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Abstract PRIMATEs is a family of authenticated encryption design submitted to competition for authen-

ticated encryption: security, applicability, and robustness. The three modes of operation in PRIMATEs

family are: APE, HANUMAN, GIBBON with security levels: 80, 120 bits. APE is robust despite the nonce

misusing. In this study, we revise the algebraic model and find new integral distinguishers for both PRI-

MATE permutation and its inverse permutation. Moreover, we construct a zero-sum distinguisher for full

12-round PRIMATE-80/120 permutation with the 2100/2105 complexity, improving over previous work. We

also perform an integral attack on 8-round finalization of APE-80/120 with 230 chosen messages. The key

recovery process is optimized using the FFT technique presented by Todo and Aoki. Our work is the best

attack against APE, demonstrating the practical attack on 8-round finalization of APE-80. The new inte-

gral distinguishers apply to create forgeries on 5/6-round finalization of APE and HANUMAN that require

215/230 chosen messages, which is the first forgery attack against APE and HANUMAN.
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1 Introduction

The rapid development of the Internet of things (IoT) has facilitated the application environments of

authenticated encryption (AE). Rogaway [1] formalizes the AE concept to guarantee data confidentiality

and authenticity using an encryption scheme and a message authentication code (MAC). Such generic

composition paradigm is discussed by [2]. However, a crude combination of the two schemes can cause

serious problems, such as poor performance and security evaluation problem. To overcome these problems,

Jutla [3], Gligor et al. [4], and Rogaway et al. [5] proposed an integrated AE scheme that provides

confidentiality and authenticity in a single scheme. Presently, AES-GCM [6,7] is one of the most widely

deployed AE schemes defined in NIST’s SP 800-38D and P1619.

In 2013, NIST sponsored competition for authenticated encryption: security, applicability, and robust-

ness (CAESAR) [8] to find suitable AE schemes for various environments. In CAESAR competition, the

submission protfolio is organized into three use cases: (1) lightweight applications, (2) high-performance

applications, and (3) defense in depth. On March 2014, PRIMATEs competed in the CAESAR compe-

tition and passed the second-round filtering on the September in the same year. Evaluating the security

of submissions promotes the process of CAESAR competition.

Andreeva et al. [9] designed PRIMATEs, the designers slightly modified the first version of PRIMATEs

v1.0 architecture to upgrade it to PRIMATEs v1.02. Three modes of operation of AE schemes family

*Corresponding author (email: weiwangsdu@sdu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-1507-1&domain=pdf&date_stamp=2019-12-24
https://doi.org/10.1007/s11432-019-1507-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-1507-1
https://doi.org/10.1007/s11432-019-1507-1


Li Y B, et al. Sci China Inf Sci January 2020 Vol. 63 112106:2

PRIMATEs are: APE, HANUMAN, GIBBON with two security levels: 80 and 120 bits. The primary

recommended security level for these versions is 120. APE is the primary recommended mode followed by

HANUMAN and GIBBON. APE is robust despite misusing the nonce, whereas HANUMAN and GIBBON

are secure if the nonce is unique and non-repeating. In the v1.02, the designers submitted a document

that revealed the first cryptanalysis of PRIMATEs, including differential trails, linear trails, collision

trails, and impossible differential trails for the PRIMATE permutation. Saha et al. [10] also performed

a classical diagonal fault attack on APE. Minaud presented key-recovery attacks on 8-round finalization

of APE with 233 chosen messages, then pointed out that the full 12-round PRIMATE permutation can

be distinguished from a perfect random permutation using a zero-sum distinguisher with the complexity

2130 [11]. Morawiecki et al. [12] applied a cube-like attack on 6-round initialization of HANUMAN-120

in nonce-respecting scenario. Lukas and Daemen [13] performed a state recovery attack on GIBBON in

nonce-reuse scenario based on a flaw of the 6-round PRIMATE permutation.

1.1 Contributions

We improve the previous cryptanalysis work of APE and HANUMAN in PRIMATEs family, including

zero-sum distinguisher on PRIMATE permutation, key-recovery attacks on APE, and forgery attacks

on APE and HANUMAN. The results of the PRIMATEs authenticated encryption are summarized in

Table 1. We provide the following contributions.

1.1.1 Improved integral distinguishers

We provide a more precise evaluation of the algebraic degree of PRIMATE permutation and we find new

integral distinguishers for both forward and backward rounds of PRIMATE permutation useful for many

attacks.

1.1.2 Improved zero-sum distinguishers

Minaud [11] introduced zero-sum distinguishers for 12-round PRIMATE-80/120 permutation by the com-

plexity 2130 considering the algebraic degree of the permutation. We combine two integral distinguishers

(targeting PRIMATE permutation and its inverse) to introduce new zero-sum distinguishers into full

12-round PRIMATE-80/120 permutation with the reduced complexity 2100/2105.

1.1.3 Improved key-recovery attacks on APE

Minaud [11] performed a cube attack against 8-round finalization of APE-80/120, which required 233

chosen 2-block messages and time complexity 261/271. We apply new integral distinguishers and the fast

fourier transform (FFT) technique [14] to perform key-recovery attacks on APE-80/120 with 230 chosen

1-block messages and substantially reduced time complexity 239.29/250.26. We performed the practical

attack against 8-round finalization of APE-80 for the first time based on the complexity. APE is robust

despite misusing the nonce. Therefore, we evaluate its security in a nonce-misuse scenario.

1.1.4 Forgery attacks on APE and HANUMAN

From our discovery, the new integral distinguishers we can be applied to the 5/6-round finalization of

APE and HANUMAN to create forgery with practical complexity 215/230 in the nonce-misuse scenario.

We construct a structure that contain m messages, with knowing last blocks of ciphertexts and tags

for (m − 1) messages. This procedure determines the last block of ciphertext and tag for the remaining

message which threatens the integrity of reduced-round APE. Since HANUMAN demands unique nonces,

we compromise the integrity of its variant to repeat nonces.

1.2 Organization

This paper is organized as follows. In Section 2, we show notations used in this paper and a brief descrip-

tion of PRIMATEs. Section 3 provides new integral distinguishers for both PRIMATE permutation and
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Table 1 Results for PRIMATEs

Attack type Variants Rounds Data complexity Time complexity Method Scenario Source

Distinguisher

PRIMATE-80
12/12 – 2130

Zero-sum –

Ref. [11]

12/12 – 2100 Section 4

PRIMATE-120
12/12 – 2130 Ref. [11]

12/12 – 2105 Section 4

Key recovery APE-80

8/12 233 261 Cube
Nonce-misuse

Ref. [11]*

8/12 235 261 Cube Ref. [11]

8/12 235 239.29 Integral
Nonce-misuse

Section 5

8/12 230 239.29 Integral Section 5

Key recovery APE-120

8/12 233 271 Cube
Nonce-misuse

Ref. [11]*

8/12 235 271 Cube Ref. [11]

8/12 235 250.26 Integral
Nonce-misuse

Section 5

8/12 230 250.26 Integral Section 5

Forgery

APE-80 5/12 215 215

Integral Nonce-misuse

Section 6

APE-80 6/12 230 230 Section 6

APE-120 5/12 215 215 Section 6

APE-120 6/12 230 230 Section 6

Key recovery HANUMAN-120 6/12 265 265 Cube-like Nonce-respecting Ref. [12]

Forgery

HANUMAN-80 5/12 215 215

Integral Nonce-misuse

Section 6

HANUMAN-80 6/12 230 230 Section 6

HANUMAN-120 5/12 215 215 Section 6

HANUMAN-120 6/12 230 230 Section 6

* The attack required 2-block message encryption instead of 1-block messages, with the first block fixed arbitrarily, and

the second block covering a cube of size 33.

Table 2 Notations

Symbol Definition

x ∈ {0, 1}k Bitstring x of length k (variable if k = ∗)

x⊕ y XOR of bitstrings x and y

x||y Concatenation of bitstrings x and y

xi i-th bit of the state used in PRIMATE permutation

Xi 5-bit state word of the state used in PRIMATE permutation

K, N , T Secret key K, nonce N , tag T

P , C, A Plaintext P , ciphertext C, associated data A (in blocks Pi, Ci, Ai)

p1, p2, p3, p4 Four different permutations used in PRIMATEs

its inverse permutation. In Section 4, we apply the new integral distinguishers to present a new zero-sum

distinguisher on 12-round PRIMATE-80/120 permutation. In Section 5, we perform key-recovery attacks

on round-reduced version of APE. We create forgeries for round-reduced version of APE and HANUMAN

with 5/6-round finalization in Section 6. Section 7 concludes the paper.

2 Preliminary

In this section, we show notations and provide a brief description of AE family PRIMATEs.

2.1 Notations

Table 2 specifies the notations in this paper.

2.2 Brief description of PRIMATEs [9]

PRIMATEs is a family of AE schemes designed by Andreeva et al. [9] and defined by three modes of

operation Scheme ∈ {APE, HANUMAN, GIBBON}, it comprises the two security levels s ∈ {80, 120}
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Figure 2 The encryption of HANUMAN.

Table 3 The S-box of PRIMATEs [9]

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

bits. Scheme is based on duplex sponge construction. The underlying permutation of PRIMATEs is

called PRIMATE-s which operates on a sponge state of size b bits, consisting of a rate part with r bits

and a capacity part with c bits. PRIMATEs has two different sizes; each size has 4 variants (p1, p2, p3, p4).

Each mode of operation and security level determines the length of the key, tag, nonce, and the specific

permutation in PRIMATE-s. Ref. [9] provides the details.

We focus on APE and HANUMAN, which are shown in Figures 1 and 2. The encryption is partitioned

into four phases: initialization, processing associated data, processing the plaintext, and finalization.

PRIMATE permutation is inspired by a wide trail strategy [15] and its structure is similar to that of

Rijndael [16]. PRIMATE-80 and PRIMATE-120 operate on a 5 × 8 and a 7 × 8 state of 5-bit words,

respectively. The first row of the state (5 bytes) is the rate part, whereas the others are the capacity part

of the state. PRIMATE updates the state in four steps:

CA ◦MC ◦ SR ◦ SE.

Permutations p1, p2, p3, and p4 of PRIMATE differ in the number of rounds and round constant used in

CA step.

2.2.1 SubElements (SE)

Table 3 defines the 5-bit S-box in the SubElements step, applied to each parallel word of the state. This

step is the only non-linear operation in PRIMATE permutation.

2.2.2 ShiftRows (SR)

The ShiftRows step is a left cyclic shift operation based on the words of the state row by row. Row i is

shifted left by si = {0, 1, 2, 4, 7} positions for PRIMATE-80 and by si = {0, 1, 2, 3, 4, 5, 7} positions for
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PRIMATE-120.

2.2.3 MixColumns (MC)

The MixColumns step is on the state column by column. It is a left-multiplication by a 5× 5 matrix for

PRIMATE-80 and a 7× 7 matrix for PRIMATE-120.

2.2.4 ConstantAddition (CA)

The ConstantAddition step XORed the second word of the second row with a constant.

3 Integral distinguisher

In this section, we revise the algebraic model of PRIMATE permutation and give a more accurate estimate

on the algebraic degree. Then we find new integral distinguishers for both forward and backward rounds

of PRIMATE permutation for subsequent work.

3.1 Algebraic model of PRIMATE permutation

To find the integral distinguishers for both PRIMATE permutation and its inverse, we must determine

the degree of one PRIMATE S-box and its inverse.

Lemma 1. The algebraic degree of one PRIMATE permutation round is 2.

Proof. With respect to F2, the algebraic degree of one PRIMATE S-box can be easily determined from

its algebraic normal form (ANF):

y0 = x0x2 + x0x3 + x1x4 + x1 + x2x3 + x2 + x3,

y1 = x0 + x1x2 + x1x3 + x2x3 + x2x4 + x3,

y2 = x0x1 + x0x4 + x0 + x1 + x2x3 + x2x4,

y3 = x0x2 + x0x4 + x0 + x1x2 + x4x3,

y4 = x0x3 + x1 + x2x4 + x4 + 1.

Here, x0, x1, x2, x3, x4, and y0, y1, y2, y3, y4 represent the input, and output of an S-box, with x0/y0
representing the most significant bit. The S-boxes in one SE step are applied in parallel to the state.

Moreover, SR, MC and CA do not increase the algebraic degree. Consequently, the overall degree of one

PRIMATE permutation round is 2.

Lemma 2. The algebraic degree of one inverse PRIMATE permutation round is 3.

Proof. We use the ANF of the inverse PRIMATE S-box to determine the degree of the inverse permu-

tation:

y0 = x0x1 + x0x2x3 + x0x2x4 + x0x2 + x0x3x4 + x0x3

+ x0x4 + x0 + x1x3x4 + x1 + x2x3x4 + x2x3 + x3x4,

y1 = x0x1x3 + x0x1x4 + x0x2x3 + x0x2x4 + x0x3x4 + x1x2x3

+ x1x4 + x2x3x4 + x2 + x3x4 + x3,

y2 = x0x1x4 + x0x2x4 + x0x2 + x0x3x4 + x0x3 + x0 + x1x2x3

+ x1x2 + x1x3 + x2x3 + x3x4 + x3,

y3 = x0x1x3 + x0x1x4 + x0x2x4 + x0x4 + x0 + x1x2x4

+ x1x2 + x2x3 + x2x4 + x2 + x3,

y4 = x0x1x2 + x0x1 + x0x2x3 + x0x2x4 + x0x3x4 + x0x3

+ x1x2x4 + x1x2 + x1x3x4 + x1x3 + x1x4 + x2x3 + x2

+ x3 + x4 + 1.
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The algebraic degree of the ANF of the inverse PRIMATE S-box is 3. Similar to Lemma 1, the overall

degree of one inverse PRIMATE permutation round is 3.

3.2 Integral distinguishers for forward/backward rounds of PRIMATE permutation

According to Lemma 1, an upper bound for the degree of the r-round PRIMATE-80/120 permutation is

2r, showing that an r-round integral distinguisher requires d = 2r+1 bits to take over all possible values.

However, we can still improve by setting d a multiple of the 5-bit S-box size [17]. By choosing d active

bits always including complete S-boxes, the inputs (and consequently outputs) of these S-boxes will loop

through all possible values with the remain S-boxes constant inputs (and consequently outputs). When

we focus on the output of SE step, some there are still d bits to be active and the remain to be fixed.

Thus, an additional round is added to the integral distinguisher with the same data.

As an illustration, a 5/6/7-round integral distinguisher for PRIMATE permutation is constructed with

220/235/265.

The technique to build the integral distinguisher for the inverse PRIMATE permutation is similar.

According to Lemma 2, an r backward rounds integral distinguisher needs d = 3r+1 bits to loop through

all possible values. If we use the active bits to cover complete S-boxes, we can add one round to improve

the existing distinguisher.

For example, a 5-round integral distinguisher for the inverse PRIMATE permutation can be constructed

with 285.

3.3 Improved integral distinguishers for forward rounds of PRIMATE permutation

The major problem herein is to find a precise evaluation for the algebraic degree of PRIMATE permutation

after several rounds. Yang and Lai [18] computed the algebraic degree of n-variable boolean function f

without the knowledge of ANF of this function. If the degree of the function f is less than d, the relation
∑2d−1

i=0 f(x ⊕ i) = 0 holds for some x. When
∑2d−1

i=0 f(x ⊕ i) = 0 holds for all possible x, the algebraic

degree of the function f is less than d. However, this is not practical for permutations with very big

state. However, we only need to check whether
∑2d−1

i=0 f(x⊕ i) = 0 for ⌈1.0294(n+ 1)⌉ random values of

x to determine the algebraic degree of f [18].

n = 200/280 for PRIMATE-80/120. We slightly modify Algorithm 4 in [18] to Algorithms 1 and

2 to obtain the algebraic degree only regarding to x0, x1, . . . , x14 or x0, x1, . . . , x29 of 5-round or 6-

round PRIMATE-80/120 permutation, respectively. We use general notation f to denote the 5/6-round

PRIMATE permutation and x to denote state bits. If different bits are needed to active, we must modify

the i parameter in Algorithms 1 and 2.

Algorithm 1 Distinguisher searching algorithm for 5-round PRIMATE permutation

1: for 0 < s < ⌈1.0294(n + 1)⌉ do

2: Pick x randomly;

3: Compute tmp =
∑

2
15

−1

i=0
f(x⊕ i);

4: if tmp 6= 0 then

5: Output “Proposition 1 does not hold”;

6: end if

7: end for

Algorithm 2 Distinguisher searching algorithm for 6-round PRIMATE permutation

1: for 0 < s < ⌈1.0294(n + 1)⌉ do

2: Pick x randomly;

3: Compute tmp =
∑

2
30

−1

i=0
f(x⊕ i);

4: if tmp 6= 0 then

5: Output “Proposition 2 does not hold”;

6: end if

7: end for
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Figure 3 (Color online) Zero-sum distinguisher for PRIMATE-80.

The searching leads to Propositions 1 and 2.

Proposition 1. If we choose the first 3 S-boxes to loop through all possible values and other bits are

constants, a balance is reached after 5-round PRIMATE-80/120 permutation.

Proposition 2. If we choose the first 6 S-boxes to loop through all possible values and other bits are

constants, a balance is reached after 6-round PRIMATE-80/120 permutation.

4 Improved zero-sum distinguishers

Aumasson and Meier [19] presented a new distinguishing property, named the zero-sum property to show

a non-ideal property of functions. The distinguisher based on the zero-sum property can search a set of

inputs of a given function, which sum to zero, and corresponding outputs which also sum to zero over F2.

This is built by starting from the middle of the function and combining two integral distinguishers for

forward and backward rounds. Minaud [11] found zero-sum distinguishers of the 12-round PRIMATE-

80/120 permutation with the complexity 2130. In this section, we use the integral distinguishers in the

previous section to present improved zero-sum distinguishers for 12-round PRIMATE-80/120 permutation

with the complexity 2100/2105.

4.1 Zero-sum distinguisher for PRIMATE-80

For PRIMATE-80 permutation, the intermediate state of the input of the 6-th round is at the junction

point. We set the number of active bits d to be a multiple of the 25-bit column size. In other words, we

choose complete columns including complete S-boxes to be active and fix the remaining constants. In the

forward direction, we add an additional round or reduce the required data. In the backward direction,

the complete active columns are unaffected by MC step as this step is linear and operating on the state

by column. Thus, active complete columns would be still active after an inverse MC step. Then, active

complete S-boxes covered in active columns allow the distinguisher to go through the SE step with no

cost in the 5-th round.

In this case, we attack 7 forward rounds and 5 backward rounds. Now, we choose 20 S-boxes in the

first 4 columns and make the corresponding input bits for the 20 S-boxes loop through all possible values.

The remaining bits are set to constant. Then, the zero-sum distinguisher for PRIMATE-80 is formalized

as Proposition 3. As shown in Figure 3, green words denote active bits; white words are set to constants;

and B means that the sum of input/output states is zero.

Proposition 3. For the full 12-round PRIMATE-80 permutation, the four columns of the input of the

6-th round take over all possible values and the others are set to constants, all inputs of the 12-round

permutation XOR to zero, and all corresponding outputs of the 12-round permutation also XOR to zero.

The zero-sum distinguisher is built in the following way:

(1) In the forward direction, a 7-round integral distinguisher requires at least the data complexity 265.

(2) In the backward direction, a 5-round integral distinguisher requires at least the data complexity

285.

(3) In all conditions, we prepare a set of 25×20 = 2100 bits including the complete four columns of

the input state of 6-th round to take over all possible values, in which the remains are set to constant.

To build a zero-sum distinguisher for PRIMATE-8, the active set propagates 7 forward rounds and 5

backward rounds.
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4.2 Zero-sum distinguisher for PRIMATE-120

For PRIMATE-120, Proposition 4 is used to describe the zero-sum distinguisher with the complexity

2105.

Proposition 4. For the full 12-round PRIMATE-120 permutation, the 3 columns of the 6-th round

input take over all possible values, whereas the others are constants, all inputs of the 12-round permutation

XOR to zero and all corresponding outputs of the 12-round permutation also XOR to zero.

The 12-round zero-sum distinguisher for PRIMATE-120 and PRIMATE-80 is similar. We start from

the intermediate state of the input of the 6-th round. We attack a 7 forward rounds and a 5 backward

rounds, in which their integral distinguishers need at least the data complexity 265 and 285, respectively.

Thus, we choose 21 S-boxes in the three complete columns and make the corresponding input bits for

these 21 S-boxes loop through all possible values. The remaining bits are set to constants. The two

integral distinguishers are combined to construct a 12-round zero-sum distinguisher for PRIMATE-120

permutation with the complexity 2105.

For a perfect random 200/280-bit permutation, we choose a set of the inputs and corresponding outputs,

the probability of the outputs add up to zero over F2 is 2−200/2−280 when the XOR of the corresponding

inputs is zero. Thus, PRIMATE-80/120 permutation could be certainly distinguished from the random

permutation.

5 Improved key-recovery attacks on APE

At CANS’14, Todo and Aoki [14] presented the FFT key recovery technique for the integral attack to

reduce the time complexity. When the integral distinguisher uses N chosen plaintexts and the guessed

key has k bits, a straightforward key recovery requires the time complexity O(N2k). However, the FFT

key recovery method requires only the time complexity O(N + k2k). The calculation method uses fast

Walsh-Hadamard transform (FWHT) instead of the FFT, which requires a total time complexity of

approximately 4k2k additions. We apply the FFT key recovery technique to recover the key.

We use the integral distinguisher given in Subsections 3.2 and 3.3 for 6-round PRIMATE-80/120

permutation, in order to perform key-recovery attacks on 8-round finalization of APE-80/120 with data

complexity 230 and time complexity 239.29/250.26, respectively.

5.1 Integral attack on APE-80

For APE-80, the first row of the intermediate state is observable if more than one block of plaintext is need

to be processed before the phase of finalization. If we arbitrarily choose 7 state words to loop through all

possible values while the others are set to constants, the corresponding outputs of 6-round PRIMATE-80

permutation add up to zero over F2. The detail of this distinguisher is described in Subsection 3.2.

As illustrated in Figure 4, we use the 6-round integral distinguisher to perform a key-recovery attack

on 8-round finalization of APE-80. The gray words are known, whereas the white words are unknown,

the orange words in the equivalent key eK (eK = MC−1(040||K)) denote the guessed key words in the

attack. thus, we guess 25-bit equivalent key in the 8-th round and decrypt 2 rounds in the backward. The

words X0, X9, X18, X28, X39 after a 6-round distinguisher is retrieved. If the guessed 25-bit equivalent

key is right, the words X0, X9, X18, X28, X39 satisfy the integral distinguisher. The filtering probability

is Pr = 2−25. We repeat the process 8 times for each diagonal to recover the full 200-bit equivalent key.

Complexity evaluation. In the beginning of the attack, we need 235 chosen plaintext to build the

6-round integral distinguisher. Then, we guess 25-bit equivalent key and check for the validity requiring

the time of 25 · 4 · 25 · 225 ≃ 236.29 additions. From the filtering probability, two candidates (one right

key and one random wrong key) for the guessed equivalent key words are remained on average. After

the process, a total of 28 candidates are remained for eK after. Since the right key satisfies the relation

040||K = MC(eK), we check the remaining 28 candidates of eK, in which 28 × 2−40 < 1 candidate

remained for the key K. Thus, only the right key exists after the attack. Even if we obtain more
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Figure 4 (Color online) The 8-round integral attack on APE-80.

candidates than expected, we could rebuild a different integral distinguisher by choosing another 7 S-

boxes to loop through all possible values. This reduces the number of candidates at the expense of slightly

increasing the complexity of the attack which is not the main part of the complexity. Hence, the integral

attack on 8-round APE-80 requires 235 chosen messages and the time of 8 ·25 ·4 ·25 ·225 ≃ 239.29 additions.

In addition, if we make state words X0, . . . , X5 active and the remain fixed to constant, an improved

integral distinguisher in Subsection 3.3 is constructed. With another unaltered part of the attack, we

reduce the required data complexity from 235 to 230.

5.2 Integral attack on APE-120

In the case of APE-120, we obtain an improved 6-round integral distinguisher that requires 230 chosen

messages. We use the distinguisher to perform a key-recovery attack on 8-round finalization of APE-120.

In the attack process, we need to guess 35 key bits to check the distinguisher, we omit the details here.

This attack requires 230 chosen messages and the time of 280 · 4 · 35 · 235 ≃ 250.26 additions.

6 Forgery attacks

Based on Propositions 1 and 2, we create forgery for 5/6-round finalization of APE and HANUMAN,

requiring the practical complexity 215/230.

For APE, we construct a structure that contains m messages with the same associated data and same

number of blocks of plaintexts. Assume that they all have t plaintext blocks, the m messages have the

same values for (t − 1) plaintext blocks P1, . . . , Pt−1, but differ only in the last block of plaintext Pt.

Based on Proposition 1, we make the first 3/6 words of Pt to take over all possible values, showing this

structure contains m = 215/230 messages. Let P i
j , C

i
j denote the j-block of plaintext and ciphertext for

i-th message and T i be the tag of i-th message. For 5/6-round finalization of APE, the following relation

holds:

C1
t ⊕ C2

t ⊕ · · · ⊕ Cm
t = 0, T 1 ⊕ T 2 ⊕ · · · ⊕ Tm = 0.

If the knowledge of ciphertexts last blocks and tags for arbitrary (m − 1) messages in the structure are

known, we could determine the last block of ciphertext and tag for the remaining message. For example,
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C1
t , . . . , C

m−1
t and T 1, . . . , Tm−1 are known; then, Cm

t = C1
t ⊕ · · · ⊕ Cm−1

t and Tm = T 1 ⊕ · · · ⊕ Tm−1.

Similarly, we can create forgeries for 5/6-round finalization version of HANUMAN, that differes from

the forgery of APE at the point that the finalization of HANUMAN generates only the tag. We can still

create forgeries in a similar and easier manner, requiring complexity 215/230, respectively.

7 Conclusion

We develop the new integral distinguishers for both forward and backward rounds of PRIMATE permu-

tation, estimating the algebraic degree as accurately as possible. Based on these findings, we combine

two distinguishers targeting forward rounds and backward rounds, respectively, to build a full 12-round

zero-sum distinguisher for PRIMATE-80/120 permutation with the complexity 2100 and 2105. Then, a

6-round integral distinguisher is applied to perform key-recovery attacks on APE-80/120 with 230 chosen

messages and the time of 239.29/250.26 additions. Our work is the best attack on APE. For the first

time, we demonstrate the practical attack against 8-round finalization of APE-80. In addition, the new

distinguisher can be used to create forgeries for 5/6-round finalization of APE and HANUMAN with

practical complexity 215/230, which are the first forgery attacks on APE and HANUMAN.
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