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Abstract The optimal control of dynamics is a popular topic for small-world networks. In this paper, we

address the problem of improving the behavior of Hopf bifurcations in an integer-order model of small-world

networks. In this study, the time delay is used as the bifurcation parameter. We add a fractional-order

proportional-derivative (PD) scheme to an integer-order Newman-Watts (N-W) small-world model to better

control the Hopf bifurcation of the model. The most important contribution of this paper involves obtaining

the stability of the system and the variation of the conditions of the Hopf bifurcation after a fractional PD

controller is added to the integer-order small-world model. The results demonstrate that the designed PD

controller can be used to restrain or promote the occurrence of Hopf bifurcations by setting appropriate

parameters. We also describe several simulations to verify our research results.
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1 Introduction

A simple network called a small-world network was developed in 1998 [1]. This network can describe

the gradual process from a rule lattice to a random graph. Many common problems pertaining to small-

world networks have been demonstrated through various studies. The model is linear and simplified as

the reaction instantaneous network, and the communication delay is ignored. In the present study, we

only consider the influence of time delay and nonlinear topology on the model, and ignore the topological

differences of the nonlinear constant interaction in the model [2, 3]. The study of the common Newman-

Watts (N-W) model is a popular topic in Hopf bifurcation research.

In recent years, increasing attention has been paid to the dynamic characteristics of small-world net-

works [3–14]. Recent studies on small-world network are plentiful, addressing not only sensitivity and

stability, but also periodic oscillatory behavior, chaos, and bifurcation [15,16]. For example, Xu et al. [5]

investigated the dynamic control of a small-world network with memory, and Mahajan et al. [9] discussed

the transition from clustered states to spatiotemporal chaos in small-world networks. Maslennikov et

al. [11] studied the basin stability for burst synchronization in small-world networks of chaotic slow-fast

oscillators.
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A Hopf bifurcation is a strategy for handling various dynamic properties of nonlinear systems, ranging

from the equilibrium point, periodic oscillation, and chaos [17–20]. More detailed information about the

performance of periodic solutions around the equilibrium can be derived following specific Hopf bifurcation

analysis. In recent years, there has been much progress in Hopf bifurcation research for small-world

networks. Xiao et al. [13] addressed the control of Hopf bifurcations of the fractional-order small-world

network model, while Zhou et al. [14] investigated the stability, instability, and Hopf bifurcation of a

delayed small-world network model with excitatory or inhibitory short-cuts.

Control strategy is a common method for improving the performance of complex networks. With the

development of complex networks, an increasing number of control strategies are in use, such as adaptive

control [21], state feedback control [22], impulsive control [23], robust disturbance rejection control [24],

and fault-tolerant control [25]. Control strategy has been successfully applied in complex network systems

of integer order and achieved the aim of control. However, a number of shortcomings remain. To

compensate for these shortcomings, a practical controller called a proportional-derivative (PD) feedback

controller is introduced to control the Hopf bifurcation arising in complex networks [13,26,27]. Compared

with state feedback control (or delayed feedback control), the PD scheme can greatly simplify the analysis

when the system contains only delay terms. In contrast to hybrid controller, the PD controller has two

adjustable parameters, making the design more flexible. In addition, the design of the PD controller is

more convenient and affordable than that of fault-tolerant control technology. The purpose of bifurcation

control can be achieved under only a small control force as it tends to vanish once stabilization is achieved.

For these reasons, the PD controllers have been widely investigated in recent years.

Researchers in the control community have applied PD control schemes to interfere with the per-

formance of researched systems and models. PD control has been extensively applied in robotic ma-

nipulation. For example, Zhang et al. [28] investigated switched fuzzy-PD control of contact forces in

robotic microbio manipulation. In addition, position domain nonlinear PD control for contour tracking

of robotic manipulators was proposed in [29]. Furthermore, complex networks under PD controllers have

been widely investigated in recent years. Ding et al. [26] controlled the intrinsic occurrence of a Hopf

bifurcation in an N-W network model by adding a PD controller, while Tang et al. [27] applied a designed

PD control to a congestion control system. Xiao et al. [13] addressed the problem of fractional-order PD

control in small-world networks and demonstrated that the onset of Hopf bifurcations can be altered via

the proposed PD controller by setting proper control parameters. Özbay et al. [30] studied PID controller

design for fractional-order systems with time delay. In this paper, we focus on fractional-order PD control

of an N-W small-world network and further examine the stability, bifurcation and periodic solution of

the controlled network.

In exiting studies, the order of the small-world network model is the same as that of the derivative

term in the PD controller [13, 27], which fails to generalize the controlled model to a further extent.

Unlike previous studies, our aim in this study is to apply a PD controller with variable order in the

derivation term to an integer-order small-world network with time delay. It should be noted that the

order of the small-world network model is inconsistent with that of the derivative in a PD controller. The

fractional-order PD control proposed in this paper is therefore more general.

The contributions of this paper are four-fold:

(1) A fractional-order PD controller with variable order is used to interfere with the dynamics of an

integer-order small-world network model, and the variable order of the fractional derivative is taken

proportionally as 1
n in the control process.

(2) The order of the PD controller differs from that of the small-world network model. We apply a

fractional-order PD controller to an integer-order small-world network model, thus extending the variety

of controllable systems.

(3) The initiation of the inherent Hopf bifurcation can be effectively delayed or advanced by setting

appropriate proportional and derivative control parameters. Thus, dynamical behaviors of small-world

networks can be optimized under fractional-order PD control.

(4) The designed fractional-order PD control scheme can also be applied to bifurcation control of

general integer-order systems with time delay. The control scheme proposed in this paper serves to



Wang H F, et al. Sci China Inf Sci January 2020 Vol. 63 112206:3

provide a reference for bifurcation control of integer-order delayed systems.

The remainder of this paper is structured as follows. In Section 2, we introduce the Caputo derivative

and an integer-order small-world network model with time delay. In Section 3, by analyzing the stability,

we obtain the bifurcation conditions of the system. In Section 4, we present several numerical simulations

to support the theoretical outcomes. In Section 5, we conclude the paper.

2 Preliminaries

As a general rule, we have used three common fractions in previous research: the Grunwald-Letnikov

fractional derivative, the Caputo fractional derivative, and the Riemann-Liouville fractional deriva-

tive [31–34]. Because the Caputo fractional derivative has the advantage of not limiting the initial con-

ditions of the system, it is more suitable for practical engineering problems [35, 36]. The main fractional

order used in this paper is the Caputo derivative, which is defined as follows.

Definition 1 ([37]). The Caputo fractional derivative can be expressed as

C
0 D

̟
t f(t) =

1

ς(ϕ−̟)

∫ t

0

(t− τ)ϕ−̟−1f (ϕ)(τ)dτ, (1)

where ̟ > 0, ϕ− 1 6 ̟ < ϕ and ϕ ∈ Z+. Here, ς(·) is the Gamma function and ς(s) =
∫ +∞

0 ts−1e−tdt.

In addition, ̟ indicates the value of the fraction-order that is normally selected in range ̟ ∈ (0, 1).

Theorem 1 ([38]). The semi-group property of the fractional-order differential can be described as: If

f(t) ∈ C[0, κ], κ > 0, α ∈ R+, β ∈ R+ and α+ β 6 1 hold, then

C
0 D

α
t D

β
t f(t) =

C
0 D

β
t D

α
t f(t) =

C
0 D

α+β
t f(t), t ∈ [0, κ].

Model description. The N-W network model was proposed to explain the spread of diseases [2].

However, this model has shortcomings; for instance, it omits transmission delay. In this study, we

examine a small-world model with the interference of time delays and nonlinear couplings. The model

can be described as follows:

i̇(t) = ε+ i(t− τ) − µεi2(t− τ), (2)

where i(t) is the total impact volume, τ is the time delay, and µ and ε are the measures of nonlinear

interactions and the length scale, respectively.

Let i∗ be an equilibrium point of model (2). Then, Eq. (2) becomes

ε+ i∗ − µε(i∗)2 = 0. (3)

By solving (3), it is simple to obtain a positive equilibrium point i∗ =
1+

√
1+4µε2

2µε .

3 Hopf bifurcation control via PD1/n feedback controller

In this section, we present the design of a PD controller for model (2) to regulate the occurrence of a

Hopf bifurcation. An ordinary PD controller is expressed as follows:

u(t) = Kp[i(t)− i∗] +Kd

[

C
0 D

1
n

t (i(t)− i∗)
]

, (4)

where Kp and Kd represent the proportional gain and derivation gain, respectively.

Remark 1. If n = 1, Eq. (4) is a traditional PD controller. If n > 2, Eq. (4) is a fractional PD

controller. Therefore, Eq. (4) is a generalization of the traditional PD controller.
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Thus, we can obtain a controlled fractional-order small-world network model via the designed PD

controller (4) as follows:

i̇(t) = ε+ i(t− τ)− µεi2(t− τ) +Kp[i(t)− i∗] +Kd

[

C
0 D

1
n

t (i(t)− i∗)
]

. (5)

Let
l1(t) = i(t)− i∗,

l2(t) =
C
0 D

1
n

t l1(t),

l3(t) =
C
0 D

1
n

t l2(t),

...

ln(t) =
C
0 D

1
n

t ln−1(t).

(6)

From Theorem 1, we have

C
0 D

1
n

t ln(t)

= C
0 D

1
n

t

[

C
0 D

1
n

t ln−1(t)
]

= C
0 D

2
n

t ln−1(t) = · · · = C
0 D

n
n

t l1(t) = l̇1(t) = i̇(t)

= ε+ l1(t− τ) + i∗ − µε(l1(t− τ) + i∗)2 +Kpl1(t) +Kdl2(t).

Therefore, the controlled N-W model (5) is equivalent to the following n-dimensional system:

C
0 D

1
n

t l1(t) = l2(t),

C
0 D

1
n

t l2(t) = l3(t),

...

C
0 D

1
n

t ln−1(t) = ln(t),

C
0 D

1
n

t ln(t) = ε+ l1(t− τ) + i∗ − µε(l1(t− τ) + i∗)2 +Kpl1(t) +Kdl2(t).

(7)

The linearized model of the controlled N-W model (5) at the equilibrium point can be represented as

follows:

C
0 D

1
n

t l1(t) = l2(t),

C
0 D

1
n

t l2(t) = l3(t),

...

C
0 D

1
n

t ln−1(t) = ln(t),

C
0 D

1
n

t ln(t) = (1− 2µεi∗)l1(t− τ) +Kpl1(t) +Kdl2(t).

(8)

The following features can be obtained by sorting (8):

∣

∣S
1
n −A

∣

∣ = det





















S
1
n −1 0 · · · 0

0 S
1
n −1 · · · 0

...
...

...
...

0 0 0 · · · −1

−(1− 2µεV ∗)e−Sτ −Kp −Kd 0 · · · S
1
n





















= 0. (9)

Thus,

S −KdS
1
n − ae−Sτ −Kp = 0, (10)
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where

a = 1− 2µεi∗ = −
√

1 + 4µε2 < 0.

3.1 Case without delays (τ = 0)

When τ = 0, Eq. (10) becomes

S −KdS
1
n − a−Kp = 0. (11)

Lemma 1. If Kp < −a and Kd < 0, the roots of (11) must have negative real parts.

Proof. Let S = Aeiθ = A(cos θ + i sin θ). A is the modulus and θ is the argument of S on the complex

plane. Therefore, Eq. (11) can be equally expressed as

A(cos θ + i sin θ)−KdA
1
n

(

cos
θ

n
+ i sin

θ

n

)

− a−Kp = 0. (12)

Eq. (12) then becomes the following equation by separating the real and imaginary parts:











A cos θ −KdA
1
n cos

θ

n
− a−Kp = 0,

A sin θ −KdA
1
n sin

θ

n
= 0.

(13)

It is clear that, when Kp < −a, Kd < 0 and θ ∈ [−π

2 ,
π

2 ], Eq. (13) has no roots with positive real parts.

As a result, the roots of (11) must have negative real parts. This ends the proof.

Theorem 2. If Kp < −a and Kd < 0, the controlled model (5) with n (n ∈ Z+) and τ = 0 is

asymptotically stable at the equilibrium point.

Remark 2. When n = 1, the fractional-order PD controller (4) degenerates to an integer-order PD

controller, and (11) has a negative root S =
a+Kp

1−Kd
if Kp < −a and Kd < 1. Thus, we can conclude

that the controlled model (5) with n = 1 and τ = 0 is asymptotically stable at the equilibrium point if

Kp < −a and Kd < 1.

3.2 Case with delays (τ > 0)

When τ > 0, by substituting S = iω (ω > 0) into (10), Eq. (10) becomes

−Kp − a(cosωτ − i sinωτ) −Kdω
1
n

(

cos
π

2n
+ i sin

π

2n

)

+ iω = 0. (14)

Then, separating the real and imaginary parts, Eq. (14) becomes











a cosωτ = −Kp −Kdω
1
n cos

π

2n
,

a sinωτ = −ω +Kdω
1
n sin

π

2n
.

(15)

Thus,

ω2 − 2Kdω
1
n
+1 sin

π

2n
+K2

dω
2
n + 2KpKdω

1
n cos

π

2n
+K2

p − a2 = 0. (16)

Let z = ω
1
n . Then, Eq. (16) becomes

z2n − 2Kd sin
π

2n
zn+1 +K2

dz
2 + 2KpKd cos

π

2n
z +K2

p − a2 = 0. (17)

Lemma 2. (1) If Kp < a and Kd < 0, Eq. (17) has no positive roots. (2) If a < Kp < −a and Kd < 0,

Eq. (17) has only one positive root.
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Proof. We define a function b(z) as follows:

b(z) = z2n − 2Kd sin
π

2n
zn+1 +K2

dz
2 + 2KpKd cos

π

2n
z +K2

p − a2.

It then follows that

b′(z) = 2nz2n−1 − 2Kd(n+ 1) sin
π

2n
zn + 2K2

dz + 2KpKd cos
π

2n
,

and

b′′(z) = 2n(2n− 1)z2n−2 − 2Kdn(n+ 1) sin
π

2n
zn−1 + 2K2

d .

(1) If Kp < a < 0 and Kd < 0, we have b′(z) > 0 for z ∈ [0,+∞), which signifies that b(z) is a

monotone increasing function. Together with b(0) = K2
p − a2 > 0, Eq. (17) has no positive roots.

(2) If a < Kp < 0 and Kd < 0, then b′(z) > 0 for z ∈ [0,+∞), which signifies that b(z) is a monotone

increasing function. It should be noted that b(0) = K2
p − a2 < 0. Therefore, b(z) has a unique positive

zero z0. This implies that Eq. (17) has only one positive root.

If 0 < Kp < −a and Kd < 0, then b(0) < 0 and b′(0) < 0. In addition, limz→∞ b′(z) = +∞ and

b′′(z) > 0 for z ∈ [0,+∞). Therefore, b(z) is a concave function for z ∈ [0,+∞). This indicates that

there exists a minimum point ze such that b′(ze) = 0. That is to say, b(z) is monotonically decreasing at

(0, ze), and monotonically increasing at (ze,+∞). Together with b(0) < 0, Eq. (17) has a unique positive

root z0 (z0 > ze). This ends the proof.

Let ω02 = zn0 . Note that h′(z0) > 0. It follows from (15) that

τ02 =
1

ω02
arccos

(

−KpKdω
1
n

02 cos
π

2n

a

)

. (18)

Remark 3. It follows from (16) that K2
p+(1−2Kd+K2

d)ω
2−a2 = 0 when n = 1. Thus, ω01 =

√
a2−K2

p

|1−Kd|

and τ01 = 1
ω01

arccos(
−Kp

a ) for n = 1.

Lemma 3. Suppose that a < Kp < −a and Kd < 0. Let S(τ) = µ(τ) + iω(τ) be the root of (10), given

µ(τ02) = 0 and ω(τ02) = ω02. Then the transversality condition can be obtained as follows:

Re

[

dS(τ)

dτ

]−1

ω=ω02
τ=τ02

> 0.

Proof. Differentiating (10) on both sides with respect to τ , we can obtain

[

dS(τ)

dτ

]−1

=
(Kd

n S
1
n − S)eSτ

aS2
. (19)

Then, we have

Re

[

dS(τ)

dτ

]−1

ω=ω02
τ=τ02

=
−KdKp

n ω
1
n

02 cos
π

2n − K2
d

n ω
2
n

02 + 2Kd

n ω
1+n
n

02 sin π

2n − ω2
02

−a2ω2
02

,

=
−KdKp

n z0 cos
π

2n − K2
d

n z20 + 2Kd

n zn+1
0 sin π

2n − z2n0

−a2z2n0
,

=
h′(z0)

2na2z2n0
. (20)

It should be noticed that h′(z0) > 0. Thus, Re[dS(τ)
dτ ]−1

ω=ω02
τ=τ02

> 0, namely, Re[dS(τ)
dτ ]ω=ω02

τ=τ02
> 0. This

ends the proof.
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Figure 1 (Color online) Waveform plot of model (2) with

initial values i(0) = 0, ε = 3, µ = 0.1, and Kp = Kd = 0.

Model (2) is asymptotically stable at i∗ = 5.241 when τ =

0.69 < τ00.

Figure 2 (Color online) Waveform plot of model (2) with

initial values i(0) = 0, ε = 3, µ = 0.1, and Kp = Kd = 0.

A Hopf bifurcation occurs when τ = 0.75 > τ00.

Remark 4. By simple calculation, it is evident that Re[dS(τ)
dτ ]−1

ω=ω01
τ=τ01

= (Kd−1)2

a2 > 0 when n = 1.

Therefore, the transversality condition also holds for n = 1.

The following results are obtained based on Theorem 2, and Lemmas 2 and 3.

Theorem 3. For the controlled model (5) with n ∈ Z+ and τ > 0, the following results hold.

(1) If Kp < a and Kd < 0, the controlled model (5) is asymptotically stable for τ > 0 at the equilibrium

point i∗ =
1+

√
1+4µε2

2µε .

(2) If a < Kp < −a and Kd < 0, the controlled model (5) is asymptotically stable for τ ∈ (0, τ02).

However, it undergoes a Hopf bifurcation at the equilibrium point i∗ =
1+

√
1+4µε2

2µε when τ = τ02.

Remark 5. When Kp = 0 and Kd = 0, the conditions in conclusion (2) in Theorem 3 are satisfied for

the uncontrolled model (2).

4 Numerical simulation

In this section, we present several examples to demonstrate the aforementioned theories and introduce

the effect of the PD1/n controller. In numerical simulations, we use the predictor-corrector scheme

introduced in [39] to determine the solution of delayed fractional-order differential equations. For the

sake of comparison, we consider models with the same parameters ε = 3 and µ = 0.1 used in [4, 13].

Therefore, model (2) has a unique equilibrium i∗ = 5.241.

4.1 Without PD1/n controller

Eq. (2) becomes

i̇(t) = −0.3i2(t− τ) + i(t− τ) + 3.

From [40], we can calculate τ00 = 0.74. Model (2) is locally asymptotically stable at the equilibrium

point when τ = 0.69 < τ00, which is displayed in Figure 1. In addition, it undergoes a Hopf bifurcation

when τ = 0.75 > τ00, which is illustrated in Figure 2. The corresponding bifurcation diagram is presented

in Figure 3. This implies that the bifurcation point obtained by theoretical analysis in [40] is very precise

and effective.

4.2 With PD1/n controller

Next, we apply the PD1/n controller to the uncontrolled model (2). By changing the control parameters

Kp and Kd, we can advance or defer the Hopf bifurcation point of the controlled system. That is, we can

optimize the bifurcation characteristics by PD1/n control.
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Figure 3 Bifurcation diagram of i(t) vs. τ00 with initial values n = 1, i(0) = 0, ε = 3, µ = 0.1, Kp = 0.8, and Kd = −0.1.
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i(
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Figure 4 (Color online) Waveform plot of controlled

model (5) with initial values n = 1, i(0) = 0, ε = 3, µ = 0.1,

Kp = 0.8, and Kd = −0.1. Model (5) is asymptotically sta-

ble at i∗ = 5.241 when τ = 0.62 < τ01.

Figure 5 (Color online) Waveform plot of controlled

model (5) with initial values n = 1, i(0) = 0, ε = 3, µ = 0.1,

Kp = 0.8, and Kd = −0.1. A Hopf bifurcation occurs when

τ = 0.68 > τ01.

0

2

4

6

8

0

01

0.80.70.60.50.40.30.20.1

τ

i(
t)

Figure 6 Bifurcation diagram of i(t) vs. τ01 with initial values n = 1, i(0) = 0, ε = 3, µ = 0.1, Kp = 0.8, and Kd = −0.1.

Example 1 (Under integral-order PD controller (n = 1)). (I) We consider n = 1, and set Kp = 0.8 and

Kd = −0.1. By Remark 3, we can obtain τ01 = 0.65. It can be seen that the critical value τ01 = 0.65

of the controlled model (5) is smaller than τ00 = 0.74 of the original congestion model (2). This signifies

that the critical value is advanced with the integral-order PD controller with Kp = 0.8 and Kd = −0.1.

According to Theorem 2, the controlled model (5) is locally asymptotically stable at the equilibrium

point when τ = 0.62 < τ01, as illustrated in Figure 4. In addition, a Hopf bifurcation occurs when

τ = 0.68 > τ01, as displayed in Figure 5. The corresponding bifurcation diagram is presented in Figure 6.

(II) We set n = 1, Kp = 0.7, and Kd = −0.5. It follows from Remark 3 that τ01 = 0.92, which is

larger than τ00 = 0.74 of model (2). This indicates that the Hopf bifurcation point is delayed by the

designed PD controller with Kp = 0.7 and Kd = −0.5. From Theorem 2, model (5) is asymptotically

stable at i∗ = 5.241 for τ ∈ [0, τ01), and unstable when τ > τ01. Figure 7 displays the trend of model

(5) when τ = 0.88 < τ01, while Figure 8 illustrates the periodic oscillation when τ = 0.94 > τ01. The

corresponding bifurcation diagram is presented in Figure 9.

Example 2 (Under fractional-order PD1/n controller (n > 1)). (I) To advance the bifurcation of model
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Figure 7 (Color online) Waveform plot of controlled

model (5) with initial values n = 1, i(0) = 0, ε = 3, µ = 0.1,

Kp = 0.7, and Kd = −0.5. Model (5) is asymptotically sta-

ble at i∗ = 5.241 when τ = 0.88 < τ01.

Figure 8 (Color online) Waveform plot of controlled

model (5) with initial values n = 1, i(0) = 0, ε = 3, µ = 0.1,

Kp = 0.7, and Kd = −0.5. A Hopf bifurcation occurs when

τ = 0.94 > τ01.

1

2

3

4

5

6

7

8

0.80.6 1.00.40.20

i(
t)

01τ

Figure 9 Bifurcation diagram of i(t) vs. τ01 with initial values n = 1, i(0) = 0, ε = 3, µ = 0.1, Kp = 0.7, and Kd = −0.5.
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Figure 10 (Color online) Waveform plot of controlled

model (5) with initial values n = 3, i(0) = 0, ε = 3, µ = 0.1,

Kp = 0.8, and Kd = −0.2. Model (5) is asymptotically sta-

ble at i∗ = 5.241 when τ = 0.60 < τ02.

Figure 11 (Color online) Waveform plot of controlled

model (5) with initial values n = 3, i(0) = 0, ε = 3, µ = 0.1,

Kp = 0.8, and Kd = −0.2. The equilibrium is unstable

when τ = 0.68 > τ02.

(2), we select n = 3, Kp = 0.8 and Kd = −0.2. By (18), we obtain τ02 = 0.65. From Theorem 3,

model (5) is asymptotically stable at i∗ = 5.241 for τ ∈ [0, τ02), and unstable when τ > τ02. Figure 10

displays that the controlled model (5) is stable when τ = 0.60 < τ02. A periodic oscillation occurs

through a Hopf bifurcation when τ = 0.68 > τ02, as illustrated in Figure 11. It should be noted that

τ02 = 0.65 < τ00 = 0.74. That is, the critical point of the system is advanced. The corresponding

bifurcation diagram is presented in Figure 12.

(II) Next, we select Kp = −0.2, Kd = −0.2 and n = 3 to delay the Hopf bifurcation. By (18), we

obtain τ02 = 0.89. From Theorem 3, the controlled model (5) is asymptotically stable for τ ∈ [0, τ02),

and unstable when τ > τ02. The experimental research on different numbers for the delay are graphically

displayed in Figures 13 and 14. The corresponding bifurcation diagram is presented in Figure 15.

It should be noted that the fractional-order PD controller degenerates to an integer-order controller
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Figure 12 Bifurcation diagram of i(t) vs. τ02 with initial values n = 3, i(0) = 0, ε = 3, µ = 0.1, Kp = 0.8, and

Kd = −0.2.
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Figure 13 (Color online) Waveform plot of controlled

model (5) with initial values n = 3, i(0) = 0, ε = 3, µ = 0.1,

Kp = −0.2, and Kd = −0.2. The equilibrium is asymptot-

ically stable when τ = 0.87 < τ02.

Figure 14 (Color online) Waveform plot of controlled

model (5) with initial values n = 3, i(0) = 0, ε = 3, µ = 0.1,

Kp = −0.2, and Kd = −0.2. The equilibrium is unstable

at i∗ = 5.241 when τ = 0.91 > τ02.
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Figure 15 Bifurcation diagram of i(t) vs. τ02 with initial values n = 3, i(0) = 0, ε = 3, µ = 0.1, Kp = −0.2, and

Kd = −0.2.

(n = 1), and Example 1 demonstrates that the critical value of Hopf bifurcations can be both delayed

and advanced when an integer-order PD controller is used. Example 2 draws another contrast; when

the fractional-order PD controller (n > 1) is applied, we can also manipulate the bifurcation point by

altering the control gain parameters Kp and Kd.

4.3 Influence of Kp, Kd, and n on critical value τ0

In this subsection, we discuss the influence of the control gain parameters Kp, Kd, and n on the critical

value τ0. First, we examine the effect of Kd on τ0 with fixed Kp. Figure 16 depicts the relationship of Kd

and τ0 with Kp = −0.5. We conclude that the values of τ0 decline with an increase in Kd. In addition,

the descending speed of τ0 becomes increasingly clear with an increase in n. Figure 17 illustrates the

relationship of Kp and τ0 with Kp = −2. Similarly, the value of τ0 decreases with an increase in Kp and

the rate of descent decreases with an increase in n.

According to the above analysis, we can determine that n also has a large influence on the change of
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Figure 16 (Color online) Relationship between Kd and

τ0 with fixed Kp = −0.5.

Figure 17 (Color online) Relationship between Kp and

τ0 with fixed Kd = −2.

Table 1 Effect of n on value of τ0 for controlled system (5) with Kp = −1 and Kd = −1

Fractional-order parameter n Bifurcation point τ0

1 0.8855

2 0.7856

3 0.7761

4 0.7735

5 0.7720

6 0.7711

7 0.7706

8 0.7703

the bifurcation point τ0. Table 1 illustrates the influence of n on the bifurcation point τ0 when Kp = −1,

Kd = −1, ε = 3, and µ = 0.1. Disregarding the integer-order case (n = 1), we can draw the conclusion

that the bifurcation point τ0 monotonically decreases with an increase in n (n > 2). In addition, Table 1

indicates that the controlled small-world network model is difficult to keep stable with a larger delay, and

it is more likely to have a Hopf bifurcation as the delay τ increases.

As seen in Table 1, changing n from 1 to 8 results in the monotonic decreasing of τ0. Therefore, τ0 has

a maximum value when n = 1.

5 Conclusion

In this study, a fractional-order PD1/n controller is designed for the first time and applied to an integer-

order small-world model. The results demonstrate that the designed PD controller can be used to

restrain or promote the occurrence of Hopf bifurcations by setting appropriate parameters. In addition,

the stability and Hopf bifurcation conditions of the controlled model with a fractional-order PD controller

are obtained.

In future work, we will focus on a more general fractional-order controller. In addition, we will study the

influence of the controller on the dynamics of the controlled system. To improve the dynamic performance

of the system, we will apply the designed controller to more general real systems.
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