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Abstract With its strong endurance and high maneuverability, an underwater gliding snake-like robot

(UGSR) is a strong potential candidate for aquatic exploration and monitoring. The major feature of the

UGSR, which distinguishes it from other snake-like robots, is long range and long operation duration by

gliding. This study establishes a gliding motion control system for the UGSR based on a sliding mode

controller (SMC). The control system stabilizes the system and suppresses the uncertainties and unknown

disturbances. In this strategy, chattering is reduced based on the reaching law method. To circumvent

the difficulty of velocity measurements, a nonlinear observer based on an unscented Kalman filter (UKF) is

employed for state estimation and random noise handling. The effectiveness of the proposed controller and

observer is verified by simulating the UKF-based SMC closed-loop system.
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1 Introduction

The increased demand for underwater exploration, observation, and monitoring has inspired several

underwater vehicles [1, 2] that can probe aquatic environments. The underwater glider is a buoyancy-

driven underwater vehicle characterized by high efficiency, long range, and strong endurance. Owing to

these properties, underwater gliders are extensively used in real-time monitoring of marine environments.

Gliders such as Slocum [3], Spray [4], Seaglider [5], and Sea-Wing [6], have been commercially promoted.

However, underwater gliders are disadvantaged by low maneuverability, high cost, and low efficiency in

shallow water. With the development of bionics, researchers have turned their attention to bio-inspired

underwater robots [7, 8]. An underwater snake-like robot is a bionic underwater vehicle with a chain

structure, which adopts multiple swimming gaits by changing its body shape. Although benefiting from

many degrees of freedom (DOF) and strong maneuverability [9,10], the short range and poor endurance

have limited the practical application of these and other bio-inspired robots [11]. Recently, researchers

have integrated the innovations and technologies of traditional and bionic underwater robots to improve

the shortcomings of the existing robots. Sverdrup-Thygeson et al. [12] and Kelasidi et al. [13] equipped

an underwater snake-like robot with the propellers of an autonomous underwater vehicle, which improved

the locomotion capabilities of the robot in narrow regions. Zhang et al. [14] combined an underwater
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glider with a fish robot, achieving the dual benefits of energy efficiency by gliding and high mobility by

fish-like swimming. Wu et al. [15] studied a gliding robotic dolphin in which the gliding attitude angles

can be adjusted through the pectoral, caudal, and dorsal fins. Inspired by hybrid-driven underwater

bio-robots, the present study proposes an underwater gliding snake-like robot (UGSR) that combines

the advantages of underwater gliders and underwater snake-like robots. The robot design achieves both

gliding and snake-like swimming in shallow waters such as rivers and lakes. The gliding motion is realized

by adjusting the net buoyancy and pitch moment in the vertical plane. As energy is consumed only

during state adjustment, the robot operates for long durations with low energy consumption. Meanwhile,

swimming is realized by continuous body deformation through a series of rotating joints. Different joint

functions provide different locomotion gaits providing flexible and maneuverable movements. This study

focuses on the gliding motion.

When developing the UGSR, the buoyancy and pitch adjustment mechanisms must be integrated into

a general underwater robotic snake. However, the pump devices installed in underwater gliders [3–6] are

difficult to install in the limited internal space of a slender body with a modular structure. Instead, a

telescopic module is designed for the UGSR. A screw mechanism in this mechanism adjusts the length of

the telescopic module, providing the net buoyancy and pitch adjustment system for gliding.

Control strategies for gliding motion in the vertical plane have adopted linear proportional-integral-

derivative (PID) controller [16], linear-quadratic regulator (LQR) controller [17], and model-based non-

linear controllers [18, 19]. However, the control algorithms of gliding motion are typically designed for

movable-mass underwater gliders, and have rarely been studied for variable-length gliding systems. This

paper employs a sliding mode controller (SMC) for stable gliding tracking and robust control under ex-

ternal disturbance and parameter perturbations [20–22]. The discontinuity in this strategy, which causes

chattering with consequent performance loss and system instability, is alleviated by the reaching law

method [23]. The proposed method controls the characteristics of the reaching mode and the amplitude

of the chattering. As the robot velocity is difficult to measure in water, a state observer that estimates

the real-time state of the system is designed. To measure the pitch angle in the presence of sensor noise,

the observer must extract the useful data from a noisy signal and estimate the system state. Zhang et

al. [24] designed a nonlinear observer with an extended Kalman filter, which is vulnerable to linear error

divergences. Yuan et al. [25] estimated the system state by a sliding mode observer, which is robust to

uncertainty and disturbance but sensitive to measurement noise. In this paper, the state is estimated by

a nonlinear observer built by the unscented Kalman filter (UKF) method [26]. The UKF solves nonlinear

transfer problems of the mean and covariance by an unscented transformation, achieving high accuracy

and robustness to measurement noise. Because it considers the nonlinear characteristics of system con-

trol and state estimation, the UKF-based SMC system improves the robustness of the system against

disturbances and measurement noise.

The remainder of this paper is organized as follows. Section 2 describes the implementation of the

UGSR prototype, and Section 3 derives the dynamic model of gliding motion in the vertical plane. Sec-

tion 4 derives the input-output linearization of the model, and obtains its normal form. The system

control law designed by the SMC method, and the nonlinear observer designed by the UKF method, are

also introduced in this section. Finally, the proposed controller and observer are verified by simulations

in Section 5.

2 Prototype of the UGSR

This section describes the development and implementation of the UGSR prototype. Figure 1 shows the

gliding motion and snake-like swimming of the robot during pool tests.

The UGSR has a serial structure composed of multiple telescopic and rotate modules (see Figure 2).

Each telescopic module has three DOFs, namely, telescoping, pitch, and yaw. The net buoyancy can

be adjusted by controlling the length of the telescopic module. A pitch moment is generated when the

telescopic modules symmetrically installed at both ends of the robot are unequal in length. The net
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(a) (b)

Figure 1 (Color online) Test of the UGSR in a pool. (a) Gliding; (b) swimming.
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Figure 2 (Color online) Modules of the UGSR. (a) Structures of the rotate and telescopic modules; (b) composition of

the telescopic module.

Table 1 Hardware and parameters of the developed prototype

Name Description Parameter Value

Position servo JRFROPO DS6315HV Length of telescopic module (m) 0.4

Speed servo Futaba BLS172SV Length of rotate module (m) 0.25

Hull 7050 aluminum alloy Diameter (m) 0.12

Seal O-ring, rubber bellow, clamp, thread groove Total length (m) 1.8

Pressure sensor Bar02 Total mass (kg) 7.9

Attitude sensor JY901 Elongation range (m) [−0.05, 0.05]

buoyancy and pitch moment are coupled, as both are related to the elongations of the two telescopic

modules. The UGSR is upwardly gliding in Figure 1(a). The rotate module has two DOFs, namely, pitch

and yaw. When all rotate joints of the robot change continuously according to different joint functions,

the robot achieves a variety of swimming gaits, such as serpentine and lateral locomotions. In Figure 1(b),

the UGSR is turning right while swimming.

To meet the linear displacement and angular position demands of the modules, a speed servo and

position servo are used as system drivers. The module shell is made of aluminum alloy, which resists the

pressure at 20 m water depth. The space between the modules is sealed by O-rings, rubber bellows, and

clamps, and both end caps are sealed by O-rings and thread grooves. The module length is precisely

controlled by a linear potentiometer mounted on each telescopic module. In addition, the depth infor-

mation is controlled by a pressure sensor installed on the head, and the pitch angle data are acquired in

real-time by an attitude sensor. The specifics of the hardware are given in Table 1.

The developed UGSR prototype is composed of two telescopic modules and four rotate modules. Their

parameters are listed in Table 1.
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Figure 3 (Color online) Representation of coordinate systems in the vertical plane.

3 Modeling of gliding motion in the vertical plane

This section derives the dynamic model of gliding motion in the vertical plane. The model is simplified

by the following assumptions: (1) the robot is submerged in water and neutrally buoyant; (2) the robot

does not move in the lateral direction; (3) the joint angles of all rotate joints are zero.

The coordinate systems are defined using the right-hand rule in Figure 3. The world coordinate system,

represented by Oxyz, is located at a fixed point, so the initial displacement of the robot is zero. The

Ox and Oz axes lie in the forward direction and the gravitational acceleration direction, respectively.

The body coordinate system, denoted by Obxbybzb, is initially located in the geometric center of the

body. Its position coordinates with respect to Oxyz along the Ox and Oz axes are expressed as x and

z, respectively. Obxb is aligned with the longitudinal axis of the body and points to the head module,

whereas Obzb is perpendicular to Obxb and points downward in the vertical plane. The origin of the

velocity coordinate system Ovxvyvzv coincides with the origin of Obxbybzb. The Ovxv axis aligns along

the direction of the velocity with magnitude V , and Ovzv is normal to the Ovxv axis. The angle between

Ox and Obxb is the pitch angle θ, and the angle between Ovxv and Obxb is the angle of attack α.

Counterclockwise pitch and attack angles are regarded as positive. In Figure 3, θ is negative and α is

positive. The gliding path angle γ defines the angle between Ox and Ovxv. The three angles are related

by θ = γ + α. The kinematic model is then easily obtained as

ẋ = V cosγ, ż = −V sinγ.

The robot consists of 6 modules, numbered j = 1, 2, . . . , 6 from head to tail. The elongations of

telescopic modules 2 and 5 are represented by δ2 and δ5, respectively. The mass and volume of module

j are expressed as mj and qj , respectively. Assuming uniform density of each module, the center of

mass locates at the centroid, represented by rj with respect to frame Obxbybzb. An additional mass mh,

located at position rh along Obzb, facilitates self-stability by keeping the center of gravity (CG) below

the center of buoyancy (CB). Defining the fluid density as ρ, the displaced water mass is calculated

as m = ρ
∑

qj . The net buoyancy, expressed as the total mass minus the displaced mass, is given by

m0 =
∑

mj +mh −m. The positions of CG and CB, represented by rg and rb respectively, are written

as follows:

rg =

∑

mjrj
∑

mj

, rb =

∑

qjrj
∑

qj
, j = 1, 2, . . . , 6.

The external forces and moments acting on the robot are generated by the masses, buoyancy, and

hydrodynamics. The gravity is denoted by G =
∑

mjg +mhg, where g is the gravitational acceleration.

The buoyancy is denoted by B = −mg, where m varies with δ2 or δ5. As the rg and rb are functions of

the elongations δ2 or δ5, moments are exerted by gravity and buoyancy if δ2 6= δ5. These moments are

described as

Tg =
∑

mjgrgcosθ −mhgrhsinθ, Tb = −mgrbcosθ.

Hydrodynamic forces and moments are generated when the body moves through the fluid. The force

is resolved into its drag D and lift L components, which are parallel and perpendicular to the velocity

direction in the vertical plane, respectively (see Figure 3). The pitching moment of the couple is indicated
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by MDL. Based on aircraft dynamics, the hydrodynamics of the drag, lift and moment are modeled in

terms of the variables α and V

D = (CD0 + CDα2)V 2, L = (CL0 + CLα)V
2, MDL = (CM0 + CMα+ Cqω2)V

2,

where CD0, CD, CL0, CL, CM0, CM and Cq are hydrodynamic coefficients obtained by a computational

fluid dynamics simulation, and ω2 is the angular velocity of θ.

The dynamic model of gliding motion for the UGSR is given by

V̇ =
1

M1
(−D − gsinγm0), γ̇ =

1

M1V
(L− gcosγm0),

α̇ = ω2 −
1

M1V
(L− gcosγm0), ω̇2 =

1

J2
(MDL + Tg + Tb),

(1)

where the mass M1 along the Obxb axis is assumed equal to the mass along Obzb. J2 is the moment

of inertia about Obyb, including the stationary and added masses and neglecting the rotational inertia

caused by the length change of the telescopic modules.

Under the first assumption, the net buoyancy can be written as m0 = −ρπr2(δ2 + δ5), where r is the

radius of the body. In addition, the expression Tg + Tb is a quadratic function of δ2 and δ5. For the

controller design, the system is rendered more concise and convenient by introducing two parameters u1

and u2 describing the system inputs.

u1 = m0, u2 =
∑

mirg −mrb. (2)

The system dynamics (1) are then written as follows:

Ẋ = f(X) + g(X)u +w, y = h(X), (3)

whereX = [V, γ, α, ω2]
T is the state vector, u = [u1, u2]

T is the system input, w embodies the uncertainty

and unknown disturbance, and y is the system output. The system functions f(X), g(X) and h(X) are

expressed as

f(X) =























−
1

M1
D

1

M1V
L

ω2 −
1

M1V
L

1

J2
(MDL −mhrhgsin(γ + α))























, g(X) =





















−
gsinγ

M1
0

−
gcosγ

M1V
0

gcosγ

M1V
0

0
g

J2
cos(γ + α)





















, h(X)=

[

h1

h2

]

=

[

V cosγ

γ + α

]

.

4 Design of the controller

This section establishes the nonlinear control of the desired gliding path. The system (3) is first subjected

to input-output linearization to obtain the tracking error dynamics. Next, for stability and consistency

in the case of parameter uncertainty and unknown disturbance, the feedback control law is obtained by

SMC based on the reaching law method. The module elongations δ2 and δ5, which constitute the actual

system inputs, are then obtained by the decoupling expression (2). To apply the closed-loop control,

all system states are required as the feedback inputs of the controller. However, obtaining the velocity

in real-time is a challenging task. The pitch angle θ of the UGSR is easily measured by the attitude

sensor, but the measured data differ from the true result due to the measurement noise. Instead, filtering

and state estimation are performed by a nonlinear observer employing the UKF method. Figure 4 is a

diagram of the overall control system based on the SMC and UKF. The estimated state is represented

by the hat symbol X̂ = [V̂ , γ̂, α̂, ω̂2]
T. The symbols ξ and ξd represent the system state and its desired

value in the linearized system, respectively.
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Figure 4 (Color online) Diagram of the UKF-based SMC system.

4.1 Input-output linearization

The derivative of the output of the system (3) is given by

ẏ =
∂h

∂X̂
[f(X̂) + g(X̂)u] = Lfh+ Lghu =





1

M1
(−D̂cosγ̂ − L̂sinγ̂)

ω̂2



 ,

where Lfh is the Lie derivative of h with respect to f , D̂ = (CD0 +CDα̂2)V̂ 2, and L̂ = (CL0 +CLα̂)V̂
2.

As Lgh = 0, the derivative of ẏ is calculated as

y(2) =
∂(Lfh)

∂X̂
[f(X̂) + g(X̂)u] = L2

fh+ LgLfhu =

[

L2
fh1 + LgLfh1u

L2
fh2 + LgLfh2u

]

,

where

LgLfh1u =
1

M2
1 V̂

[

gD̂cosγ̂sinγ̂ + 2gL̂sin2γ̂ + gL̂cos2γ̂ − 2gCDα̂V̂
2cos2γ̂ − gCLV̂

2sinγ̂cosγ̂
]

u1,

LgLfh2u =
g

J2
cos(γ̂ + α̂)u2.

As the first derivative of y is independent of u but the second derivative depends on u, the relative

degree of the system (3) is ρr = [2, 2]T. Therefore, the diffeomorphism T (X̂) that transforms the original

X̂ system into the new ξ system can be written as

ξ = T (X) =













h1

ḣ1

h2

ḣ2













=















V̂ cosγ̂
1

M1
(−D̂cosγ̂ − L̂sinγ̂)

γ̂ + α̂

ω̂2















=













ξ1

ξ2

ξ3

ξ4













.

The tracking error e in the reference output hd and its derivative ḣd, where the subscript d indicates

the reference signal, is given by

e =













ξ1 − h1d

ξ2 − ḣ1d

ξ3 − h2d

ξ4 − ḣ2d













= ξ − ξd =













e1

e2

e3

e4













.

The tracking error dynamics are then expressed as follows:

ė =













e2

L2
fh1 + LgLfh1u

e4

L2
fh2 + LgLfh2u













. (4)
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4.2 SMC design

The SMC based on the reaching law involves a reaching phase and a sliding phase. The reaching phase

drives the system to a stable manifold in finite time, and the sliding phase drives it to the equilibrium

point. Among several classical reaching laws, the constant-rate reaching law forces the switching variable

to the manifold at a constant rate. An excessively small rate lengthens the convergence time, whereas an

excessively large rate causes severe chattering. The proportional-rate reaching law ensures the reaching

rate when the sliding variable is large. The power-rate reaching law increases and decreases the reaching

rate when the state is far from and nearby the manifold, respectively, achieving fast reaching with low

chattering. The sliding variables of the error system (4) are selected as

s1 = c1e1 + e2, c1 > 0,

s2 = c2e3 + e4, c2 > 0.

We then have

ṡ1 = c1ė1 + ė2 = c1e2 + L2
fh1 + LgLfh1u,

ṡ2 = c2ė3 + ė4 = c2e4 + L2
fh2 + LgLfh2u.

(5)

Considering the characteristics of the above reaching laws and the necessity of fast convergence with

minimal chattering, ṡ1 and ṡ2 are defined in terms of the proportional- and power-rate reaching laws.

ṡ1 = −ǫ1|s1|
b1tanh

(

s1

p1

)

− k1s1, ǫ1 > 0, p1 > 0, k1 > 0, 1 > b1 > 0,

ṡ2 = −ǫ2|s2|
b2tanh

(

s2

p2

)

− k2s2, ǫ2 > 0, p2 > 0, k2 > 0, 1 > b2 > 0,

(6)

where the hyperbolic tangent function tanh(·) replaces the discontinuous sign function. Substituting (6)

into (5), the system control law is obtained as follows:

u =
1

LgLfhu

















−ǫ1|s1|
b1tanh

(

s1

p1

)

− k1s1 − c1e2

−ǫ2|s2|
b2tanh

(

s2

p2

)

− k2s2 − c2e4









− L2
fh









.

The Lyapunov function is defined as

Vs =
1

2
s21 +

1

2
s22 > 0.

Lemma 1 in [27] states that for every given scalar x and positive scalar p, the inequality xtanh(px) =

|xtanh(px)| = |x||tanh(px)| > 0 holds. Then the derivative of Vs is computed as

V̇s = s1ṡ1 + s2ṡ2 = −k1s
2
1 − k2s

2
2 − s1tanh

(

s1

p1

)

ǫ1|s1|
b1 − s2tanh

(

s2

p2

)

ǫ2|s2|
b2

6 −k1s
2
1 − k2s

2
2 6 −2k1Vs − 2k2Vs 6 0.

Meanwhile, Lemma 3.2.4 in [28] states that for f , V : [0,∞) ∈ R, and then V̇ 6 −aV +f (∀t > t0 > 0).

This implies that V (t) 6 e−a(t−t0)V (t0) +
∫ t

t0
e−a(t−τ)f(τ)dτ for any finite constant a. Thus we have

Vs(t) 6 e−2k1(t−t0)Vs(t0) + e−2k2(t−t0)Vs(t0).

This result shows that the closed-loop system is exponentially convergent, and the convergence accuracy

depends on k1 and k2.
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4.3 Nonlinear observer design

The framework of the UKF, which involves the state estimation of a discrete-time nonlinear system, is

described as

Xk+1 = f(Xk) + g(Xk)uk +∆k, Zk = h2(Xk) + σk.

In this expression, Xk and uk are the state vector and input of the system, respectively, and Zk is

the output θ measured by the attitude sensor. ∆k and σk denote the process and measurement noises,

respectively, which are zero-mean Gaussian white noises with covariance matrices Q and R, respectively.

The UKF performs an unscented transformation, which calculates the statistics of a random variable in

nonlinear transformations. For an n dimensional random vector x satisfying the nonlinear transformation

y = f(x), the mean and covariance of x are x̄ and P , respectively. A matrix χ of 2n+ 1 sigma points is

then obtained as

χ0 = x̄,

χi = x̄+ (
√

(n+ λ)P )i, i = 1, . . . , n,

χi = x̄− (
√

(n+ λ)P )i, i = n+ 1, . . . , 2n,

(7)

where (
√

(n+ λ)P )i is calculated for the i-th column of the matrix square root of (n+λ)P . Propagating

the sigma vectors by a nonlinear function yi = f(χi), the mean and covariance of y are respectively

calculated as

ȳ =

2n
∑

i=0

W
(m)
i yi, Py =

2n
∑

i=0

W
(c)
i [yi − ȳ][yi − ȳ]T,

where Wi is the weight of the related sigma point

W
(m)
0 =

λ

n+ λ
,

W
(c)
0 =

λ

n+ λ
+ 1− a2 + β,

W
(m)
i = W

(c)
i =

1

2(n+ λ)
, i = 1, . . . , 2n.

The superscripts m and c denote the mean and covariance, respectively. The parameter λ = a2(n+κ)−n

is the scaling factor. a indicates the distribution of the sigma point with respect to x̄, and κ is a secondary

scaling parameter. β is a non-negative weight parameter for incorporating the prior knowledge of the x

distribution.

The state estimation algorithm proceeds through the following steps:

(1) Initialize the algorithm.

X̂0 = E(X0), P0 = E[(X0 − X̂0)(X0 − X̂0)
T].

(2) For i = 1, . . . , 2n+ 1, select the sigma points based on (7).

Xi,k =
[

X̂k X̂k +
√

(n+ λ)Pk X̂k −
√

(n+ λ)Pk

]

.

(3) Process the time-update equations.

Xi,k+1|k = f(Xi,k) + g(Xi,k)uk,

X̂∗
k+1 =

2n
∑

i=0

W
(m)
i Xi,k+1|k,

P ∗
k+1 =

2n
∑

i=0

W
(c)
i [Xi,k+1|k − X̂∗

k+1][Xi,k+1|k − X̂∗
k+1]

T +Q.
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Table 2 System parameters in the simulation

Parameter Value Parameter Value

M1 (kg) 20.2 J2 (kg ·m2) 5.5118

mh (kg) 0.03 rh (m) 0.025

CD (kg/m/rad2) 118.2 CD0 (kg/m) 3.789

CL (kg/m/rad) 120.5 CL0 (kg/m) 0.11

CM (kg/rad) −13.42 CM0 (kg) −0.03041

Cq (kg · s/rad) −2

(4) Repeat the unscented transformation to obtain the new sigma points based on the predicted values

of the precious step.

Xi,k+1 =
[

X̂∗
k+1 X̂∗

k+1 +
√

(n+ λ)P ∗
k+1 X̂∗

k+1 −
√

(n+ λ)P ∗
k+1

]

.

(5) Process the measurement-update equations.

Zi,k+1|k = h2(Xi,k+1),

Z̄k+1 =

2n
∑

i=0

W
(m)
i Zi,k+1|k,

Pzkzk =

2n
∑

i=0

W
(c)
i [Zi,k+1|k − Z̄k+1][Zi,k+1|k − Z̄k+1]

T +R,

Pxkzk =

2n
∑

i=0

W
(c)
i [Xi,k+1|k − X̂∗

k+1][Zi,k+1|k − Z̄k+1]
T.

(6) Calculate the Kalman gain matrix and update the state variables and covariance matrix.

Kk+1 = PxkzkP
−1
zkzk

,

X̂k+1 = X̂∗
k+1 +Kk+1[Zk+1 − Z̄k+1],

Pk+1 = P ∗
k+1 −Kk+1PzkzkK

T
k+1.

Note that the UKF method approximates the probability density distribution of the nonlinear function,

approximates the sample states using a series of posterior probability densities, and preserves the high-

order terms of the system. This method guarantees high precision and strong stability.

5 Simulation

This section analyzes the performance of the designed controller and observer in a simulation study. The

gliding motion of the UGSR was simulated in MATLAB Simulink. The basic parameters of the system

are given in Table 2.

The initial states of the system were set to V = 0.1 m/s, γ = 0, α = 0, and ω2 = 0. The desired gliding

path was described by Vd = 0.3 m/s and γd = −25◦. To fix the mechanism limitation of the robot, the

lower and upper bounds of the system input were set to −0.05 and 0.05 m, respectively. First, the LQR

and SMC methods were compared to verify the closed-loop performance of the designed controller. The

SMC control parameters were defined as c1 = 0.5, c2 = 0.3, ǫ1 = 0.01, b1 = 0.5, p1 = 0.01, k1 = 1,

ǫ2 = 0.01, b2 = 0.5, p2 = 0.01, and k2 = 1. Figure 5 shows the system inputs, the gliding speed V , and

the gliding path angle γ. The SMC reached steady state earlier than the LQR method, and achieved a

smoother transition process.

Real fluids are affected by various disturbances that change their hydrodynamic coefficients. After

20 s of simulation and taking the disturbances from Yang et al. [29], the initial drag coefficient CD was

increased by 25%, and the initial lift coefficient CL and torque coefficient CM were reduced by 25%. The
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Figure 5 (Color online) Simulation of the SMC system. (a) System inputs δ2 (top) and δ5 (bottom); (b) gliding speed

V (top) and gliding path angle γ (bottom).
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Figure 6 (Color online) Simulation of the SMC system under hydrodynamic coefficient disturbances. (a) System inputs

δ2 (top) and δ5 (bottom); (b) gliding speed V (top) and gliding path angle γ (bottom).

simulation results of the closed-loop system with parameter disturbances are shown in Figure 6. Under

the parameter perturbation, the state of the LQR system was significantly altered, whereas that of the

SMC system was almost unchanged. This result confirms the robustness of the SMC controller against

parameter uncertainty.

Next, the effect of input disturbance on the system was analyzed. The input noise was a random

signal with a mean of zero and a variance of 0.001. Figure 7 shows the simulated system inputs and

gliding states under the input disturbance. The SMC better reduced the influence of input noise on the

system than the LQR method, and ensured stability of the system state within a smaller range, thus

demonstrating the robustness of the controller against input noise.

To verify the state estimation capability of the UKF, the simulation results of the SMC system were

compared with the UKF estimates. The original continuous nonlinear system was discretized by the

Euler method with a sampling time of 0.005 s. The initial state of the UKF was defined as X0 =

[0.2, 0.1, 0.1, 0.1]T, and the corresponding covariance was selected as P0 = diag{0.05, 0.1, 0.1, 0.01}. The

covariance of the measurement noise was R = 0.01 and the process noise was ignored. The parameters of

the UKF algorithm were a = 0.01, κ = 0, and β = 2. Parameter uncertainties and input disturbances in

the system were not considered. Figure 8 displays the simulated pitch angle θ and its estimation error, the

gliding speed V , and the gliding path angle γ. The values can be measured by the attitude sensor, which

integrates a gesture solver and obtains the pitch angle with measurement noise. The UKF accurately

computed the pitch angle and achieved the state estimation based on the noisy measured data. The error

between the estimation and simulation was within the allowable range, thereby validating the observer.
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Figure 7 (Color online) Simulation of the SMC system under input disturbances. (a) System inputs δ2 (top) and δ5
(bottom); (b) gliding speed V (top) and gliding path angle γ (bottom).
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Figure 8 (Color online) UKF estimation of the SMC system with measurement noise. (a) Filtering result of pitch angle

θ; (b) gliding speed V (top) and gliding path angle γ (bottom).

After verifying the proposed controller and observer, the UKF and SMC were combined into the overall

system. The SMC parameters were chosen as c1 = 0.5, c2 = 0.3, ǫ1 = 0.001, b1 = 0.5, p1 = 0.01, k1 = 0.5,

ǫ2 = 0.02, b2 = 0.5, p2 = 0.01, and k2 = 1. The covariance P0 was set to diag{0.2, 0.1, 0.1, 0.01}. The

remaining parameters of the system and UKF were those used in the previous simulation. Figure 9

presents the simulation results of the control law u, the system inputs δ2 and δ5, the sliding surfaces, and

gliding states. The results prove the effectiveness of the UKF-based SMC system.

6 Conclusion

This paper introduced the UGSR, which is based on underwater snake-like robots, but achieves gliding

motion using telescopic modules. As gliding is an energy-efficient and long-duration motion mode driven

by net buoyancy, the UGSR preserves the high mobility of the snake-like robot but demonstrates superior

endurance ability. Considering the principles and characteristics of gliding motion, a dynamic model of

the UGSR was established. The difficulty of tracking control was alleviated by an input-output lineariza-

tion. Closed-loop stability of the nonlinear system was then achieved by an SMC design. This method

effectively handled the influence of parameter uncertainty and disturbance on the system stability. As

the control law is an expression of the module elongations, the actual system inputs were obtained by a
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Figure 9 (Color online) Simulation of the UKF-based SMC closed-loop system. (a) Control law u; (b) system inputs δ2
and δ5; (c) sliding surfaces s1 and s2; (d) gliding speed V (top) and gliding path angle γ (bottom).

decoupling solver. To implement the feedback control method, all states of the system must be input to

the controller. Thus, a UKF based nonlinear observer was constructed to extract the noisy measurement

signals and to estimate the state variables. Simulations verified the robustness of the proposed controller

under hydrodynamic parameter disturbances and input disturbances, and demonstrated the state esti-

mation accuracy and stability of the observer. Finally, the effectiveness of the UKF-based SMC system

was confirmed.

In future work, the control method will be applied to a prototype, and the stability and state tracking

of the gliding motion will be evaluated in a pool and lake test. Moreover, the hybrid dynamics of the

UGSR will be studied to achieve yaw control of the gliding motion through the rotate modules.
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