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Abstract Great success of scene parsing (also known as, semantic segmentation) has been achieved with

the pipeline of fully convolutional networks (FCNs). Nevertheless, there are a lot of segmentation failures

caused by large similarities between local appearances. To alleviate the problem, most of existing methods

attempt to improve the global view of FCNs by introducing different contextual modules. Though the

reconstructed high resolution output of these methods is of rich semantics, it cannot faithfully recover the

fine image details owing to lack of desired precise low-level information. To overcome the problem, we

propose to improve the spatial decoding process through embedding possibly lost low-level information in

a principled way. To this end, we make the following three contributions. First, we propose a semantics

conformity module to make low-level features variations agnostic. Second, we introduce semantics into the

conformed low level features through guidance from semantically aware features. Finally, we institute the

availability of various possible contextual features at feature fusion to enrich context information. The

proposed approach demonstrates competitive performance on challenging PASCAL VOC 2012, Cityscapes,

and ADE20K benchmarks in comparison to the state-of-the-art methods.
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1 Introduction

The scene parsing task (or semantic segmentation) assigns a unique category label to each pixel in an

image. It has enjoyed a central place in computer vision for decades owing to its numerous important

applications, e.g., autonomous driving [1] and domestic robots. The pioneering fully convolutional net-

works (FCNs) [2] for semantic segmentation outperformed prior art relying on hand-crafted methods.

Contrary to classification networks, FCNs replaces fully connected layers with convolutional layers, al-

lowing pixel-level category prediction. This prediction is, however, made utilizing only the local view of

the image. Under unconstrained semantic segmentation, local appearance similarity is often unsolvable

with the limited context.

Several solutions have been proposed to circumvent this problem through capturing multi-scale context.

One way is taking image pyramid as input to deep convolutional neural networks (DCNNs) [3,4]. Besides,

encoder-decoder networks [5–8] downsample gradually to widen network context. Further, for the same

purpose, there are modules either as post-processing [9, 10] after original network or trainable [3, 11–13]
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Figure 1 (Color online) First column: original image; second column: baseline predictions; and last column: predictions

from the proposed approach. Baseline fails to recover many details, inside object or around object boundaries (marked

in red boxes). Whereas the proposed approach convincingly segments them, for instance, fine spokes of wheel in the first

image, leg of the rider in the second image, right wing boundaries of the plane in the last image.

with the original network. Among other alternatives, global pooling operations [14], spatial pyramid

pooling [15], and spatial attention blocks [16] have proved beneficial for context aggregation.

Similarly, techniques such as Atrous convolution (also known as, dilated convolution) [10,17] have been

proved to be effective in gathering context. It fills zero between the neighbor elements in a convolutional

kernel for increasing receptive fields while keeping the number of parameters same. Atrous convolution

has been exploited in parallel [18] or cascaded arrangement [19] with variable dilation rates for achieving

multiple fields of view. While these techniques address the scene context integration, they are limited in

their capability to retain local features that relate to fine image details, e.g., around the object boundaries

as shown in Figure 1 where atrous spatial pyramid pooling (ASPP) [18] fails to accurately segment the

fine spokes in the round wheels of bikes.

We hypothesize that the existing methods sacrifice fine image details in an effort to incorporate a

broader context. In this paper, we intend to complement contextually richer, coarser representation

with spatially richer details through leveraging local (high resolution) features after conforming and

compensating the latter according to the former.

Contributions. We intend to improve the spatial decoding process through fusing missing local

information in a simple, yet principled approach. Firstly, we propose semantics conformity module to

make low level features invariant to local deformations. This is a so-called registration of local features

to a reference frame. Secondly, we induce semantics into the conformed low level features in guidance

from semantically-aware features. This is achieved by attending to the joint feature via gated attention

mechanism. Finally, we institute the availability of various possible contextual features at feature fusion

to make available context information while spatial decoding process. The proposed approach displays

favourable performance across challenging PASCAL VOC 2012, Cityscapes and ADE20K benchmarks in

comparison to the state-of-the-art methods.
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2 Related work

FCNs [2] displayed major improvements over prior art in semantic segmentation. Since then consider-

able effort went into enhancing its global field-of-view through external modules-integrating multi-scale

context, encoder-decoder architectures, and spatial pyramid pooling, to further boost its performance.

Although FCNs entirely features convolutions intertwined with downsampling steps for deep repre-

sentation, they lack the long-range context for resolving ambiguities often caused by subtle similarity

of local appearance. A few methods incorporate CRF (conditional random fields) based module after

FCN to encode contextual information [9, 10]. These approaches, however, employ CRF based module

as a post-processing step and are not end-to-end trainable. To overcome the drawback, some methods

targeted joint training of CRF with DCNN [3, 11, 12]. Some recent studies have proposed a duo of spa-

tial and channel attentions modules [16] or graph convolution over latent feature space [20] to introduce

long-range contextual information. In this study, we also use FCNs based method deploying an extra

module to capture wider scene context.

Encoder design in encoder-decoder type methods is typically a popular bottom-up trained classification

network such as ResNet [21] or VGG [22]. Encoder captures global view through successive downsampling

at low resolution whereas the decoder recovers the spatial resolution required in pixel-level predictions

tasks. Skip connections towards decoder from encoder help it in better recovering the spatial details

[5, 6, 23]. Stacked transposed convolutional layers were utilized in [24, 25] to gradually upsample the low

resolution feature maps. Ghiasi et al. [26] proposed a Laplacian pyramid reconstruction network to refine

particular low resolution feature maps. Finally, such models have shown success in other vision tasks

such as human pose estimation [27], saliency detection [28], and object detection [29,30]. These methods

can recover spatial details, albeit may perform poorly in segmenting fine object boundaries. It maybe

owing to under and/or naive utilization of low-level features while reconstructing high resolution output.

Attention mechanism is a crucial module for semantic segmentation to improve the performance. Be-

cause the SE-Net [31] proposes a channel attention module, some methods have used or revised this

module as a part of their networks. EncNet [32] uses the channel attention module at the tail of whole

network for catching more context information. DANet [16] proposes two non-local attention modules to

enhance global information. For reducing the calculation, ANNN [33] changes the attention generation

method with asymmetric structure and maintains accuracy. The attention become more and more com-

plicated but the performance improves gradually. Our method provides a simple but effective attention

module which makes full use of different semantic level information.

Spatial pyramid pooling (SPP) is another way to embody multiple feature scales. It pools input

features from multiple field of views. PSPNet [15] and DeepLab [10] use SPP at several grid scales, while

Parsenet [14] further exploits image-level features. FSG [34] and MDCCNet [35] also use multi-scale

features to capture more context information. Lately, ASPP [18] approach probes features from multiple

field of views. Dense ASPP [19] accomplishes the same however in a denser way and at a much larger

scale. Such approaches encode multi-scale context in the final output, but they lack the (required) spatial

details possibly lost after the successive downsampling steps in the encoder. Proposed approach aims to

induce these details via readily available low level backbone features, however, after adjusting them first

and then compensating them with the semantics through the proposed modules.

3 Proposed approach

In this section, we describe the details of our proposed method for semantic segmentation, by first re-

viewing the standard encoder-based method employing multi-scale contextual block below, and then

explaining the novel mechanisms introduced for boosting their segmentation capabilities from Subsec-

tion 3.1 onwards.

Baseline settings. We follow the encoder-based architecture integrating multi-scale features for

crafting overall design as in [18] (see Figure 2(a)). The encoder is a ResNet-101 model pretrained on
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Figure 2 (Color online) The network architecture of our overall framework. We propose semantic conformity to adjust to

local deformations in possibly messy high resolution representation and design attention gating to compensate semantics in

high resolution features through guidance for enriching spatial details in context-aware, semantically richer, low resolution

feature maps. Finally, we introduce hierarchical cues fusion along the proposed spatial decoding to enrich contextual

information after the fusion of (adjusted and compensated) low level features. We display the impact of SCM, SCM+AG,

and SCM+AG+HCF on feature maps in Figure 2(b). SCM reduces noise through adjusting local features, while AG on top

of it improves the semantics such as enhancing cars boundaries, and finally HCF further enhances foreground (cars) and

simultaneously suppresses background with the fusion of complementary contextual features. (a) Overview of our method;

(b) the effect of different module.

ImageNet unless otherwise specified. For image classification tasks, the output stride for this model is

always 32. In contrast, for semantic segmentation, it is typically modified to 16 or even 8 to improve

spatial resolution. It is achieved by replacing the convolution layers with stride = 2 by stride = 1 and

introducing dilated convolutions with rate = 2 and rate = 4. Further, towards the tail of encoder, dilated

convolutions of various rates are organized in parallel scheme to capture multi-scale scene context.

Though the aforementioned encoder-based frameworks are capable of modelling higher order depen-

dencies for improving discriminative ability, they often fail to preserve fine image details typically found

around the objects boundaries. The second column in Figure 1 illustrates representative failure cases

of such methods. The culprits are successive downsampling operations present in the encoder (ResNet-

101) backbone, which destroy spatial information in the wake of increasing network field-of-view. Skip

connections [5, 6] give rise to loss of spatial details which can be solved by simple spatial reconstruction.

The direct skip based connection(s), however, are sub-optimal owing to the complementary nature of

two feature representations. We believe a step forward is to merge only after alignment while conserving

context. That is, the spatial resolution recovery from coarse semantics-aware low resolution signal can be

improved through inducing low level representation after the alignment of latter with the former while

preserving various types of contextual information.

3.1 Semantics conformity module

Encoders based on pretrained ImageNet models such as ResNet generate features at various semantic

levels. Initial features, from the shallow part of the network, are of high resolution and spatially rich in

details such as edges and corners. Deep features, from the tail of the network, are of low resolution —

relatively coarser — such as concepts and objects. While reconstructing high resolution segmentation

output from the output of such encoders, FCNs [2] and related methods [5, 6] leverage low-level features

in different manifestations of direct skip connections for filling spatial details. As discussed, this might

reduce, instead improve, the segmentation ability of the coarser output because the low level information

is often noisy and therefore messy.

We identify that the local variations owing to changes in pose, scale and object deformations act as

a bottleneck while mapping the low-level image details to their true semantics. For this purpose, we
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Figure 3 (Color online) Semantics conformity module. It adjusts local variations caused by various geometric deformations

via bottleneck block featuring deformable convolution, thereby preparing them before semantics introduction.
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Figure 4 (Color online) Semantics enhancement via attention gating. We compensate semantics in high resolution features

through guidance for enriching spatial details in context-aware, semantically richer, low resolution feature maps.

introduce the semantics conformity module (as shown in Figure 3) featuring deformable convolution

(DConv) [36] that is robust to local deformations. It can be imagined as a so-called canonical registration

to a common frame of reference, performed to prepare low level features for semantics introduction.

Specifically, let us denote the input (local) features as Fin ∈ R
C×H×W . First, a 1 × 1 convolution is

employed to decrease the number of channel dimensions from C to C′, where C′
≪ C, for the sake of

reducing computations. Next, a 3×3 deformable convolution generates new features Fm ∈ R
C

′×H×W in a

local, dense, and adaptive manner via learnable 2D offsets. Finally, another 1×1 convolution projects the

new features back to input channel dimensions C to get Fout ∈ R
C×H×W as the output of this module.

3.2 Semantics enhancement via attention gating

We intend to compensate the semantic vent in low level feature representation through guidance. To

actualize this, we propose attention gating mechanism that attends to joint feature representation in

order to produce compensation maps. Because joint feature combines low as well as high level features,

the resulting compensation maps are extracted through so-called implicit guidance from contextually

richer high level features. This compensation map is then used to further boost the semantic capability

of low level, spatially richer features, thereby further aligning the two representations.

The process for semantics compensation through attending joint feature is described below and dis-

played in Figure 4. The first input to the module is Fd ∈ R
C

′×H×W , which is an adjusted low level

feature representation. The second input is Fh ∈ R
C

′×H×W , which corresponds to (relatively) high level

feature representation. We design joint feature representation after concatenating both Fd and Fh. Note,

we simply upsample Fh or reduce its channels if the resolution or the channel number does not match,

respectively, with Fd. This joint feature is then subjected to global average pooling (GAP) to achieve

context aggregation from full spatial extent. We then reduce number of channels from 2C back to C

before applying sigmoid operation to produce a probability map. Joint features are modulated through

this probability map after doing 1×1 convolution for making channels equivalent to C to obtain compen-

sation maps. Finally, these compensation maps are added element-wise to Fd for improving semantics.

We denote the output of this block as Fs.
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Figure 5 (Color online) Hierarchical cue fusion. We tend to enrich the context information while fusing the contradictory

(adjusted and compensated) low level features through exploiting all possible previous contextual features.

3.3 Hierarchical cues fusion

During spatial decoding, consistent fusion of local features with their higher counterparts, they may be

adjusted and compensated accordingly, could potentially weaken the impact of global information in the

resulting features leading to final output. This can result in reducing the network ability in discerning,

possibly local, appearance similarities in a complex scene.

We try to balance the contribution of two contradictory, yet equally important features, i.e., low and

high level along reconstructing the segmentation output. Dense feature connectivity has been successfully

exploited in the realm of classification networks for improved gradient back propagation and feature re-

use [37]. Further, dense connections have also been exploited for semantic segmentation, however, to

capture features over a larger scale in a dense manner using dilated convolutions in [19]. To this end,

we introduce hierarchical cues fusion in the decoder as illustrated in Figure 5. In HCF building blocks,

the inputs are from AG and more higher semantic nodes. We use 1 × 1 convolution to reduce the

dimensions of channels. Here we use dotted boxes to wrap some unsample layers and convolution layers.

It indicates that these layers may not exist because some features for concatenating are in same size.

After concatenating, we send one branch features to next AG, and others are sent to each more shallow

semantic nodes.

4 Experimental results

In this section, we evaluate the proposed approach through reporting ablation studies and comparison

(both quantitative and qualitative) with existing art after briefing about used benchmarks and adopted

training protocol.

Datasets. PASCAL VOC 2012 semantic segmentation benchmark [38] features 20 foreground object

classes and a background class; it consists 1464 training images, 1449 validation images, and 1456 testing

images. Ref. [39] increased the number of training images to 10582 after augmenting extra annotations.

Cityscapes [40] is a large, urban street scene dataset captured from car perspective. It comprises 5K

high quality images photographed from 50 different cities and is annotated at pixel-level with labels from

19 different semantic classes. Train, Val, and test split is 2979, 500, and 1525 images, respectively. Note,

we do not employ coarse data in our experiments.

ADE20K [41] is a recently launched dataset with 20210 images for training and 2K images for validation.

It features 150 semantic categories and many different complex scenes.

Overall training protocol. We perform data enhancement: mean subtraction, horizontal flipping,

scale noise (0.75–2.0) on the training images. We then crop them to fixed size. We use poly learning

rate policy, as in [18], where the initial learning rate is multiplied by (1 −
iter

max iter )
power after each

learning iteration with power = 0.9. Momentum and weight decay coefficients are set to 0.9 and 0.0001,

respectively. To ensure appropriate batch normalization statistics while training, we restrict the output

stride = 16 and thus retain a minimum batch size to 16. We fix batch normalization parameters with
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Table 1 Performance of SCM with different convolutional variants. We see the deformable convolution adjusts to local

variations better amongst others.

SCM mIoU (%)

Standard 3× 3 convolution 77.40

Dilated 3× 3 convolution (rate = 2) 77.61

Deformable 3× 3 convolution 77.76

Table 2 Ablation study on PASCAL VOC 2012 validation seta). We observe that AG requires SCM to adapt to local

feature variations and thus shows improvement. Further, HCF boosts performance both in isolation as well as along with

other components.

Method SCM AG HCF mIoU (%)

Deeplabv3 [18] – – – 77.21

X – – 77.76

– X – 77.55

Ours
– – X 77.91

X X – 78.00

X – X 78.11

X X X 78.46

a) Abbreviations used stand for the following: SCM is the semantics conformity module, AG is the semantics enhance-

ment via attention gating component, and HCF is the hierarchical cues fusion process.

decay = 0.9997.

4.1 PASCAL VOC 2012 dataset results

To evaluate on PASCAL VOC 2012 validation set, we set the image crop size to be 513 and train with

an initial learning rate of 0.007 for 40K iterations on the train-aug set (containing 10582 images) keeping

an output stride = 16. Further, we freeze our batch normalization layers and fine tune with the reduced

learning rate 0.0001 for 40K iterations on trainval set employing output stride = 8.

4.1.1 Ablation study

We conduct ablation study to highlight the contribution of proposed components in the overall framework.

We begin by investigating the importance of SCM as it is the first step towards semantics introduction

in low level features. Table 1 reports the performance improvement over baseline after introducing SCM

with different possible convolutional variants. SCM realizing deformable convolution outperforms all

other choices and achieves 77.76% mIoU. It seems obvious because free-form sampling of kernel offsets

allows adaptive adjustment of receptive field to various local deformations.

Table 2 [18] displays the performance contribution of AG under two different settings. AG comple-

menting SCM boosts the performance from 77.76% to 78.00% mIoU. This supports our intuition behind

making local features variation agnostic before inducing semantics.

Finally, we reveal the performance contribution of HCF in retaining global information in the recovered

spatial resolution under two settings: (1) in isolation, i.e., without SCM and AG; (2) after consistent

fusion of adjusted and compensated local features, i.e., with SCM and AG. From Table 2, as expected,

we see HCF improving performance over baseline in isolation as well as in combination with other com-

ponents by almost same percentage. HCF exploits (intrinsic) synergy between various semantics-aware

complementary features.

Figure 6 shows the impact of adding each proposed module qualitatively. We see that each of the mod-

ules progressively improves the segmentation quality of baseline. For instance, the baseline segmentation

result contains many obvious holes and unsmooth edges. SCM module restrains small holes because it

broadens receptive field and eliminates changes in object deformations. AG module fills large holes by

using high level feature guidance to compensate the semantic vent. HCF module makes a dense connec-

tion between different semantic level features. It effectively enhances the tail feature of encoder which
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(a) (c) (d)(b) (e)

Figure 6 (Color online) Contribution of each proposed module towards final segmentation. Two different examples are

shown. (a) Image; (b) baseline; (c) SCM; (d) SCM+AG; (e) all.

Table 3 Performance comparisons upon employing different inference strategies on the PASCAL VOC 2012 validation

set similar to [18, 42]a). We see each inference strategy boosting performance by noticeable margins, however, the best

performance of 80.46% is obtained after using MS and Flip inputs with output stride = 8.

Method OS = 16 OS = 8 MS Flip mIoU (%)

X – – – 78.46

X – X – 79.65

Ours X – X X 80.09

– X – – 78.76

– X X – 79.97

– X X X 80.46

a) OS: output stride. MS: multi-scale inputs. Flip: adding left-right flipped inputs.

contains abundant context information in order to make objects more complete (such as cheetah mark

on the bus).

Improvement with different inference strategies. Similar to [18,42], we experiment with differ-

ent inference strategies on PASCAL VOC 2012 validation set and the results are reported in Table 3.

Multi-scale (MS) inputs strategy with output stride = 16 boosts performance from 78.46% to 79.65% and

inclusion of image flips (Flip) on top further peaks performance to 80.09%. We then increase the segmen-

tation output resolution by 2 times after reducing the output stride to 8 and observe 0.3% performance

gain compared to stride = 16 counterpart. Employing MS inputs and then including image flipping on

top at output stride = 8 produces the best performance of 80.46% amongst all.

4.1.2 Comparison with the state-of-the-art

Figure 7 draws qualitative comparison between the baseline and our proposed approach on PASCAL VOC

2012 validation set. Three different example images are shown in the first column. The second and the

third columns display segmentation outputs from baseline and our approach, respectively. The ground

truth segmentations are also shown for comparison in the last column. We see that the proposed approach

is distinctly superior to baseline in reducing both false positives and false negatives in all scenarios. For

instance, consider the second image comprising a bird surrounded in leaves. The baseline mistakes leave

as part of the bird more than our approach. Further, it almost misses bird legs whereas our approach

finely recovers them.

We compare category-wise results with the existing state-of-the-art on PASCAL VOC 2012 test set

in Table 4 [2, 3, 10, 12, 15, 24, 34, 35, 43, 44]. Proposed approach shows improved performance over the

previous best methods in 6 out of 20 different categories.

4.2 Results on Cityscapes dataset

In Cityscapes dataset experiments, following [18], we crop images to 769× 769 resolution while training

to reduce memory footprint. First, we set the initial learning rate to 0.007 and train for 100K iterations
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(a) (b) (c) (d) 

Figure 7 (Color online) Qualitative comparison between baseline and the proposed approach on PASCAL VOC 2012

validation set. Further, it almost misses bird legs whereas our approach finely recovers them. (a) Image; (b) baseline;

(c) ours; (d) groundtruth.

Table 4 Per-class comparison of the proposed approach with the state-of-the-art the PASCAL VOC 2012 test set

Method aero bike bird boat bottle bus car cat chair cow

FCN [2] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5

FSG [34] – – – – – – – – – –

DeepLab [10] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1

CRF-RNN [12] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2

DeconvNet [24] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0

DPN [43] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9

Piecewise [3] 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2

MDCCNet [35] 87.6 43.7 85.3 72.3 83.0 91.7 86.5 89.9 43.8 80.5

ResNet38 [44] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4

PSPNet [15] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7

Ours 95.4 72.7 93.2 69.6 77.1 95.3 91.5 94.9 40.2 87.6

Method table dog horse mbike person plant sheep sofa train tv mIoU (%)

FCN [2] 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

FSG [34] – – – – – – – – – – 64.4

DeepLab [10] 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [12] 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

DeconvNet [24] 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

DPN [43] 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

Piecewise [3] 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

MDCCNet [35] 50.6 84.2 79.7 81.0 86.6 61.5 85.7 55.6 86.3 74.8 75.5

ResNet38 [44] 71.7 89.9 93.7 91.0 89.1 71.3 90.7 61.3 87.7 78.1 82.5

PSPNet [15] 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

Ours 69.4 91.0 91.0 92.3 88.7 64.8 89.4 61.1 84.7 74.2 81.9

with a batch size of 16 on train set. Then, we freeze batch normalization layers, set the learning rate to

0.001 and finetune the model with a batch size of 16 for 90K iterations on trainval set.

Improvement with different inference strategies. We also experiment with different inference

strategies on Cityscapes validation set to see performance improvement. The results are reported in

Table 5. All different inference strategies show performance gains. Multi-scale input strategy provides

the highest absolute gain of 1.17% and 1.14% at output stride = 16 and output stride = 8, respectively,

amongst others reported.
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Table 5 Experiments with different inference strategies on Cityscapes validation set. All different inference strategies

show performance gains. Noticeably, MS input strategy provides the highest absolute gain of 1.17% and 1.14% at output

stride = 16 and output stride = 8, respectively, amongst othersa).

Method OS = 16 OS = 8 MS Flip mIoU (%)

X – – – 77.90

X – X – 79.07

Ours
X – X X 79.20

– X – – 78.14

– X X – 79.28

– X X X 79.40

a) OS: output stride. MS: multi-scale inputs. Flip: adding left-right flipped inputs.

void Road Slidewalk WallBuilding Fence Pole Traffic signTraffic light Vegetation

Terrain Sky Person CarRider Truck Bus MotorcycleTrain Bicycle

Image ResultGroundtruth Image ResultGroundtruth

Figure 8 (Color online) Some example segmentation maps from our approach on Cityscapes dataset. Proposed approach

well distinguishes objects appearing at various scales while preserving details across their boundaries. Example objects are

people and cars.

Table 6 Category-wise comparison of proposed approach with the existing state-of-the-art on Cityscapes test set. Note,

our result is obtained without using coarse annotations.

Method road swalk build wall fence pole tlight sign veg terrain

CRF-RNN [12] 96.3 73.9 88.2 47.6 41.3 35.2 49.5 59.7 90.6 66.1

FCN [2] 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3

Dilation10 [17] 97.6 79.2 89.9 37.3 47.6 53.2 58.6 65.2 91.8 69.4

DeepLab [10] 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4

RefineNet [45] 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3

GCN [46] – – – – – – – – – –

DUC [47] 98.5 85.5 92.8 58.6 55.5 65.0 73.5 77.9 93.3 72.0

PSPNet [15] 98.6 86.2 92.9 50.8 58.8 64.0 75.6 79.0 93.4 72.3

AAF [48] 98.5 85.6 93.0 53.8 59.0 65.9 75.0 78.4 93.7 72.4

Ours 98.6 86.2 93.1 54.2 60.5 67.4 74.9 79.1 93.6 71.3

Method sky person rider car truck bus train mbike bike mIoU (%)

CRF-RNN [12] 93.5 70.4 34.7 90.1 39.2 57.5 55.4 43.9 54.6 62.5

FCN [2] 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3

Dilation10 [17] 93.7 78.9 55.0 93.3 45.5 53.4 47.7 52.2 66.0 67.1

DeepLab [10] 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4

RefineNet [45] 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70.0 73.6

GCN [46] – – – – – – – – – 76.9

DUC [47] 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8 77.6

PSPNet [15] 95.4 86.5 71.3 95.9 68.2 79.5 73.8 69.5 77.2 78.4

AAF [48] 95.6 86.4 70.5 95.9 73.9 82.7 76.9 68.7 76.4 79.1

Ours 95.8 86.7 71.0 96.0 73.0 87.8 85.9 68.8 76.4 80.0
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Table 7 Performance comparison of our method with the existing state-of-the-art approaches on ADE20K validation set.

Employing the same backbone network, it surpasses PSPNet [15].

Method Backbone mIoU (%)

FCN [2] – 29.39

SegNet [49] – 21.64

DilatedNet [17] – 32.31

CascadeNet [50] – 34.90

RefineNet [45] ResNet152 40.70

PSPNet [15] ResNet101 43.29

Ours ResNet101 43.76

(a) (d)(b) (c)

Figure 9 (Color online) Example segmentation maps from proposed approach on the ADE20K validation set. Our

approach accurately preserves quite delicate boundary details around variably sized objects, for instance, segmentation

output for the intermingled leaves of the tree in first example image. (a) Image; (b) baseline; (c) ours; (d) groundtruth.

Comparison with the state-of-the-art. Figure 8 reveals some example segmentation maps from

our approach on Cityscapes dataset. Proposed approach can distinguish well objects appearing at various

scales while preserving details across their boundaries. Example objects are people and cars.

Table 6 [2, 10, 12, 15, 17, 45–48] shows category-wise comparison of the proposed approach with the

existing state-of-the-art on Cityscapes test set. Our method displays improved performance over above

methods in 11 out of 19 classes.

4.3 Results on ADE20K dataset

We set the initial learning rate to 0.007, use a relatively larger batch size of 24 and train for 15K iterations.

We crop original image to a fixed 513×513 resolution before training. We compare the proposed approach

with the existing state-of-the-art segmentation methods on ADE20K dataset in Table 7 [2,15,17,45,49,50].

Using the same backbone network, it outperforms PSPNet [15] with an absolute gain of 0.47% and shows

43.76% mIoU.

Figure 9 displays some example segmentation maps from the proposed approach on the ADE20K

validation set. Our approach accurately preserves quite delicate boundary details around variably sized
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objects, for instance, the segmentation output for the intermingled leaves of the tree in the first example

image.

5 Conclusion

In this paper, we proposed to improve the spatial decoding process for semantic segmentation through

inducing possibly lost local information in a simple way. Semantics conformity module has been proposed

to make low level features variation agnostic. Then, in our method, semantics are compensated into these

conformed low level features via guidance from semantically-aware features through an attention gating

mechanism. Finally, the synergy is exploited between various contextual features to enrich context

information in spatial decoding process. It was found that the proposed approach achieves competitive

performance on challenging PASCAL VOC 2012, Cityscapes, and ADE20K benchmarks in comparison

to the state-of-the-art methods.
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