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This study develops a novel, joint optimization
method to successively respect spatial structure
consistency and temporal feature constraints. Our
method is more flexible and adaptive as we regard
the camera multitrack motion to be noisy signals
and adaptively suppress the noise without manual
intervention. In addition, our method can achieve
stabilization effects similar to that obtained by 3D
methods while retaining the efficiency and robust-
ness of 2D methods over challenging videos. As
shown in Figure 1, our method could be divided
into three components: salient region preserving-
based homography estimation of spatial structure
consistency, self-adaptive intrinsic mode function
(IMFs) and feature-centric empirical mode decom-
position (EMD). Salient region preserving-based
homography estimation of spatial structure consis-
tency is content-aware, which can preserve salient
and visually prominent regions. The frames in
the wobbly video are warped based on a saliency
map. Each frame is uniformly divided into mul-
tiple grids. The local homography in each grid
is estimated to spatially build mesh-wise incon-
sistent camera paths. The method can eliminate
the parallax between different grids in the same
video frames while preserving salient regions. Self-
adaptive IMFs can read all frames in the wobbly
video and find their scale-invariant feature trans-
form (SIFT) features. Moreover, geometric trans-
formation can be estimated from the matching
point pairs. The original signal is decomposed into

a finite component and few components. Finally,
we can calculate the optimizing ratio of the IMF
using CVX (Matlab software for disciplined con-
vex programming). The feature-centric EMD aims
to retain the centric feature of EMD. Our method
brings in weighted Gaussian distribution to ensure
that the new path retains the trend of the original
path while suppressing jitters.

Salient region preserving-based spatial structure

consistency optimization. We frame-wise extract
the SIFT features from the wobbly video and fur-
ther match the features. The geometric transfor-
mation (the second sub-figure in Figure 1(a)) maps
the inliers in the matched points of the left frame
to the inliers in those of the right frame. Using
geometric transformation algorithm [1], we could
compute and denote the transformation with the
3 × 3 matrix Tt. The relative camera motion at
time t can be represented by a 2D Euclidean trans-
formation Tt, satisfying St = St−1Tt−1. A uniform
grid is overlaid on the image with N̂ columns and
M̂ rows [2]. The target is to compute a deformed
grid for the resized image. Consistent with com-
mon image re-targeting methods, the saliency map
Ψ(x̂, ŷ) is used to assign an importance value be-
tween 0 and 1 to each pixel of the image. We
average the saliency values inside each cell of the
grid for the original image so that the saliency vec-
tor Ψi could be obtained. The optimization fur-
ther reduces the influences of spatially mesh-wise
inconsistency, which greatly decreases the paral-
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Figure 1 (Color online) Pipeline of our framework. (a) Feature extraction, matching, and saliency map construction;
(b) salient region preserving-based spatial structure consistency optimization; (c) self-adaptive IMFs; (d) feature-centric
EMD.

lax. Based on the previous camera path Si(t − 1)
and the local homographies Ti(t − 1), we can de-
fine spatially mesh-wise inconsistent camera paths
for the entire video. Taking Si(1) as the iden-
tity matrix, let Si(t) be the camera pose of the
grid cell i at frame t. It can be formulated as
Si(t) =

∏t−1
t̂=1 Ti(t̂). We uniformly divide the frame

into multiple grids. D(t) denotes the smoothed
path, and B(t) denotes the transformation from
the original path S(t) to the smoothed path D(t).
Each grid has one trajectory, which is denoted by
Si(t). Ti(t− 1) denotes the estimated local homo-
graphies at the same grid cell i from Si(t − 1) to
Si(t). The camera trajectories of spatial structure
consistency could be smoothed by

O(D(t)) = argmin(Σi(‖Di(t)− Si(t)‖
2

+λtΨiΣj∈Ω(i)‖Di(t)−Dj(t)‖
2)). (1)

Here, S = {S(t)} denotes the original path and
D = {D(t)} denotes the optimized path. Ω(i)
represents the eight neighbors of the grid cell
i. To reduce cropping and distortion, the term
‖Di(t) − Si(t)‖ guarantees the new camera path
to be close to the original one, whereas ‖Di(t) −
Dj(t)‖ can keep the current grid cell consistent
with the nearby neighbors. The parameter λt is
used to balance the above two terms. For the
marginal grid cell, we set its value to be the same
as those of its in-existent neighbors; namely, it can
be formulated as Dj(t) = Di(t) when j is non-
existent. This optimization is quadratic, and its
optimum result can be obtained by a Jacobi-based
iteration [3]. Then, we can obtain the optimized
paths Di(t). Using B(t) = S−1(t)D(t), the orig-
inal video frames could be transformed into ones
with spatial structure consistency while preserving
salient regions. Subsequently, the parallax among

the spatially variant grid cells of each frame is elim-
inated.

SIFT-based motion signal construction. We can
convert a 3× 3 transform Tt to an SRT (scale, ro-
tation, translation) transform, which returns the
scale, rotation, and translation parameters as well
as the reconstituted transform Tt. This study fo-
cuses on more comprehensive parameters, such as
the scale, angle, x-coordinate, and y-coordinate.
The rotation parameter contains the angle. The
translation parameter contains the x-coordinate
and the y-coordinate. We then concatenate the
scale, rotation, and translation parameters into a
4D vector Ŝt to represent the camera pose at time
t. We regard the component in the vector Ŝt as a
motion signal.

Self-adaptive IMFs. EMD can decompose any
complicated signal to generate IMFs via a sift-
ing process [4]. Specifically, it can decompose the

original signal Ŝ via Ŝ =
∑N

k=1 fk + rN . Here,
fk(k = 1, . . . , N) are IMFs, and rN is the corre-
sponding residual. Figure 1(c) demonstrates the
IMFk(k = 1, . . . , 5), and IMF6 denotes the resid-
uals. We set fN+1 = rN for easy expression and
calculation. The original signal is decomposed into
the IMFs and residual. To stabilize the video, the
high-frequency signals should be smoothed. The
optimal camera trajectory is obtained by minimiz-
ing the following objective function:

O(α)=

∥∥∥∥∥∇
(

N+1∑

k=1

αkfk

)∥∥∥∥∥
1

+

∥∥∥∥∥∇
2

(
N+1∑

k=1

αkfk
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1

+
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3

(
N+1∑

k=1

αkfk

)∥∥∥∥∥
1

+W
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N+1∑

k=1

αkfk−Ŝ

∥∥∥∥∥
1

. (2)

Here, α denotes the ratio of the IMF. We use X

to denote the variable. When X =
∑

k=1 αkfk,
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‖∇(X)‖1, ‖∇2(X)‖1, and ‖∇3(X)‖1 are the L1
norms of the first-order, second-order and third-
order derivatives of X , respectively. The minimum
of the sum of ‖∇(X)‖1, ‖∇

2(X)‖1, and ‖∇3(X)‖1
smooths the IMFs to remove jitters in the unsta-
ble video. Ŝ denotes the original signal. The min-
imum of the difference between

∑
k=1 αkfk and Ŝ

makes the original signal close to the optimized
signal to avoid excessive cropping. W is the adap-
tive equilibrium factor, which is used to balance
the above four terms. This study empirically sets
W to 0.1. In summary, our optimization method
comprehensively considers multiple competing fac-
tors such as eliminating vibration, excluding exces-
sive cropping, and minimizing distortional defor-
mation. Then, the optimized motion signal could
be calculated via T̂ =

∑N+1
k=1 α̂kfk. T̂ is the op-

timized motion signal. α̂k is the new ratio of the
IMF. Figure 1(c) shows the camera trajectories be-
fore and after smoothing, marked with green and
red lines, respectively. Our method could compute
the ratio of each IMF by autonomic learning and
can thus improve the smoothness via repeated it-
erations.

Feature-centric EMD. The green line denotes
the motion signal of the original path, and the red
line denotes the motion signal of smoothing path
without feature-centric EMD (Figure 1(d)). The
original is over-smoothed and loses the original
trend of the motion, thereby leading to excessive
cropping. To retain the tendency of the original
EMD motion signal, we define the extreme point
of original motion signal as the feature. To retain
the centric feature of EMD signals while smooth-
ing signals, our feature-centric EMD is formulated
as follows:

T̃t = (1− W̃ )
Σt̃∈ωt

(Gt(‖St̃ − St‖)T̂t̃)

Σt̃∈ωt
Gt(‖St̃ − St‖)

+ W̃
Σt̃∈ωt

(Gt(‖T̂t̃ − T̂t‖)St̃)

Σt̃∈ωt
Gt(‖T̂t̃ − T̂t‖)

. (3)

Here, we empirically set ωt to denote 60 neighbor-
ing frames. We bring in Gaussian functions Gt(·)
and empirically set the standard deviation of Gt(·)
to 10. St denotes the original value at frame t with-
out the feature-centric EMD. St̃ denotes the orig-
inal value at frame t̃ without the feature-centric
EMD. T̂t denotes the optimized value at frame t.
T̂t̃ denotes the value at frame t̃. Eq. (3) ensures
that the new path retains the trend of the origi-
nal path while successfully suppressing both high-
frequency jitters and low-frequency bounces of the

original path.
Σ

t̃∈ωt
(Gt(‖St̃

−St‖)T̂t̃
)

Σ
t̃∈ωt

Gt(‖St̃
−St‖)

mainly sup-

presses the shaky components of the original path,
simultaneously retaining its initial trend. Mean-

while,
Σ

t̃∈ωt
(Gt(‖T̂t̃

−T̂t‖)St̃
)

Σ
t̃∈ωt

Gt(‖T̂t̃
−T̂t‖)

mainly ensures that the

new path retains the trend of the original path
while suppressing its trembling signal. W̃ is the
adaptive equilibrium factor ranging from 0 to 1,
which is used to balance the above two terms. We
set W̃ as 0.4 for all our examples. When smooth-
ing the signal, fast panning or scene transition may
cause rapid signal motion. In this case, some ex-
cessive cropping may be yielded owing to inappro-
priate smoothing. The motion signal may signifi-
cantly deviate from its original path, as indicated
by the green lines in Figure 1(d). The result from
our adaptive smoothing produces much less crop-
ping. The green line denotes the motion signal of
the original path. The red line denotes the motion
signal of the smoothing path with feature-centric
EMD, which gives rise to better results.

Experimental results. To validate our joint opti-
mization approach for adaptive video stabilization,
we conduct comprehensive experiments on pub-
lic benchmarks and perform extensive and quan-
titative evaluations with available state-of-the-art
methods as well as popular commercial software.
All our experiments demonstrate the advantages of
the spatiotemporal optimization method in terms
of its versatility, accuracy, and efficiency. All re-
sults and evaluations are provided in our supple-
mentary videos.
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