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Dear editor,
The problem of aesthetic image classification has
attracted much attention during the past few yea-
rs. The recently proposed methods [1–4] based on
the deep convolutional neural network (CNN) [5,6]
have achieved large improvements over the meth-
ods based on the handcrafted aesthetic features.
Although the existing CNN-based methods have
shown superior performance, the task of aesthetic
image classification is still very challenging. This
is mainly due to the fact that aesthetic images
are usually captured in complex environments and
they have different subjects and styles.

Deep embedding methods have achieved impres-
sive performance on different computer vision ap-
plications. They usually use deep neural networks
to map input images to a compact space, where
the intra-class distances of the features of the in-
put images belonging to the same class are smaller
than the inter-class distances of the features of
those from different classes. Generally speaking,
deep embedding methods can be roughly divided
into siamese-based deep embedding methods and
triplet-based deep embedding methods. For the
task of image classification, the triplet-based deep
embedding methods usually obtain better perfor-
mance than the siamese-based deep embedding
methods, because the former methods explicitly
encourage the inter-class separability. However,
the performance of the traditional triplet-based

deep embedding methods greatly drops when they
are applied to the task of aesthetic image classifi-
cation. The main reason is that aesthetic images
usually contain large intra-class variations. There-
fore, it is difficult to map aesthetic images belong-
ing to difference classes to a compact space by us-
ing the traditional triplet-based deep embedding
method.

In the deep embedding methods, only minimiz-
ing a triplet loss function (belonging to the class
of metric loss functions) results in a problem; i.e.,
it is hard to map a few challenging images to a
compact space. We call such images as hard sam-
ples. As a result, the distance-based classifiers
cannot obtain satisfactory performance owing to
the existence of hard samples in aesthetic images.
However, hard samples can be correctly classi-
fied with a hyperplane-based classifier, which min-
imizes a hinge loss function (belonging to the class
of margin-based loss functions). In this study, we
propose a large margin deep embedding (LMDE)
method, which minimizes a joint loss function by
combining a triplet loss function and a hinge loss
function. In the training stage, the minimization
of the joint loss function ensures that the intra-
class variability of the features from the same class
is reduced and the inter-class separability of the
features from different classes is increased. Thus,
hard samples can be correctly classified. In the
test stage, a linear classifier (such as SVM) is used
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for aesthetic image classification.
Model and methodology. We employ the triplet

net [7] in the proposed LMDE method. The
triplet net uses three CNN networks, which share
the same network structure and parameters (i.e.,
weights and biases) as feature extractors. The
three CNN networks in the triplet net respectively
take three samples from a triplet (consisting of an
anchor input, a positive input and a negative in-
put) as the input. Let xa, xp and xn denote the
anchor input, the positive input and the negative
input, respectively. Let f denote the feature ex-
tractor. Given an input triplet x, its features are
written as f(x) ∈ Rd, where d is the feature di-
mensionality. The triplet loss LT of the triplet net
is defined as [7]

LT =

N
∑

i=1

max
(

0, ‖f(xa
i )− f(xp

i )‖
2
2

−‖f(xa
i )− f(xn

i )‖
2
2 + γ

)

, (1)

where N denotes the number of triplets, i denotes
the index of the triplet, and γ is the distance pa-
rameter that enforces the margin between a pos-
itive pair (f(xa) and f(xp)) and a negative pair
(f(xa) and f(xn)). Minimizing the triplet loss en-
courages the triplet net to learn the embedding
function f(·) (i.e., the feature extractor), where
the distance between the positive pair is less than
that between the negative pair plus the distance γ.

Based on the features f(xi) obtained by the
triplet net, we design a two-class linear classifier
g(xi,W, b) (abbreviated as g(xi)) to evaluate the
linear separability of the features. The classifier is
defined as

g(xi) ≡ g(xi,W, b) = Wf(xi) + b, (2)

where W and b are the parameters of the linear
classifier. The linear classifier can be trained by
minimizing the hinge loss LH , which is defined as

LH =

3N
∑

i=1

max(0, β − g(xi)yi), (3)

where yi is either 1 or −1, indicating the class to
which the sample xi belongs; β denotes the ge-
ometric margin between support vectors and the
linear classifier g(·). The value of LH is zero if the
sample xi lies on the correct side of the geometrical
margin. For the samples lying on the wrong side
of the geometric margin, the loss values of LH are
proportional to their distance from the geometric
margin. In our implementation, f(xa) and f(xp)
are labelled as 1, and f(xn) is labelled as −1.

To obtain the embedding function f(·), where
f(xa) and f(xp) can be separated from f(xn) by

using the linear classifier g(·) with a large geomet-
rical margin β, we minimize the following joint loss
function LJ :

LJ = λLT + (1− λ)LH , (4)

where λ is a weighting factor balancing the contri-
bution of each loss. To train the LMDE method
with the joint loss function, we use a linear layer
(i.e., a fully connected layer) to implement the lin-
ear classifier. The linear layer takes the features
obtained by the triplet net as its inputs. The
outputs of the linear layer are measured by the
hinge loss function, which is used to create a large
margin between the features from different classes.
The implementation details of the fully connected
layer are the same as the traditional fully con-
nected layer. The features obtained by the triplet
net are directly fed into the fully connected layer.
Then the whole net (including the triplet net and
the linear layer) is trained in an end-to-end fash-
ion.

The parameters (i.e, the weights and biases) of
LMDE can be learned by employing the backprop-
agation algorithm [8]. The backpropagation algo-
rithm calculates the partial derivatives of a loss
function with respect to the weights and the bi-
ases in each layer of LMDE by using the chain
rule, and it updates the weights and the biases by
using a gradient descent method. As the hinge
loss function is convex and not differentiable, we
use the sub-gradient method [9] to calculate the
partial derivatives of the hinge loss function with
respect to the weights (W ) and the biases (b) of
the linear layer.

It is quite fast to train a CNN model with the
hinge loss function or the standard softmax loss
function. Inspired by the above observation, we
propose a fast training strategy for training the
triplet net of LMDE by initializing the weights and
biases of the triplet net with those of a pre-trained
CNN model, by which the training process of the
proposed LMDE method is speeded up. An iso-
lated CNN model, which has the same structure as
the CNN nets in the triplet net, is firstly trained on
large-scale visual aesthetic training datasets with
the standard softmax loss function. Then, the
triplet net is initialized with the weights and bi-
ases of the trained CNN model. Such an initializa-
tion strategy offers the advantage that better inter-
class separability can be obtained for the image
features. Then, the backpropagation algorithm is
used to fine-tune the LMDE model by minimizing
the joint loss function, which further maximizes
intra-class compactness and inter-class separabil-
ity. The input triplets are randomly sampled from
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Table 1 The classification accuracy obtained by CAP, CB and the proposed LMDE methods for aesthetic image classifi-
cation on the CHUKPQ dataseta)

Method Animal Plant Static Architecture Landscape Human Night Overall

CAP [2] (%) 78.61 76.38 71.74 73.86 77.53 76.94 64.21 77.92

CB [1] (%) 89.37 91.82 90.69 92.75 94.68 97.40 84.63 92.09

LMDE (%) 95.54 96.70 94.93 92.43 96.49 95.35 92.18 94.80

a) The bold fonts represent the highest classification accuracy.

images in every S epoches to avoid the overfitting
problem.

The evaluation of the proposed LMDE method
consists of two steps: extracting features and clas-
sification. We use the triplet net to extract fea-
tures from aesthetic images. The extracted fea-
tures are then classified by using a linear classifier.
In our implementation, the linear SVM is simply
used as the linear classifier to classify the features,
and is trained by using the default settings.

Experiments. We report the experimental re-
sults on the CHKUPQ dataset, which consists of
seven classes of images: animal, plant, static, ar-
chitecture, landscape, human and night. Table 1
reports the classification accuracy obtained by the
CAP, CB and LMDEmethods. As can be seen, the
overall average classification accuracy obtained by
the proposed LMDE method is 94.8%, which is
the highest among the three competing methods
and it is higher than those of CAP and CB by
16.9% and 2.7%, respectively. The CAP method
obtains the worst average classification accuracy
because it only uses several regional features (in-
cluding color saturation, texture feature, and the
depth of field feature), which are less effective for
the task of aesthetic image classification. The CB
method uses more effective features (including the
regional features and the global features) than the
CAP method. Thus, the CB method obtains bet-
ter average classification accuracy than the CAP
method. As the proposed LMDE method takes the
advantage of CNN to directly learn the features,
the proposed LMDE method obtains higher aver-
age classification accuracy than the CB method.
More specifically, the proposed LMDE method re-
spectively obtains 1%–5% improvements on the
classes of animal, plant, static and landscape com-
pared with the CB method, and it also achieves
a comparative result to CB on the class of archi-
tecture. For more detailed experimental results,
please refer to the supplemental materials.

Conclusion. We present an LMDE method with
a novel network structure and an effective joint loss
function, which takes advantage of both the triplet
loss function and the hinge loss function. The min-
imization of the joint loss function ensures that

the intra-class variability of the features belong-
ing to the same class is reduced and the inter-class
separability of the features from different classes
is increased. As shown in the experiments, the
proposed LMDE method significantly outperforms
several other state-of-the-art aesthetic classifica-
tion methods in terms of classification accuracy.
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