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Dear editor,
Semi-supervised learning has obtained increas-
ing interests in machine learning, because mak-
ing use of both labeled and unlabeled training
samples helps extracting discriminative features
and meanwhile reduces the time-consuming and
labor-intensive labeling burden. For extracting
features upon multimodal (i.e., data of the same
class exhibits separate clustering) and mixmodal
(i.e., data from different classes has mixed modal-
ity) data [1], we have presented a semi-supervised
graph embedding (SGE) model in [2] to incorpo-
rate the soft label information with hierarchical
locality of data. Through the maximizing process
upon the weighted between-class separability as
well as the minimizing processes upon the locality-
preserved within-class and scaled overall-class data
distances respectively, the intrinsic characters of
data with multimodal or mixmodal distributing
properties can be well captured.

However, as the SGE model is a linear tech-
nique, it might not always give satisfying results
in capturing the nonlinear structural characteris-
tics of multimodal and mixmodal data. Accord-
ing to the kernel theory, when data is mapped
nonlinearly with a kernel operator into a high-
dimensional dot product space, the nonlinear di-
mensionality reduction problems can be efficiently
solved linearly [3, 4]. This motivates us to ex-

tend the SGE model to nonlinear case with the
aid of kernel technique. To be specific, to bet-
ter solve the nonlinear dimensionality reduction
problem upon multimodal and mixmodal data, we
present herein a kernel semi-supervised graph em-
bedding (KSGE) approach by incorporating SGE
with kernel theory.

In literature, a number of kernel learning meth-
ods have been proposed, such as the MSSKSC
model [5], and KSPP model [6]. But most of the
existing models merely take into account the local
correlations of data samples and thus might not al-
ways achieve satisfying results when dealing with
multimodal and mixmodal data. Compared with
these models, our KSGE model exploits the “hi-
erarchical locality” preservation of data to make
better manipulation of multimodal and mixmodal
data in semi-supervised settings.

Experiments for handwriting recognition in
both multimodal or mixmodal situations are car-
ried out to evaluate the feasibility and effectiveness
of the proposed KSGE model.

Methodology and analysis. To capture the hi-
erarchical local geometric information of data, we
first introduce a number of affinity matrices to in-
corporate the soft label information with the local
affinity information of within-class, between-class,
and overall-class data.

Let X = [XL,XU ] ∈ R
n×(l+u) denote the

*Corresponding author (email: chutg@pku.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9535-9&domain=pdf&date_stamp=2019-10-8
https://doi.org/10.1007/s11432-018-9535-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9535-9
https://doi.org/10.1007/s11432-018-9535-9


Zhang Q, et al. Sci China Inf Sci January 2020 Vol. 63 119204:2

training data matrix, where XL = [x1,x2, . . . ,xl]
∈ R

n×l represents the labeled set, XU = [xl+1,

xl+2, . . . ,xl+u] ∈ R
n×u is the unlabeled set, and

l + u = p. Utilizing the soft labels for XU ob-
tained from the label propagation process [1], the
data matrix can be rewritten as X = [X(1),X(2),

. . . ,X(c)]. We first introduce a within-class affin-
ity matrix for the m-th class by
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where x
(m)
i and x

(m)
j denote the i-th and j-th sam-

ples of the m-th class respectively, i, j = 1, 2,
. . . , pm, σ(m) is the Gaussian kernel parameter,
Nm(·) represents the set of k(m) nearest neighbors,
and m = 1, . . . , c. We also define the between-
class weight matrix and the overall-class affinity
matrix by
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are the mean vectors for the i-th and j-th classes,
and NB(·) and NA(·) indicate the neighborhood
set of kB and kA nearest neighbors, respectively.

Note that to deal with the within-class multi-
modality issue, W (m) assigns smaller weights for
sample pairs from different modalities and rela-
tively larger values for those from the same modal-
ity, by which the local neighborhood correlation of
the multimodal data in each class can be captured.
For mixmodal data, unlike many existing meth-
ods that directly computing the between-class dis-
tances, the weight matrix W defined above calcu-
lates the weighted between-class distances to cap-
ture the local correlations of different classes. Be-
sides, the overall-class locality of data is preserved
byA to balance the soft label supervision and data
distribution, avoiding the over-reliance of the er-

rors in the estimated soft labels. By using the
above affinity matrices, the “hierarchical locality”
of data can be well captured.

With the affinity matrices, we can calculate the
within-class, between-class, and overall-class scat-
ter matrices as

SW =
1

2

c
∑

m=1

∑

i,j

[

x
(m)
i −x

(m)
j

]

W
(m)
ij

[

x
(m)
i −x

(m)
j

]T
,

SB =
1

2

∑

i,j

(ui − uj)Wij(ui − uj)
T
,

SA =
1

2

∑

i,j

(xi − xj)Aij(xi − xj)
T
= XLAX

T,

which give the locality-preserved distances of the
samples within each class, the weighted locality-
preserved distances of different classes, and local
covariances of all the samples, respectively. For
later use, we transform SW and SB as SW =
XS1X

T and SB = XS2LST
2 X

T, where

S1 = diag
[

L(1),L(2), . . . ,L(c)
]

p×p
, (1)

S2 = diag

[

E(p1)

p1
,
E(p2)

p2
, . . . ,

E(pc)

pc

]

p×c

, (2)

E(pm) = [1, 1, . . . , 1]T ∈ R
pm , pm is the number

of the samples in the m-th class, and L(m) is the
Laplacian matrix corresponding to W (m).

Further, to invoke the kernel theory, we shall
make use of a nonlinear mapping φ(xxx) from R

n to
a reproducing kernel Hilbert space H with the re-
producing kernel k(xi,xj) = 〈φ(xi), φ(xj)〉, where
〈·, ·〉 denotes the inner product in H [7],

Kij = 〈φ(xi), φ(xj)〉 = exp

[

−
‖xi − xj‖

2

σ2

]

. (3)

Now we explore the basis vector β of the desired
subspace by the following KSGE model:

max
β

βTKS2LST
2 K

Tβ

βTK(S1 + ζLA)KTβ
,

which can be tackled by solving the following gen-
eralized eigenvalue problem:

KS2LST
2 K

Tβ = λK(S1 + ζLA)K
Tβ, (4)

where ζ is a confidence parameter that is used to
avoid the over-reliance of the estimated soft-label
information. The generalized eigenvectors β1,

β2, . . . ,βk of (4) are corresponding to the first k

largest generalized eigenvalues. Algorithm 1 gives
the optimization details of KSGE.
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Figure 1 (Color online) Handwriting recognition. Average recognition error rates obtained by k-nn classifier (k = 5) for
(a) USPS-eo, (b) USPS-sl, and (c) USPS-MNIST tasks.

Algorithm 1 KSGE

1: Input: Data matrix X = [XL,XU ] ∈ R
n×p.

2: Compute the within-class and between-class
transform matrices S1, S2 in (1) and (2).

3: Compute the kernel matrix K in (3).
4: Solve the generalized eigenvalue problem (4).
5: Output: Subspace basis vectors β1,β2, . . . ,βk .

Discussion and analysis. The proposed KSGE
model is tested by multimodal and mixmodal
handwriting data. Three experiments are carried
out including USPS-eo (to separate even num-
bers from odd numbers), USPS-sl (to separate
small numbers (‘0’ to ‘4’) from large numbers (‘5’
to ‘9’)), and USPS-MNIST (to separate numbers
from USPS and MNIST datasets). In USPS-eo
and USPS-sl tasks, 1500 images are randomly cho-
sen for training with 1/4 samples labelled. An-
other 1500 images are randomly selected for test-
ing. In USPS-MNIST experiments, we select 700
images including equal amounts of digits “1” to
“7” for training and another 700 images follow-
ing the same choosing rule for testing. Similarly,
1/4 of the training samples are labelled. Binary
class labels are generated for each task to indicate
different classes of digits. Note that the USPS-
eo and USPS-sl data follow multimodal distribu-
tions and the USPS-MNIST data exhibits mix-
modal property. The testing images are mapped
into the learned embedding subspaces with lower-
dimensional representations, and we finish the
recognition tasks by using the k-nearest neighbour
(k-nn) classifier, where k = 5. For comparison,
the SGE model is also applied in each experiment
with 10 trials. The average handwriting recogni-
tion error rates for both methods are illustrated in
Figure 1, with subspace dimensionalities ranging
from 10 to 100. It is clear by Figure 1 that the
proposed KSGE model exhibits better recognition

performance.

Conclusion. A semi-supervised kernel method
KSGE was proposed for multimodal and mix-
modal data. The method can preserve the hier-
archical locality, capturing the local geometric in-
formation of data in within-class, between-class,
and overall-class scales. In addition, the present
KSGE model can well incorporate the soft-label
supervision with the data distributing information
by using the introduced confidence parameter. Ex-
periments for both multimodal and mixmodal data
verify the efficiency of the proposed KSGE model.
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