
SCIENCE CHINA
Information Sciences

February 2020, Vol. 63 120102:1–120102:14

https://doi.org/10.1007/s11432-019-2733-4

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Deep Learning for Computer Vision

Ordinal distribution regression for gait-based age

estimation

Haiping ZHU1, Yuheng ZHANG1, Guohao LI1, Junping ZHANG1* & Hongming SHAN2

1Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University,
Shanghai 200433, China;

2Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180, USA

Received 18 July 2019/Revised 4 October 2019/Accepted 12 November 2019/Published online 15 January 2020

Abstract Computer vision researchers prefer to estimate age from face images because facial features

provide useful information. However, estimating age from face images becomes challenging when people are

distant from the camera or occluded. A person’s gait is a unique biometric feature that can be perceived

efficiently even at a distance. Thus, gait can be used to predict age when face images are not available.

However, existing gait-based classification or regression methods ignore the ordinal relationship of different

ages, which is an important clue for age estimation. This paper proposes an ordinal distribution regression

with a global and local convolutional neural network for gait-based age estimation. Specifically, we decompose

gait-based age regression into a series of binary classifications to incorporate the ordinal age information.

Then, an ordinal distribution loss is proposed to consider the inner relationships among these classifications

by penalizing the distribution discrepancy between the estimated value and the ground truth. In addition,

our neural network comprises a global and three local sub-networks, and thus, is capable of learning the global

structure and local details from the head, body, and feet. Experimental results indicate that the proposed

approach outperforms state-of-the-art gait-based age estimation methods on the OULP-Age dataset.
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1 Introduction

Human age estimation is an active research topic because age estimation plays an important role in many

applications, such as video surveillance, social networking, and human-computer interaction. Existing

age estimation methods are primarily based on facial images [1–5], which are very informative and easy

to be estimated. However, the performance of face-based age estimation approaches will be compromised

when the face is occluded, for example, by sunglasses or makeup. In addition, face-based age estimation

becomes challenging if a person is far away from the camcorders, which often occurs in many video

surveillance systems located at crossroads, airports, and railway stations. As a unique biometric feature

that can be perceived efficiently at a distance, using a person’s gait can be an alternative way to predict

age when a facial image is not sufficiently informative or not available. Gait-based estimation has a

psychological foundation that cannot be easily faked [6]. For example, an old person might walk slowly

and hobble, whereas a young person might walk briskly.
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Figure 1 (Color online) GEIs of subjects of different age and gender in the OULP-Age dataset. The number above each

GEI indicates the corresponding age of the subject.
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Figure 2 (Color online) Predictive probability of the k-th classifier should not be greater than that of the (k − 1)-th

classifier on an ordinal distribution. Both A and B have the same cross-entropy loss; however, B is preferable to A on an

ordinal distribution.

In the field of gait-based age estimation, gait energy image (GEI) [7,8], which compresses one or more

gait sequences into a single image (as shown in Figure 1), is one of the most widely used gait templates

owing to its simplicity and effectiveness. Some studies have applied age manifold learning techniques

on GEIs to learn a low-dimensional representation that captures the intrinsic data distribution and

geometric structure [9, 10]. Existing gait-based age estimation approaches can be roughly categorized

as classification-based [7] and regression-based methods [8, 10]. However, neither of them considers the

ordinal relationship between age labels, which is an important clue for age estimation. Therefore, to

address this issue, ranking-based methods [2, 3, 11, 12] have been proposed. Typically, these methods

decompose the ordinal regression into a series of binary classifications and utilize the cross-entropy loss to

optimize binary classifications. However, the cross-entropy loss treats these classifications independently,

ignoring the inner relationships among them. For these ordered binary classifications, the expected

inner relationship is that the predictive probability of the k-th classifier should not be greater than the

probability of the (k − 1)-th classifier, as explained in Figure 2.

This paper proposes an ordinal distribution regression with a global and local convolutional neural
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network, which we refer to as ODR-GLCNN, for gait-based age estimation. Similar to ranking-based

methods for facial-based age estimation, we consider gait-based age estimation as an ordinal regression

and decompose the ordinal regression problem into a series of binary classification sub-problems. Note

that the primary issue with existing ranking-based methods is that they solve these binary sub-problems

independently. Consequently, such methods neglect the inner relationship to some extent and do not make

good use of the correlation between these sub-binary tasks. To address this limitation, we propose an

ordinal distribution loss (ODL) to penalize the distribution difference between the estimated and ground-

truth age. Similar to Hou et al.’s work [13], this proposed loss also utilizes the squared Earth mover’s

distance (EMD) to penalize the distribution discrepancy. Unlike Hou et al. [13], which utilizes the squared

EMD loss on the classification task, we use the loss in an ordinal regression task, e.g., gait-based age

estimation. To the best of our knowledge, this is the first time that the distribution discrepancy on ordinal

regression through squared EMD loss has been considered. In addition, we propose a unique network,

consisting of a global and three local sub-networks, to obtain a global structure and local structures from

the head, body, and feet. Experimental results on the OULP-Age dataset [14] and the MORPH Album

II dataset [15] demonstrate that the proposed approach outperforms state-of-the-art methods on both

gait-based and face-based age estimation.

The contributions of this paper are summarized as follows.

• A deep ordinal distribution regression for gait-based age estimation is proposed, which achieves

state-of-the-art predictive performance on the OULP-Age dataset.

• An ODL is proposed to consider the inner relationships among a series of binary sub-problems.

• A novel network, named as GL-CNN, comprising a global network and three local sub-networks is

proposed to learn more representative features from the gait globally and locally.

2 Related work

In this section, we provide a brief survey of face- and gait-based age estimation studies as well as ordinal

regression studies.

Face-based age estimation. Existing face-based age estimation approaches can be categorized as

classification-, regression-, and ranking-based methods. Classification-based methods are often used to

roughly estimate the age group of a subject in a face image [16, 17]. Different ages or age groups are

treated as independent classes. However, these methods do not adequately consider the cost difference

of subjects belonging to different age groups. Regression-based methods provide a more accurate age

assessment from a facial image [18, 19]. Typically, regression-based methods employ Euclidean loss (ℓ2
loss) to penalize the difference between the estimated age and the ground-truth age. Recently, ranking-

based or ordinal methods have been proposed for facial age estimation [1–3,20]. These approaches consider

age as an ordered label and use multiple binary classifiers to determine the rank of a specific age. Unlike

the ℓ2 loss, which ignores the ordinal information, ranking-based methods can explicitly model the ordinal

relationships among face images sampled from different ages.

Gait-based age estimation. The earliest gait-based age estimation study was that of [8], where a

Gaussian process regression (GPR) [21] was introduced to predict age from human gait. Then, GPR

was refined with an active set method [22] to reduce the computational time required for online age

estimation [23]. Lu and Tan [7] proposed a multi-label guided (MLG) subspace to better characterize

the feature space by correlating the age and gender information of subjects. They further proposed an

ordinary preserving manifold learning approach to seek a low-dimensional discriminative subspace for

age estimation [10]. Considering the age variations within different groups, such as children, adults, and

the elderly, Li et al. [24] proposed an age group-dependent manifold method. In that method, after an

age group classifier was trained, a kernel support vector machine (SVM) regression was added to provide

accurate assessment in each age group. This method achieved state-of-the-art gait-based age estimation

performance.

Ordinal regression. Most ordinal algorithms can be considered as refined versions of classification
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algorithms with ordinal constraints [25–27]. For example, Herbrich et al. [26] utilized an SVM for ordinal

regression. Then, Shashua and Levin [27] refined the SVM to handle multiple thresholds. Crammer

and Singer [25] proposed the perceptron ranking algorithm to generalize an online perceptron algorithm

with multiple thresholds for ordinal regression. Another way to utilize classification algorithms directly

is to transfer ordinal regression into a series of simpler binary classifications [11, 12]. Specifically, Frank

and Hall [11] utilized a decision tree for binary classifications for ordinal regression. Li and Lin [12]

learned ordinal regression using a set of classifiers, and then employed an SVM for the final classification.

Recently, Niu et al. [3] introduced a CNN with multiple binary outputs to solve the ordinal regression for

age estimation. Ordinal regression was also used in [2] by learning multiple binary CNNs and aggregating

the final outputs. However, these ordinal regression methods solve each binary sub-problem independently

and do not consider the underlying relationships among these binary sub-problems. Thus, this paper

proposes a distribution loss to utilize such a relationship to improve the accuracy of age estimation.

3 Proposed method

In this section, we describe the proposed ordinal regression for gait-based age estimation, the network

comprising a single global and three local sub-networks, and a unique distribution loss in more detail.

3.1 Ordinal regression

We treat gait-based age estimation as an ordinal regression in order to utilize the ordinal relationship

of age labels. Let xi ∈ X denote the i-th input GEI sample. The corresponding age is yi ∈ Y =

{r1, r2, . . . , rK} with ordered ranks rK � rK−1 � · · · � r2 � r1. The symbol � denotes the order among

different ranks. Given a training set D = {(xi, yi)}
N
i=1, the ordinal regression is to learn a mapping from

images to ranks, i.e., h(·) : X → Y.

Inspired by two ranking-based methods [2, 3], we decompose ordinal regression into a series of binary

classifications. Specifically, the ordinal regression with K ranks is decomposed into K−1 binary classifiers

{fk}
K−1
k=1 . For each rk ∈ {r1, r2, . . . , rK−1}, a binary classifier is constructed to predict whether the rank

of a sample yi is greater than that of rk. The final rank of an unknown test sample is determined by

summarizing all results of the K − 1 binary classifiers.

To train the k-th binary classifier fk, the given dataset D is divided into two subsets (one positive class

and one negative class) determined by whether the age is greater than k, i.e.,

D+
k =

{

(xi, 1)
∣

∣

∣
yi > rk

}

, D−
k =

{

(xi, 0)
∣

∣

∣
yi 6 rk

}

. (1)

All K − 1 binary classifiers are well-trained with their respective training datasets. The age of the test

sample xi is predicted as follows:

h(xi) = r1 + η

K−1
∑

k=1

1
(

fk(xi) > 0.5
)

, (2)

where fk(xi) ∈ [0, 1] is the output probability of the k-th classifier for the sample xi (i.e., the k-th output

of GL-CNN); η is the partitioning interval; and 1(·) denotes the truth-test operator, which is 1 if the

inner condition holds and 0 otherwise.

3.2 GL-CNN

Figure 3 presents an overview of the proposed GL-CNN for gait-based age estimation. The proposed

network comprises a single global and three local CNNs, followed by three fully connected layers with

K − 1 outputs. Next, we describe the network in detail.

Grayscale GEIs of size 128 × 88 are input to the global network. Considering that different parts of a

gait take on different local behaviors, we crop the GEI template into three parts: head, body, and feet.

In the OULP-Age dataset [14], the gait images of various people are detected, cropped, aligned, and
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Figure 3 (Color online) Structure of the proposed ODR-GLCNN. The output layer contains K − 1 binary classifications

incorporating the ordinal information into the current end-to-end learning process.

resized to a uniform silhouette template of same height. In this study, the three parts are cropped using

the following three boxes without overlap: 22 × 88, 48 × 88, and 58 × 88. Then, three local networks

are designed to learn finer details from these three parts separately. More specifically, there are three

convolutional layers in both global and local sub-networks. At the first convolutional layer, 32 filters of

size 7 × 7 with a stride of 1 pixel are applied to the input images, followed by a Leaky Rectified Linear

Unit (LeakyReLU) [28]. Then, a max-pooling operation with filters of size 2 × 2 applied with a stride of

2 pixels is used to emphasize the strongest responsive points in the feature maps. Similar operations are

performed at the second and third convolutional layers with different filter sizes (Figure 3). Note that we

concatenate the three local feature maps from the second convolution layers along the height dimension

to form new local feature maps in a local network. The local network is further concatenated with the

feature maps from the global network along the channel dimension.

Then, there are three fully connected layers, as shown in Figure 3. Among them, F4 is the first fully

connected layer in which the feature maps are flattened into a feature vector. There are 1024 neurons

in F4, followed by a LeakyReLU and a dropout layer [29]. F5 is the second fully connected layer with

1024 neurons. The second fully connected layer receives the output from F4, followed by a LeakyReLU

and another dropout layer. F6 is the third fully connected layer with K − 1 neurons. This layer receives

the output from F5, followed by a LeakyReLU and a dropout layer. Through a sigmoid layer, the K − 1

output corresponds to the predictive probabilities from K − 1 binary classifiers. Typically, the network

parameters are optimized by minimizing the objective function.

3.3 ODL

Here we cast the age label yi as ti = [t1i , t
2
i , . . . , t

K−1
i ]T for K−1 binary classifiers, where tki = 1 (yi > rk).

We employ cross-entropy loss as the loss function for these binary classifiers. The loss can be calculated as

Lc = −
1

N

N
∑

i=1

K−1
∑

k=1

(

tki log(o
k
i ) + (1− tki ) log(1 − oki )

)

, (3)

where oki is the output value of the k-th binary classifier for the i-th sample. However, the cross-entropy

loss optimizes these binary classifiers separately, resulting in a discrepancy between different binary
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classifications, as shown in Figure 2.

To fully utilize the inner relationships among these K − 1 outputs, we consider these outputs as a

probability distribution and then propose a distribution loss, e.g., EMD2 [13], to penalize the discrepancy

between the output distribution and ground-truth distribution. First, the output values are transformed

into the probability value by the softmax function,

p̄ki =
exp(oki )

∑K−1
j=1 exp(oji )

, pki =
exp(tki )

∑K−1
j=1 exp(tji )

. (4)

Then, the EMD2 loss is defined as

LEMD =
1

N

N
∑

i=1

K−1
∑

k=1

{

CDFk(p̄i)− CDFk(pi)
}2

, (5)

where p̄i = [p̄1i , p̄
2
i , . . . , p̄

K−1
i ]T and pi = [p1i , p

2
i , . . . , p

K−1
i ]T are the probability distributions correspond-

ing to the i-th output oi and the i-th ground truth ti, respectively. CDF(·) is a cumulative density

function of its input, and CDFk(·) is the k-th element of the CDF of its input.

Finally, we propose an ODL by combining the cross-entropy loss with the EMD2 loss. This loss function

is easily embedded into the GL-CNN architecture for end-to-end learning. The ODL is

L = Lc + λLEMD, (6)

where λ is a hyper-parameter that controls the influence of LEMD in the joint loss.

3.4 Learning ODR-GLCNN

One advantage of using (6) is that the ODL can simultaneously learn each binary classification and the

inner relationship between these binary classifications. For the i-th sample xi, the gradient of our loss

can be derived as

∂L

∂W
=

∂Lc

∂oi

∂oi

∂W
+ λ

∂LEMD

∂p̄i

∂p̄i

∂W
, (7)

where W represents the network parameters, and ∂oi

∂W
and ∂p̄i

∂W
can be derived through the standard

backpropagation method. For the k-th element of oi, the gradient can be derived as

∂Lc

∂oki
= −

(

tki
oki

−
1− tki
1− oki

)

. (8)

For the k-th element of p̄i, the gradient can be derived as

∂LEMD

∂p̄ki
=

∂
∑K−1

j=1 (CDFj(p̄i)− CDFj(pi))
2

∂p̄ki

=
∂
∑K−1

j=1 (
∑j

ℓ=1(p̄
ℓ
i − pℓi))

2

∂p̄ki

= 2
K−1
∑

j=k

j
∑

ℓ=1

(p̄ℓi − pℓi), (9)

where k ∈ {1, 2, . . . ,K−1}. Eq. (8) indicates that the gradient of the cross-entropy loss is only related to

the output value of each binary classification and its corresponding ground truth, ignoring the intrinsic

correlation for their binary classifiers. In contrast, the output value of each classification is considered

when computing the gradient of a specific binary classification in EMD2 loss, as shown in (9). Therefore,

the ODL considers each binary classification and can utilize the inner relationships among them.
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Figure 4 (Color online) Age and gender distribution for the OULP-Age dataset. There are 63846 well-labeled GEIs

(31093 males and 32753 females, age 2 to 90 years).

4 Experiments

In this section, we describe the experimental setting and demonstrate the effectiveness of the proposed

method by comparing it with state-of-the-art methods and performing a set of ablative studies on the

OULP-Age gait dataset [14]. In addition, we evaluate the generalization ability of the proposed approach

to other tasks, e.g., facial age estimation on the MORPH Album II dataset [15].

4.1 Experimental setting

4.1.1 Data preparation

OULP-Age is the largest gait dataset in the world to date, containing 63846 GEIs (31093 males and

32753 females; age 2 to 90 years; sample size 128 × 88). Gender distribution by age in five-year intervals

is shown in Figure 4. As Xu et al. [14] suggested, the OULP-Age dataset is averagely divided into two

disjoint subsets (training set and test set). The training set contains 15596 males and 16327 females,

and the test set contains 15497 males and 16426 females. Note that both datasets have similar age

distribution.

Note that USF [30] is another popular gait dataset for age estimation. However, it is too small (only

122 subjects) and rough (age labels are not very accurate) to be used for evaluating the performance of

deep-learning-based gait age estimation. Therefore, we train the proposed method on the OULP-Age

dataset and use the USF dataset only for testing.

MORPH Album II is one of the largest and most popular longitudinal face databases for age estimation

in the public domain (55134 face images, 13617 subjects, age 16 to 77 years) [15]. To further demonstrate

the effectiveness of the ODL, we evaluat the proposed loss on the MORPH Album II dataset. Following

the previous studies [2–4, 31], we use the five-fold random split (RS) protocol to evaluate the facial age

estimation performance. All face images were aligned based on five facial landmarks detected using the

open-source SeetaFaceEngine face alignment algorithm1) and then were resized to 256 × 256 × 3.

4.1.2 Evaluation metrics

The age estimation performance is evaluated using the mean absolute error (MAE) and the cumulative

score (CS). MAE represents the average of the absolute errors between the predicted age and the ground

truth over all test samples. MAE is defined as 1
N

∑N

i=1 |h(xi)− yi|, where N is the total number of test

1) https://github.com/seetaface/SeetaFaceEngine.
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Table 1 Comparison of the age estimation MAEs with the proposed approach and state-of-the-art methods on the OULP-

Age dataset

Method MAE CS (k = 5) (%)

SVR [36] 7.66 41.40

MLG [7] 10.98 43.40

OPLDA [9] 8.45 36.50

OPMFA [9] 9.08 34.70

GPR [8] 7.30 43.60

ASSOLPP [24] 6.78 53.00

VGG16 + Mean-Variance [4] 5.59 60.46

ODR-GLCNN (ours) 5.12 66.95

samples. CS is calculated as CS(k) = Nk

N
×100%, where Nk is the number of test samples whose absolute

error between the estimated age and the ground truth is not greater than k years. CS reveals a consistent

performance by computing the accuracy of the evaluated model at different k-levels.

4.2 Gait-based age estimation results

4.2.1 Implementation details

In our experiments, we utilize our GL-CNN, a CNN (comprising a global part, as shown in Figure 3),

and a VGG16 [32, 33] as three backbone networks. We use Adam [34] with a learning rate of 0.0001,

beta1 0.5, beta2 0.999, weight decay of 0.00001, batch size of 300, and maximal epochs of 300 for CNN

and GL-CNN. Following a previous study [4], we use stochastic gradient descent with a learning rate of

0.0001, weight decay of 0.0001, batch size of 300, and maximal epochs of 100 for VGG16. The learning

rate is reduced by multiplying the effective rate by 0.1 every 15 epochs. To make the grayscale GEIs

suitable for VGG16, we copy the GEIs three times as RGB channels to feed into the VGG16, which is

pre-trained on ImageNet [35]. In addition, the weight coefficient of the EMD2 loss term in (6) is set

to λ = 10, which is tuned according to the model performance. All experiments are implemented on

PyTorch with four GeForce GTX 1080 Ti GPUs.

4.2.2 Comparison of the proposed method to state-of-the-art methods on the OULP-Age dataset

We compare the proposed method with state-of-the-art methods, including classification-based methods

(e.g., MLG [7]), regression-basedmethods (e.g., GPR [8], SVR [36], and ASSOLPP [24]), and age manifold

learning-based methods (e.g., OPLDA and OPMFA [9]). In addition, we implement a deep learning

method as a baseline, i.e., VGG16 + Mean-Variance, to validate the effectiveness of the proposed method.

This method [4] achieves an outstanding performance in the field of face-based age estimation.

Table 1 [4, 7–9, 24, 36] shows the result obtained by eight methods on the OULP-Age dataset. This

suggests that CNN-based methods, such as [4], perform better than traditional methods in terms of

MAE [7–9, 24, 36]. CNN-based methods demonstrate better performance because they have many more

parameters and learn more representative features with end-to-end training. The proposed method

performs the best among all approaches because it benefits from both a more representative feature

extraction network (the GL-CNN) and a unique loss function (the ODL), which can learn each binary

classification of ordinal regression and the inner relationships among them. In addition, as shown in

Figure 5, the CS results on the OULP-Age dataset further demonstrate that the proposed approach

performs consistently better than the other state-of-the-art methods.

Some age estimation examples are shown in Figure 6. As seen, the proposed approach is quite robust

for young, middle-aged, and old subjects. However, as is noticeable from the last row of Figure 6, age

estimation accuracy may degenerate when a person wears heavy clothes or when a person is extremely

thin or overweight.



Zhu H P, et al. Sci China Inf Sci February 2020 Vol. 63 120102:9

Cumulative score

Absolute error (year)

C
u

m
u

la
ti
v
e

 s
c
o

re
 (

%
)

Figure 5 (Color online) Comparisons of age estimation CSs by the proposed approach and state-of-the-art methods on

the OULP-Age dataset.

53(56) 54(57) 56(56) 59(56) 62(60) 62(65) 63(67) 68(70) 79(77)

21(21) 23(24) 25(24) 26(6) 27(26) 29(30) 31(32) 36(37) 38(41)

Y
o
u
n
g

M
id

d
le

 a
g
ed

O
ld

F
a
il
u
re

10(34) 68(29) 71(42) 58(24) 72(11) 73(12) 9(38) 10(34) 23(44)

3(3) 4(4) 4(5) 7(8) 8(9) 10(9) 11(10) 14(15) 17(16)

Figure 6 (Color online) Examples of gait-based age estimation results by using the proposed approach on the OULP-Age

dataset. The top three rows show nine successful age estimation examples (MAE smaller than 5 years) for young, middle-

aged, and old subjects, respectively. The last row shows nine failure cases (MAE larger than 20 years). The numbers above

each image show the subject’s ground-truth age and estimated age, respectively.

4.2.3 Testing with state-of-the-art methods on the USF dataset

To further demonstrate the effectiveness of the proposed method, we evaluate the performance of our

model on the USF dataset and compare it with state-of-the-art methods. As described above, the USF

dataset is too small to train a deep network model. Therefore, we train our model and other methods on

the OULP-Age dataset, and then test using the USF dataset.

Table 2 [4,7,9,24,36] shows that for the USF gallery (probe A) subset, the proposed method outperforms

SVR, MLG, OPLDA, OPMFA, ASSOLPP, and VGG16+Mean-Variance with MAE gains of 2.3 (2.08),

3.54 (3.31), 1.14 (1.01), 1.04 (0.87), 0.9 (0.73), and 0.19 (0.18) years old, respectively. The results further

indicate that the proposed method consistently outperforms other methods for gait-based age estimation.
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Table 2 MAE results on the two subsets of the USF dataset using different methods

Method
Gallery Probe A

MAE CS (k = 5) (%) MAE CS (k = 5) (%)

SVR [36] 8.21 37.50 7.83 41.70

MLG [7] 9.45 32.80 9.06 34.40

OPLDA [9] 7.05 43.70 6.76 51.20

OPMFA [9] 6.95 47.30 6.62 52.00

ASSOLPP [24] 6.81 50.50 6.48 52.70

VGG16 + Mean-Variance [4] 6.10 54.20 5.93 56.30

ODR-GLCNN (ours) 5.91 56.60 5.75 59.40

Table 3 Comparisons among different CNN-based methods on the OULP-Age dataseta)

Network MAE CS (k = 5) (%) Time (ms)

CNN 5.45 64.64 7.27 ×10−2

VGG16 5.63 63.92 21.9 ×10−2

GL-CNN (ours) 5.24 65.96 8.99 ×10−2

a) The test time for a single sample is shown in the last column.
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Figure 7 (Color online) Feature visualization of CNN (a) and GL-CNN (b). Network features are reduced from 1024

dimensions to 2 dimensions by a t-SNE technique. Ages are divided into nine groups. Different colors represent different

age groups.

4.2.4 Analyzing the performance of GL-CNN

We evaluate the performance of the proposed GL-CNN by comparing it with a simple CNN comprising

a global part and the VGG16 network, which is widely used for age estimation based on gait. All three

networks used cross-entropy loss as the loss function. The MAE and CS (k = 5) results for these three

different networks are shown in Table 3.

Compared to a simple CNN, GL-CNN achieves better age estimation performance. Table 3 shows that

(1) compared to CNN and VGG16, GL-CNN achieves the best performance in two criteria; (2) although

VGG16 has more parameters, GL-CNN effectively learns more detailed information by combining a

global and three local structures, resulting in an improved performance; and (3) the computational cost

of GL-CNN is only slightly higher than that of CNN and much smaller than that of VGG16.

To better demonstrate the effectiveness of the proposed network, we visualize CNN and GL-CNN

features through t-distributed stochastic neighbor embedding [37] (t-SNE) technique with perplexity 30,

as shown in Figure 7. For better visualization, the age label is divided into 9 age groups: [0, 10], [11, 20],
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Table 4 Comparison of different losses with the proposed GL-CNN on the OULP-Age dataset

Loss MAE CS (k = 5) (%)

Euclidean 6.73 52.95

MAE 6.65 55.16

Squared EMD [13] 6.39 58.34

Cross-Entropy 5.24 65.96

ODL (ours) 5.12 66.95
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Figure 8 (Color online) Multi-task structure for age and gender estimation tasks.

[21, 30], . . . , [81, 90]. As can be seen, both GL-CNN and CNN features appear to maintain a manifold-like

structure because the order of ages varies smoothly from left to right. However, after zooming in Figure 7,

it is evident that the inner age group samples of GL-CNN are denser than those of CNN, particularly

in age groups [21, 30] and [31, 40], which shows that GL-CNN can achieve fewer age estimation errors

because it learns a better feature representation from both global and local structures.

4.2.5 Comparison of different losses

To validate the effectiveness of the proposed ODL, we compare it with three widely used losses in gait-

based age estimation tasks, e.g., Euclidean, MAE, and cross-entropy losses, by performing age estimation

based on the proposed GL-CNN. The MAE and CS (k = 5) of these losses are reported in Table 4 [13].

It can be seen that cross-entropy loss outperforms Euclidean loss and MAE loss for the age estimation

tasks. Euclidean and MAE losses easily lead to over-fitting and do not consider the ordinal information

between age labels. In contrast, the proposed ODL incorporates the inner relationship between the binary

classifications by using a distribution loss, i.e., EMD2 loss, resulting in better predictive performance.

In addition, to demonstrate the difference between our proposed ODL and the squared EMD loss in

[13], we compare them on the OULP-Age dataset. Following [13], the squared EMD loss is utilized on

a classification task in these experiments. The comparison results, shown in Table 4, indicate that the

combination of squared EMD loss and ordinal regression is more suitable for the gait-based age estimation

task. The results indicate that utilizing squared EMD loss with ordinal regression is reasonable and

effective.

4.2.6 Influence of gender

We realize that gender is correlated with age because human gait varies between males and females

even within the same age group, as shown in Figure 1. To better utilize the relationship between age

and gender, we embed a multi-task technique into the CNN-based framework. As shown in Figure 8,

specifically, we investigate a gender classification task for the proposed method and three other CNN-
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Table 5 Influence of human gender for gait-based age estimation in terms of age MAE and gender accuracy

Method w/o gender w/ gender Accuracy (%)

CNN + Euclidean 6.96 6.82 96.70

CNN + Cross-Entropy 5.40 5.34 97.20

VGG16 + Mean-Variance 5.59 5.52 96.70

ODR-GLCNN (ours) 5.12 5.06 97.80

Table 6 Comparison between proposed approach and state-of-the-art methods on the MORPH Album II dataset in terms

of MAE and CS valuesa)

Method MAE CS (k = 5) (%) Protocol

OR-CNN [3] 3.27 73.0* RS

DEX [38] 3.25 – RS

Ranking-CNN [2] 2.96 85.0* RS

VGG16 + Mean-Variance [4] 2.41 90.0* RS

AGEn [40] 2.93 – RS

dLDLF [39] 2.24 – RS

DRFs [31] 2.17 91.3 RS

BridgeNet [41] 2.38 – RS

VGG16 + ODL (λ = 0) 2.30 91.1 RS

VGG16 + ODL (λ = 0.25) (ours) 2.16 92.9 RS

a) *: the value is read from the reported CS curve. RS represents the five-fold random split protocol.

based methods. As a binary classification, the gender loss is defined as

Lgender = −
1

N

N
∑

i=1

(gi log(ĝi) + (1 − gi) log(1 − ĝi)), (10)

where gi is the ground truth of gender for the i-th sample and ĝi is the corresponding predicted value.

Table 5 indicates that gender information indeed improves the performance of gait-based age estima-

tion. Moreover, the accuracy of gender classification with the proposed method is 97.8%, implying that,

as a byproduct, the proposed network can accurately predict gender from the gait.

4.3 Facial age estimation

We apply the proposed ODL to facial age estimation using the MORPH Album II dataset, and compare

the results with those of state-of-the-art methods [2–4, 31, 38–41]. Following previous studies [4, 31], we

also utilize VGG16, pre-trained with ImageNet [35], as the backbone network with the proposed ODL.

The results of individual approaches in terms of MAE and CS are reported in Table 6 [2–4, 31, 38–41].

As can be seen, our approach achieves better prediction performance than the state-of-the-art method

DRF [31], which suggests that the proposed approach can be well-generalized to the facial age estimation

task. In addition, the results obtained using ODL (λ = 0.25) are better than those obtained using a

single cross-entropy loss (λ = 0 when calculating ODL), which indicates that ODL is more effective in

learning the ordinal relationships among different ages than a single cross-entropy loss.

5 Conclusion

In this paper, we proposed an ordinal distribution regression, including a useful loss function ODL and

a novel GL-CNN, for gait-based age estimation. By incorporating cross-entropy loss and EMD2 loss, the

proposed ODL was found to be more effective in learning the ordinal relationships among different ages

than a single cross-entropy loss. Moreover, consisting of one global and three local sub-networks, the

GL-CNN was constructed to extract more representative gait features. We also found that if the gender

information is available for training, embedding a multi-task strategy into the proposed framework can



Zhu H P, et al. Sci China Inf Sci February 2020 Vol. 63 120102:13

more or less improve the age estimation performance. Experiments on the OULP-Age and MORPH

Album II datasets show that the proposed approach outperforms state-of-the-art methods on gait-based

age estimation and generalizes well for facial age estimation tasks.

In the future, it is worth studying how to utilize temporal information or cross-view information [42–44]

of gait sequences to improve the accuracy and effectiveness of gait-based age estimation.
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