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Dear editor,
Road traffic accidents constitute a problem of
serious concern to the society; approximately
1.25 million people are killed and tens of millions
of people are injured globally every year1). Statis-
tics have shown that almost 95% of motor vehicle
accidents are due to driver behavior to some de-
gree [1]. Furthermore, failing to instantly take the
necessary action under emergency situations is one
of the major factors causing crashes.

To address these challenges, many studies have
proposed various methods. Some methods focus
on using different types of external sensors (e.g.,
lasers and radars) to detect potential crashes and
applying some measures to avoid them [2]. In gen-
eral, these methods have made great progress to-
ward avoiding crashes. However, their current sys-
tem performance is still limited [3].

To complement these external sensor-based
methods, researchers are exploring how to use the
behavioral data of drivers under emergency situ-
ations to detect their intentions associated with
braking [4]. Moreover, some studies have in-
vestigated the neural correlates of driver braking
response and how to use EEG data to predict
driver braking intentions under emergency situ-
ations. Haufe et al. [5] used event-related brain
potentials (ERPs) to investigate the neural char-

acteristics of driver emergency braking and em-
ployed these characteristics to predict emergency
braking before behavioral response. Kim et al. [6]
proposed a feature combination method, including
the readiness potential, event-related desynchro-
nization (ERD), and ERP features, to detect emer-
gency braking under various driving conditions in
a driving simulator.

However, the two studies [5, 6] did not explore
neutral correlates and the detection of driver’s
emergency braking intention in the spectral do-
main. Furthermore, they used AUC as a mea-
sure to evaluate the proposed detection methods
based on ERP features. However, AUC is suitable
for evaluating the ability of a model to discrim-
inate two classes (a classification question) but
not suitable for evaluating online continuous de-
tection performance of a detection model over time
(a continuous detection question). More specifi-
cally, larger values of AUC do not necessarily mean
higher online detection accuracy over time.

In this study, to enhance the understanding of
the brain activities of driver emergency braking,
we employ the power spectra of EEG signals to
explore neural correlates used to develop a detec-
tion method for investigating driver braking inten-
tion under emergency situations. In addition, we
evaluate the proposed detection method using its
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Figure 1 (Color online) Brain signal changes between the normal and emergency situations.

detection accuracy in order to demonstrate the fea-
sibility of using EEG signals to continuously detect
the braking intention of drivers under emergency
situations.

Data. The EEG data used in our research were
taken in the previous study [5]. They were col-
lected using Ag/AgCl electrodes at a sampling rate
of 1000 Hz (low cutoff frequency: 0.1 Hz; high cut-
off frequency: 250 Hz) from 59 scalp locations in
the modified international 10–20 system, with the
reference at the nose. The EEG data are available
in a public database2). We further downsampled
the EEG data to 200 Hz and filtered them using a
low-pass filter with a cutoff frequency of 45 Hz.

In a method implemented in the previous
study [5], 18 healthy participants performed
3 blocks of a car-following task. Each block con-
tained an average of 108 emergency situations.
During driving, a leading vehicle that was con-
trolled by a computer occasionally decelerated,
with the braking action accompanied by flashing
of brake lights. Participants were asked to im-
mediately execute emergency braking under these
situations to avoid a collision. The experiment in
the previous study [5] was conducted in accordance
with the Declaration of Helsinki.

Neural correlates in spectral amplitude. Figure 1
shows the normalized time-frequency plots of the
grand mean EEG data of all subjects at all chan-
nels. Emergency situations appeared at a time
point of 0 s. The inset shows a magnification of
the plot at Cz. These plots show changes in the

spectral amplitude of the brain signal under 45 Hz
over time from 4 s before to 4 s after the onset of an
emergency situation. These brain signal changes
are represented as color-coded values (see the color
bar) of the spectral amplitudes normalized by the
max-min normalization method.

From Figure 1, it can be observed that the am-
plitudes at some frequencies across frontal, central,
parietal, and occipital locations appear to have
substantial information about the occurrence of
emergency situations. We may use these ampli-
tudes at these frequencies and locations to predict
emergency braking.

Detection of braking intention. We employed
the frequency features for detecting braking inten-
tion. The method comprises three major stages:
preprocessing, feature extraction, and classifica-
tion.

Independent component analysis (ICA) was ap-
plied at the preprocessing stage. EEG signals ac-
quired from a single electrode on the scalp contain
artifacts caused by blinking of the eye and muscle
movement. These artifacts can reduce the quality
of the EEG signals. ICA is a popular method for
eliminating this problem. ICA can be expressed as
follows:

Y (t) = WX(t), (1)

where X(t) = [x1(t), x2(t), . . . , xc(t)]
T, xc(t) rep-

resents EEG data collected from the Cth chan-
nel, Y (t) = [y1(t), y2(t), . . . , yc(t)]

T represents the
independent component (i.e., IC) vector, t is the
sampling time point, and W indicates the un-

2) http://bnci-horizon-2020.eu/database/data-sets.
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mixing matrix. The power spectra of the fil-
tered EEG signals were calculated using the peri-
odogram method to form the initial feature pool.
Wilcoxon rank sum tests were used to determine
the frequency points across all channels that were
significantly different in terms of power between
the normal and emergency driving situations. The
results of the statistical test show that the spe-
cific frequencies relevant to emergency braking
were mainly in the low-frequency range but varied
across subjects. We first used the spectral mag-
nitude of frequencies that were significantly differ-
ent between two situations as an optional feature
pool. In addition, we employed sequential forward
floating search (SFFS) to determine the optimal
features from the optional feature pool [7]. The
RLDA was used to build the classification model,
which can be expressed as

y = wTx, (2)

where x is the feature vector selected by the SFFS
and w is a projection vector.

Performance assessment. Pseudo-online testing
was conducted to simulate an online procedure in
order to evaluate the system performance. The
difference between pseudo-online testing and on-
line testing is that the former does not involve
feedback and the testing data need to be collected
beforehand. For pseudo-online testing, we used a
sliding window to compute and output the detec-
tion result of every cycle (i.e., every step). More
specifically, the sliding window was continuously
shifted with a step size.

The system accuracy (SA), hit rate (HR), false
alarm rate (FAR), and alarm time were used to
evaluate the performance of the proposed system.
SA was calculated as SA = (1− FAR+HR)/2.
HR was defined as the ratio of the number of cor-
rect emergency trial hits to the total number of
emergency trials. A trial was considered as a cor-
rect hit if the output of the detection method was
in the emergency braking class within 1500 ms af-
ter the onset of an emergency situation. FAR was
defined as the ratio of the number of false alarms
to the total number of non-emergency commands.
The length of time between the onset of an emer-
gency situation and the time when the first emer-
gency braking intention was issued was defined as
the alarm time.

Pseudo-online detection result. Pseudo-online
detection was conducted with a sliding window of
1500 ms and a step size of 20 ms. The means
with standard errors of HR, FAR, SA, and alarm
time of the proposed method were 92.8%± 1.8%,

5% ± 0.5%, 93.9% ± 0.7%, and 474.8 ± 30.5 ms,
respectively. The behavioral response time can be
measured based on brake pedal deflection, which
was also available in the public database [5]. The
average behavioral response across all subjects was
calculated as 753 ms. The proposed method can
generate a braking command 278.2 ms earlier than
an average behavioral response scheme, with an
average SA of 93.9%.

Conclusion. In this study, we investigated the
neural correlates of emergency braking intention in
the spectral domain and developed a new method
for detecting driver braking intention under emer-
gency situations based on the spectral features of
EEG signals. The proposed method can gener-
ate a braking command 278.2 ms earlier than an
average behavioral response scheme, with an SA
accuracy of 93.9%. This study has enriched the
understanding of the brain activities of driver’s
emergency braking intentions, and the proposed
detection method could lead to a significant im-
provement in reducing the risk of pedestrian fatal-
ities. For instance, when a car travels at a velocity
of 60 km/h, the risk of pedestrian fatality can be
reduced from 18.2% to 9.8% if a braking command
is issued 278.2 ms earlier [8].
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