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Dear editor,
A helicopter lifting system which includes a heli-
copter, a cable, and a load has been extensively
used in civilian and military applications and has
received increasing attention [1–3]. Generally, a
disturbance acting on a cable should be considered
as a distributed disturbance. Thus, in this study,
the helicopter lifting system is depicted by a dis-
tributed parameter system. However, the dynamic
of the load and external disturbance may pose sig-
nificant impediments to the stabilization problem
and potentially degrade the control performance
of the helicopter lifting system. Therefore, the ef-
fective control method is urgent to be developed
for restraining oscillation for the helicopter lifting
system.

Due to the effectiveness for counteracting oscil-
lation of flexible structures, the boundary control
has been applied to various of distributed parame-
ter systems. Boundary control schemes have been
proposed to regulate the oscillation for a marine
riser installation system in [4] and a large flexible
spacecraft in [5]. Moreover, the existence of gaps in
transmission mechanism of actuator will cause the
phenomenon of backlash-like hysteresis, which mo-
tivates the further investigation of the helicopter
lifting system with backlash-like hysteresis.

Inspired by the aforementioned studies, a bilat-
eral coordinate control strategy is proposed to re-
strain the lifting cable’s oscillation and transfer the
load to objective location by using the direct lya-
punov method.

Problem statement and preliminaries. In view
of the dynamic for a helicopter lifting system and
applying the variation operator, similar to the ref-
erence [3], the model for the lifting system of a
helicopter can be depicted by

ζ(y)z̈(y, t)− T ′(y, t)z′(y, t)− T (y, t)z′′(y, t)

− ρ′(y)[z′(y, t)]3 − 3ρ(y)[z′(y, t)]2z′′(y, t)

+ cż(y, t)− d(y, t) = 0 (1)

for ∀(y, t) ∈ (0, l)× [0,∞), under the conditions of
the helicopter lifting system:

T (0, t)z′(0, t) + ρ(0)[z′(0, t)]3 −mz̈(0, t)

+ τ1(t) + ν1(t)− cpż(0, t) = 0, (2)

T (l, t)z′(l, t) + ρ(l)[z′(l, t)]3 +Mz̈(l, t)

− τ2(t)− ν2(t) + chż(l, t) = 0, (3)

where ˙(·) = ∂(·)
∂t

, (·)′ = ∂(·)
∂x

, (̈·) = ∂2(·)
∂t2

, (·)′′ =
∂2(·)
∂x2 ; z(0, t), ż(0, t), and z̈(0, t) are the position,
velocity, and acceleration of the load, respectively;
z(l, t), ż(l, t), and z̈(l, t) are the position, veloc-
ity, and acceleration of the helicopter, respectively;
̺(y, t) = z(l, t)−z(y, t) is the horizontal oscillation
amplitude of the cable with z(y, t) being the dis-
placement of the cable; l is the length of cable; M
and m represent the masses of the helicopter and
the load including box, respectively; ζ(y) and ρ(y)
are the nonuniform mass per unit length and non-
linear elastic modulus of the cable, respectively;
T (y, t) = T (y, 0) + ρ(y)[z′(y, t)]2 represents the
tension of the cable with T (y, 0) := T0(y) > 0
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being the initial tension of nonuniform tension;
τ1(t) and τ2(t) are the control inputs acting on
the helicopter and the box, respectively; d(y, t) is
the distributed horizontal disturbance and satis-
fies |d(y, t)| 6 F with F being a positive constant;
ν1(t) and ν2(t) denote the external disturbances;
cp, c, and ch denote the damping coefficients of the
load, cable, and helicopter, respectively.

Consider the model for a class of backlash-like
hysteresis which is described as follows [6]:

τi(t) = biui(t) + d̄i(t),

d̄i(t) = (τi0 − biui0)e
−κi(ui(t)−ui0)sign(u̇i(t))

+ e−κiui(t)sign(u̇i(t))

∫ ui(t)

ui0

(Hi − bi)

× eκiω(sign(u̇i(t)))dω,

(4)

where ui(t) and τi(t) represent actual control input
and control input with hysteresis type of nonlin-
earity, bi denotes the absolute value of slope for
line, κi is a positive constant and Hi is also a pos-
itive constant which satisfies bi > Hi, τi0 := τi(0)
and ui0 := ui(0) are the initial values of τi(t) and
ui(t), respectively, i = 1, 2.

Define Θi(t) = νi(t) + d̄i(t) as a composite dis-
turbance in the following sections for simplicity.
Moreover, maxt>0|Θi(t)| = Θ̄i, where Θ̄i is an un-
known positive constant, i = 1, 2.

Moreover, define k1, ζ, and T0 being the supre-
mum of k1(y), ζ(y), and T0(y), respectively, k1, ζ,
and T0 being the infimum of k1(y), ζ(y), and T0(y),

respectively, where k1(y) satisfies 1−
2k1ζL

min{ςζ,ςT0}
>

0. According to [3], there is a positive constant ̺
such that

k1(y)ζ(y) + xk′1(y)ζ(y) + xk1(y)ζ
′(y) > ̺,

k1(y)T (y) + yk′1(y)T (y)− yk1(y)T
′(y) > ̺,

3k1(y)ρ(y) + 3yk′1(y)ρ(y)− yk1(y)ρ
′(y) > ̺.

Bilateral coordinate boundary control design.
Firstly, the adaptive law is designed to compensate
the composite disturbances. The form of adaptive
law can be designed as

˙̄̂
Θ1(t) = −ξ1

ˆ̄Θ1(t) + ż(0, t)sign(ż(0, t)),

˙̄̂
Θ2(t) = −ξ2

ˆ̄Θ2(t) + [ż(l, t) + z′(l, t)]

× sign[ż(l, t) + z′(l, t)],

(5)

where ˆ̄Θ1(t) and
ˆ̄Θ2(t) are the estimation values of

the unknown constants Θ̄1 and Θ̄2, respectively, ξi
is a positive design constant, i = 1, 2.

Then, invoking (5), the control scheme is repre-

sented by

u1(t) = −
1

b1

{

rż(0, t) + l1[z(0, t)− TD]

+ sign(ż(0, t)) ˆ̄Θ1(t))
}

,

u2(t) = −
1

b2

{

Mż′(l, t)− T (l)z′(l, t)

+ s[ż(l, t) + z′(l, t)]− chż(l, t)

+ l2[z(l, t)− TD] + sign[ż(l, t)

+ z′(l, t)] ˆ̄Θ2(t)
}

,

(6)

where ż′(l, t) = ∂z2(y,t)
∂y∂t

|y=l; TD is the distance be-
tween load and target position; r, s, l1, and l2 are
positive design constants.

Motivated by [3,4], a Lyapunov function candi-
date can be selected by

Q(t) = Q1(t) +Q2(t) +Q3(t) +Q4(t), (7)

where

Q1(t) =
ς

2

∫ L

0

ζ(y)[ż(y, t)]2dy

+
ς

2

∫ L

0

T (y, t)[z′(y, t)]2dy

+
ςm

2
ż2(0, t) +

ςl1

2
[z(0, t)− TD]2,

Q2(t) =
ςM

2
[ż(l, t) + z′(l, t)]2

+
ςl2

2
[z(l, t)− TD]2,

Q3(t) =

∫ L

0

yk1(y)ζ(y)z
′(y, t)ż(y, t)dy,

Q4(t) =
ς

2
˜̄Θ2
1(t) +

ς

2
˜̄Θ2
2(t),

(8)

with ς being a positive constant, ˜̄Θ1(t) = Θ̄1 −
ˆ̄Θ1(t) and

˜̄Θ2(t) = Θ̄2 −
ˆ̄Θ2(t).

Similar to the analysis of [4], for the Lyapunov
function candidate (7) aforementioned, the follow-
ing conclusion holds:

(1)

c1[Q1(t) +Q2(t) +Q4(t)] 6 Q(t)

6 c2[Q1(t) +Q2(t) +Q4(t)], (9)

where c1 = 1− 2k1ζL
min{ςζ,ςT0}

, c2 = 1 + 2k1ζL
min{ςζ,ςT0}

.

(2)

Q̇(t) 6 −c3Q(t) + ι, (10)
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where

c3 = min

{

2ςc+ ̺− 2ς
h1

ςζ
,
[̺− 2lk1

k4

]

ςk1T 0

,
̺

ςρk1
,

2(cp + r)

m
,
2

l1
,
2[s− T (l)

2 ]

M
,
2

l2
,
c

ζ
, ξ1, ξ2

}

,

ι =

(

ςh1 +
k1h3L

2

)

lF 2 + ςT 2
D + ςl2h2T

2
D

+
ς

2
Θ̄2

1 +
ς

2
Θ̄2

2,

(11)

with h1, h2, and h3 being positive design con-
stants.

Theorem 1. For the helicopter lifting system
which is described by (1), (2), and (3), with
the designed adaptive law (5), considering control
law (6), under bounded initial conditions, the am-
plitude of oscillation ̺(y, t), ∀y ∈ [0, l], and posi-
tion error signal x1(t) = z(0, t)−TD are uniformly
bounded.
Proof. Multiplying by ec3t on both sides of (10),
it has

Q̇(t)ec3t 6 −c3Q(t)ec3t + ιec3t, (12)

i.e.,
∂Q(t)ec3t

∂t
6 ιec3t. (13)

Then, it obtains

Q(t) 6 Q(0)e−c3t +
ι

c3
∈ L∞, (14)

thus, Q(t) is bounded. Further, considering (7)
and (14), when t → ∞, the following inequations
hold:

|̺(y, t)| 6

√

2ιl

ςc1c3T0
(15)

and

|x1(t)| 6

√

2ι

ςc1c3l1
. (16)

Numerical simulation. The system parameters:
l = 20 m, M = 2.0 × 104 kg, m = 1.0 ×
103 kg, c = 1.0 N·s/m, ch = 0.5 × 104 N·s/m,
cp = 0.5 × 103 N·s/m, T (y, t) = (0.1y + 1)[1 +
2π(v′(y, t))2] × 104 N, ζ(y) = (0.1y + 4) kg/m,
TD = 100 m. The parameters of backlash-like hys-
teresis are set as b1 = 331, b2 = 401, H1 = 330,
H2 = 400, κ1 = 0.01, and κ2 = 0.001; The exter-
nal disturbances: d(y, t) = (1.5 + 0.6 sin(0.2πt) +
0.4 sin(0.4πt)+0.2 sin(0.6πt))y×10, ν1(t) = (0.8+
0.6 sin(0.2t) + 0.3 sin(0.4t) + 0.2 sin(0.6t)) × 103,
and ν2(t) = (0.8 + 0.6 sin(0.2t) + 0.3 sin(0.4t) +
0.2 sin(0.6t)) × 104. The initial conditions are

given by z(y, 0) = − y
10 , ż(y, 0) = 0, ˆ̄Θ1(0) = 50

and ˆ̄Θ2(0) = 80. All the design parameters are

ξ1 = 1.0 × 10−6, ξ2 = 2.0 × 10−6, l1 = 2.0 × 104,
l2 = 2.0× 105, r = 3.5× 105, and s = 5.6× 106.

Figure 1 denotes the horizontal oscillation am-
plitude ̺(y, t) of the cable and the position error
x1(t) with the control scheme (6).
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Figure 1 (Color online) The horizontal oscillation ampli-
tude ̺(y, t) and position error x1(t) of the helicopter lifting
system.

Conclusion. This study addresses the boundary
adaptive control problem for a lifting system of a
helicopter in the presence of backlash-like hystere-
sis and external disturbances. Simulation results
verify the validity and feasibility of the developed
control scheme.
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