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Dear editor,
For the 3D reconstruction of the line segments de-
tected in images, traditional line segment (LS) de-
tection and matching methods [1, 2] usually en-
counter the following problems when noise and il-
lumination variation are involved: (1) the detected
LSs deviate from real scene structures; (2) only a
minority of the detected LSs with better discrimi-
nating features can be correctly matched (see Fig-
ure 1(a)); (3) a certain amount of falsely matched
LSs are generated. As a result, as shown in Fig-
ure 1(e) and (f), the 3D LSs reconstructed from the
LS matches contain larger errors, and are also too
sparse to describe the complete scene structures.

To address the above issues, this study presents
an effective two-view LS reconstruction method
based on structure priors (i.e., plane priors and
angle priors).

Methodology. Our method is comprised of three
main components: pre-processing, 3D LS infer-
ence, and 3D LS optimization.

(1) Pre-processing. Given two calibrated im-
ages I1 and I2, our method starts from identifying
building regions using the method [3] (excluding
those LSs in unrelated regions such as the sky and
the ground), and detecting and matching the LSs
in these building regions using the method [2].

Let L and L denote the matched LSs and
the non-matching LSs in I1, respectively. In or-
der to jointly infer the 3D LSs in L and correct
falsely matched LSs in L, we construct an ini-

tial neighboring LS set N(l) for each LS l ∈ M
(where M = L ∪ L̄) using the Delaunay triangu-
lation method [2]. Note that N(l) will be heuris-
tically updated later. Moreover, the intersec-
tion angle prior A between two planes is set to
[00, 300, 450, 600, 900, 1200, 1350, 1500].

(2) 3D LS inference using co-plane cues. 3D
LS inference focuses on inferring more 3D LSs by
exploiting potential scene planes, and the overall
process is described as Algorithm 1.

Algorithm 1 3D LS inference using co-plane cues

Input: initial LS matches L.
Output: inferred and corrected LS matches L∗.
1: Generate seed planes S from l ∈ M and its neighboring

LS set N(l); add reliable LS matches to L∗.
2: Explore dominant scene planes H.
3: For each seed plane P (l) ∈ S,

3.1: Generate its plane family H∗ : {hi} from the
associated plane h ∈ H;

3.2: Assign the optimal plane hi to unvisited LSs in
{l, N(l)};

3.3: Add reliable LS matches to L∗ and update H;
3.4: Add the LS set to S if any of its component LSs

is assigned to the optimal plane;
3.5: Update the neighbors of LS l.

4: Output L∗.

• Generate seed planes. Given an LS l ∈ M
and its neighboring LS set N(l), for using co-plane
cues, we construct the corresponding matched LS
set Ml = {l, N(l)}∩L, and triangulate each LS
in Ml to the 3D LS. Then, we use all the 3D LSs
to fit a local plane, and consider this plane as a
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Figure 1 (Color online) 3D LS reconstruction. (a) Initial detected LSs (top) and fewer matched LSs (bottom) by the
method of [2]; (b) the neighboring system constructed by the Delaunay triangulation method (the yellow square and red
circles denote the current LS and its neighboring LSs, respectively); (c) initial non-matching LS #305 (yellow square dot)
and its neighboring LSs (red circle dots) in I1; (d) by finding co-planes, LS #(305) in I2 is correctly matched with LS #305
in I1, and initial falsely matched LSs (thin LSs) in I2 (with #311 and #314 in I1) are corrected as #(311) and #(314)
(thick LSs); (e) 3D LSs reconstructed from initial LS matches; (f) the top-view of (e); (g) 3D LSs produced by our method
(different colors denote the 3D LSs in different planes); (h) the top-view of (g).

seed plane P (l) if the corresponding fitting error
(i.e., the average distance between this plane and
all the endpoints of these 3D LSs) is smaller than
the threshold θ (set to 0.05).

• Explore dominant planes. For a seed plane
P (l), we further exploit the supporting 3D LSs
corresponding to the LSs in L to detect dominant
scene planes. To this end, for an LS x ∈ L, we
first take the corresponding 3D LS X as the sup-
port inlier of P (l) if the average distance between
P (l) and the two endpoints of X is smaller than
θ, and then update P (l) by fitting all of its inliers.
Finally, we select the updated plane P (l) which
is associated with at least K (set to 10) 3D LSs
as the dominant scene plane, and add it to the
set H.

• Infer 3D LSs. For a dominant plane h ∈ H
and its associated LS set {l, N(l)}, we first cal-
culate the derived planes by rotating the plane
h to each angle in A around the axes where the
inlier 3D LSs lie, and construct the plane family
H∗ : {hi}. Then, according to H∗, we attempt to
infer or correct the 3D LS corresponding to each
LS x ∈ {l, N(l)} under the following two cases.

(i) LS x ∈ L. In this case, we calculate the
average distance between the two endpoints of its
corresponding 3D LS X and each plane hi ∈ H∗,
and select the plane hi with the smallest distance
as the candidate plane relevant to LS x. Then, we
consider the candidate plane optimal to LS x if the
smallest distance is smaller than θ or the following

condition is met:

F (x, hi(x)) < F (x, x′), (1)

where hi(x) denotes the LS induced by the plane
hi in I2, and F (x, x′) denotes the following DAISY
feature [4] similarity between LSs x and x′:

F (x, x′) =
1

k

k
∑

i=1

s(F (xi), F (x′
i)), (2)

where xi and x′
i denote the corresponding i-th

pixel in LSs x and x′, respectively, F (xi) and F (x′
i)

denote the corresponding DAISY features, and s(·)
denotes the similarity measure.

In fact, LS hi(x) is more likely to match with LS
x in both geometry and image feature. We thus
update the initial LS match (x, x′) by (x, hi(x)).

(ii) LS x ∈ L̄. Here, we assign it the plane h∗
i if

the following condition is met:

h∗
i = arg min

hi∈H∗

F̄ (x, hi(x)), (3)

where F̄ (x, hi(x)) denotes the set of the DAISY
feature similarities (i.e., F (x, hi(x))) that are
smaller than the mean value of the DAISY feature
similarities of all matched LSs.

• Update neighbors. For the above two cases,
the 3D LS X can be obtained simply by back-
projecting LS x from I1 onto its assigned plane.
Nevertheless, if LS x is not assigned to an appro-
priate plane, we consider that it may not belong
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to P (l) and remove it from {l, N(l)} (i.e., elimi-
nating the relations between it and other LSs in
{l, N(l)}). Conversely, for an isolated LS x re-
moved from other LS sets neighboring to {l, N(l)},
it is added to N(l) (i.e., constructing the relation
between it and LS l) only if it meets the condi-
tions of the two above cases with respect to the
dominant planes associated with LS set {l, N(l)};
otherwise, it will be discarded after all seed planes
are traversed.

• Update seed planes and dominant scene
planes. In inferring 3D LSs, an LS set {l, N(l)}
will be taken as a seed plane if any of its com-
ponent LSs obtains the optimal planes from other
seed planes; moreover, the optimal plane assigned
to an LS is simultaneously added to the set H to
generate more dominant scene planes.

(3) Jointly optimizing 3D LSs and planes. After
3D LS inference, each LS in M can be assigned to
a valid plane, and the reconstructed 3D LSs are
basically reliable. To obtain the globally consis-
tent 3D LSs, we further perform a cooperative op-
timization over these 3D LSs by minimizing the
following energy function.

E(H) =
∑

l∈M

E(Hl) + α
∑

k∈N̄(l)

E(Hl, Hk)

+ β
∑

k,m∈N̄(l)

E(Alkm), (4)

where Hl denotes the current plane assigned to LS
l ∈ M and N̄(l) denotes the updated neighbors of
LS l in inferring 3D LSs; E(Hl), E(Hl, Hk) and
E(Alkm) are the data term, plane regularization
term and angle regularization term, respectively;
α and β are the weights of the latter two terms
(set to 0.6 and 0.4, respectively).

• Data term. E(Hl) is used to measure the cost
of assigning a plane Hl to the current LS l, and is
defined as

E(Hl) = L(D(l, Hl)) + κ · L(F (l, Hl(l))), (5)

where D(l, Hl) denotes the average distance be-
tween plane Hl and the two endpoints of LS L,
F (l, Hl(l)) denotes the DAISY feature similarity
between LS l and LS Hl(l) induced by plane Hl

in I2, L(·) is the Logistic function, and κ is the
weight of the image features (set to 0.5).

• Plane regularization. E(Hl, Hk) encodes the
structure prior that two neighboring LSs are likely
to be coplanar in 3D space in a high possibility
and is defined as

E(Hl, Hk)=

{

e−d(L,K) · e−F (l,k), Hl 6= Hk,

0, otherwise,
(6)

where d(L,K) denotes the average distance be-
tween 3D LS L and K, and F (l, k) denotes the
DAISY feature similarity defined as in (2).

• Angle regularization. E(Alkm) encodes a
higher-order structure prior in a simple man-
ner, incorporates the intersection angles between
planes, and is defined as:

E(Alkm) =

{

e−Plkm , A(Hlk, Hlm) /∈ A,

0, otherwise,
(7)

where Hlk denotes the plane determined by LSs l
and k (similarly forHlm), A(Hlk, Hlm) denotes the
intersection angle between planes Hlk and Hlm,
and Plkm = mina∈A |A(Hlk, Hlm)− a| denotes the
minimum of the differences between A(Hlk, Hlm)
and the angles in A.

As shown in Figure 1(g) and (h), through solv-
ing (4) using the method [5], the approximate opti-
mal solution can be achieved, and the resulting 3D
LSs can describe complete scene structures better.

Conclusion. Based on structure priors, our
method first progressively exploits the potential
planes corresponding to the matched and non-
matching LSs, and then globally regularizes the
resulting planes and 3D LSs via the cooperative
optimization method. Experimental results con-
firm that our method can effectively produce as
many reliable 3D LSs as possible and their associ-
ated planes.
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