well. It is mainly because we only implement connections for the shallow prediction modules

instead of every prediction layer.

Appendix C.5 Visualization Results

Figure C2 illustrates some visualization results on the TT100K test set. Figure C3 shows some detection results of MDSSD

compared with SSD on VOC2007 test and COCO test-dev2015. We only display the bounding boxes with a score higher

than 0.6. Different colors of the bounding boxes indicate different object categories. MDSSD can detect the very small

objects on TT100K, though some of them are difficult to distinguish by naked eyes. As for VOC and COCO, our model

performs better than conventional SSD in most cases. We can observe that MDSSD yields better performance on small and

occluded objects both in Figure C3(a) and C3(b).
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Figure C2 The detection results on the TT100K test set. The objects are tightly surrounded by the bounding boxes

with the categories and classification scores on them. We only show the detections with scores higher than 0.6. We zoom in

the detection results marked by the white rectangles for better visualization. Each color corresponds to an object category.

MDSSD can detect the very small traffic signs on TT100K, though some of them are difficult to distinguish by naked eyes.
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(a) The detection results in scenes containing small or occluded objects on PASCAL VOC2007 test set

0

(b) The detection results in scenes containing small or occluded objects on COCO test-dev2015 set

Figure C3 The detection results of MDSSD (column 2, column 4, and column 6) and SSD (column 1, column 3, and

column 5) in scenes containing small or occluded objects. We can see that MDSSD yields better performance on small and

occluded objects both in (a) and (b).
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