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Abstract Linear cryptanalysis is one of the most important cryptanalytic tools against block ciphers,

thus modern block ciphers are always deliberately devised to avoid good long linear characteristics so as to

resist linear cryptanalysis and its extensions. Differential-linear cryptanalysis, a powerful extension of linear

cryptanalysis, has drawn much attention due to its applicability even in certain case that there is no good

long linear characteristic of block ciphers. To further refine differential-linear cryptanalysis, we investigate the

correlation distribution of differential-linear hull over random permutation and derive a concrete and concise

correlation distribution accordingly. Theoretically, this could make differential-linear cryptanalysis more

reasonable and precise. Moreover, the newly-proposed correlation distribution could lead to an interesting

potential for improving the effectiveness of differential-linear cryptanalysis.
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1 Introduction

Linear cryptanalysis [1], proposed by Matsui in 1993, is one of the most important cryptanalytic tools

against block ciphers. By exploiting certain linear relation between the input and output of an n-bit

block cipher, this approach can distinguish the cipher with n-bit random permutation. So far, many

efforts have been made to generalize linear cryptanalysis to make it more powerful. One approach is to

adopt multiple linear approximations instead of one in linear cryptanalysis [2, 3]. Further, Baignères et

al. [4] and Hermelin et al. [5–8] presented the idea of using multidimensional probability distributions of

linear approximations, in which the “independence” constraint of multiple linear approximations in [3]

can be removed, leading to more efficient cryptanalytic tools.

The second approach is to utilize non-linear approximations in linear cryptanalysis or replace the

linear expressions with so-called I/O sums (For a single round of a block cipher, an I/O sum is the XOR

(exclusive OR) of a balanced boolean function of the round input and a balanced boolean function of the

round output). In 1995, Harpes et al. [9] used the idea of I/O sums to generalize linear cryptanalysis. In

1996, Knudsen et al. [10] proposed an efficient attack on LOKI91 by applying non-linear approximations

in linear cryptanalysis. In 2004, Courtois [11] presented bi-linear cryptanalysis in which probabilistic

bi-linear equations are exploited instead of linear equations.
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The third approach is to combine linear cryptanalysis with other powerful cryptanalytic approach

elaborately. In 1994, Langford et al. [12] introduced differential-linear cryptanalysis by combining a dif-

ferential characteristic with probability 1 with a linear approximation delicately. With this technique

they have succeeded in analyzing 8-round DES (data encryption standard) using only 512 chosen plain-

texts in a few seconds on a personal computer. In 2002, Biham et al. [13] extended differential-linear

cryptanalysis by using differential characteristic with probability p (0 < p 6 1) in building differential-

linear distinguisher. Later in 2009, Liu et al. [14] further improved [13] by taking into account multiple

linear approximations in differential-linear cryptanalysis. In 2012 and 2015, Lu [15, 16] presented a new

methodology to deal with the intermediate layer of differential-linear approximation more generally by

removing an assumption posed by Biham et al. in [13], resulting in a more reasonable interpretation

of differential-linear cryptanalysis. In 2014 and 2017, Blondeau et al. [17, 18] revisited and generalized

the differential-linear cryptanalysis by providing an exact expression of the bias of a differential-linear

approximation as well as introducing a multidimensional model of differential-linear cryptanalysis which

is defined for multiple input differences and multidimensional linear output masks. In 2016, Leurent [19]

improved the complexity of differential-linear cryptanalysis for ARX (add-rotate-XOR) ciphers by refining

the partitioning technique proposed by Biham and Carmeli [20].

The fourth approach is to exploit linear approximations with zero correlation instead of linear char-

acteristics (hulls) with high correlations used in traditional linear cryptanalysis. Zero-correlation linear

cryptanalysis is one of the recent cryptanalytic methods introduced by Bogdanov and Rijmen [21], and it

can be considered as the projection of impossible differential cryptanalysis to linear cryptanalysis. Later

in [22,23], Bogdanov et al. proposed new models that can decrease the data complexity of zero-correlation

linear cryptanalysis, leading to better cryptanalytic results of block ciphers [24–27].

The fifth approach is to find and build the links between linear cryptanalysis and other cryptana-

lytic techniques. In 1994, Chabaud and Vaudenay [28] presented a theoretical link between differential

and linear cryptanalysis. In 2011, Leander [29] showed that statistical saturation distinguishers are av-

eragely equivalent to multidimensional linear distinguishers. Later in [22, 30–33], more practical links

between integral and zero-correlation linear distinguishers, impossible differential and zero-correlation

linear distinguisher, truncated differential and multidimensional linear properties were proposed, which

could significantly facilitate the task of evaluating security of block ciphers against various cryptanalytic

tools. Recently, efforts have been made to provide more accurate estimates of data complexity of simple,

multiple, and multidimensional linear cryptanalysis [34], or to improve the accuracy of estimated success

probability of linear key-recovery attacks [35].

Meanwhile, modern block ciphers are always deliberately designed to avoid good long linear charac-

teristics so as to resist linear cryptanalysis and its extensions. In this context, how to establish linear

distinguishers covering as many rounds of a block cipher as possible becomes particularly interesting. As

a powerful extension of linear cryptanalysis, differential-linear cryptanalysis was proposed to meet this

goal even in certain case that there is no good long linear characteristic of block ciphers. In this paper,

we aim to further refine differential-linear cryptanalysis. On the one hand, inspired by the correlation

distribution theory presented by Daemen and Rijmen in [36], we investigate the correlation distribution

of differential-linear hull over random permutation and derive a concrete and concise correlation distri-

bution accordingly. Theoretically, this could make differential-linear cryptanalysis more reasonable and

precise (As it is always assumed that a differential-linear hull over random permutation has correlation

0, which is not actually true). On the other hand, we show that with this newly-proposed correlation

distribution, it is possible to strengthen the effectiveness of differential-linear cryptanalysis by exploiting

key-dependent differential-linear hull.

The remainder of this paper is organized as follows. In Section 2, we give necessary notations and a

brief description of SIMON cipher. Section 3 derives the correlation distribution of differential-linear hull

over random permutation. In Section 4, we show key-dependent differential-linear hull by experimentally

deriving the correlation of a differential-linear hull of 23-round SIMON32/64 for different keys, and present

a potential statistical model to exploit key-dependent differential-linear hull. Finally, we conclude this

paper in Section 5.
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Figure 1 The round function of SIMON.

2 Preliminaries

2.1 General notations

The following notations are used throughout the paper.

– ⊕ denotes bitwise exclusive OR (XOR).

– 0x denotes the hexadecimal notation.

– ‖ denotes the concatenation operation.

– · denotes bitwise inner product.

– ◦ denotes the composition operation.

– & denotes bitwise AND operation.

– X ≪m denotes left rotation of X by m bits.

– X ≫m denotes right rotation of X by m bits.

– #S denotes the cardinality of a set S.

– ⌊x⌋ denotes the integer such that x− 1 < ⌊x⌋ 6 x.

2.2 A brief description of SIMON

SIMON [37], introduced by NSA in 2013, is a family of lightweight block ciphers. It adopts balanced

Feistel network with simple round function which is defined as follows:

Li = (Li−1 ≪ 1)&(Li−1 ≪ 8)⊕ (Li−1 ≪ 2)⊕Ri−1 ⊕ ki−1, Ri = Li−1,

where (Li−1, Ri−1) and (Li, Ri) represent the inputs of round i − 1 and round i, respectively, and ki−1

denotes the subkey used in round i− 1. Figure 1 shows the structure of the round function of SIMON.

SIMON supports variable block sizes and key sizes. We use SIMON2n to represent the SIMON cipher

adopting n-bit words (i.e., block size is 2n bits), with n ∈ {16, 24, 32, 48, 64}, and denote SIMON2n with

m-word key size as SIMON2n/mn. The number of rounds of SIMON depends on block size and key size,

for instance, SIMON32/64 adopts 32 rounds, SIMON48/72 adopts 36 rounds, etc. The key schedule of

SIMON is shown as

ki+m = c⊕ (zj)i ⊕ ki ⊕ Ym ⊕ (Ym ≪ 1), Ym =















ki+1 ≪ 3, if m = 2,

ki+2 ≪ 3, if m = 3,

ki+3 ≪ 3⊕ ki+1, if m = 4,

where ki denotes the subkey used in round i, the first m subkeys are directly derived from the secret

key, the value c is a constant 0xff . . . fc, and (zj)i represents the i-th least significant bit of the constant

sequence zj (0 6 j 6 4).
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3 Correlation distribution of differential-linear hull over random permutation

Let E be an n-bit block cipher. Let △,ΓC be two given non-zero n-bit values. Consider a differential-

linear hull (we denote it as △ → ΓC) of E which is expressed as follows:

ΓC · C1 ⊕ ΓC · C2 = 0, (1)

where C1 and C2 are the ciphertexts of plaintexts P1 and P2 under E, respectively, and P1 ⊕ P2 = △.

Generally, differential-linear hull △ → ΓC for E (E is divided into two parts Er1 and Er2) is built

by concatenating differentials with input difference being △ for Er1 and linear hulls with output mask

being ΓC for Er2 (taking into account all the possibilities of intermediate layer, i.e., all possible output

differences for Er1 with input difference being △, and all possible input masks for Er2 with output mask

being ΓC), where Er1 represents the first r1 rounds of E, and Er2 represents the last r2 rounds of E

succeeding Er1 . We can see that a differential-linear hull is only determined by three parameters, i.e.,

input difference, output mask, and the number of rounds it covers.

If the differential-linear hull given in (1) can be used to distinguish E from an n-bit random permutation

efficiently (say, better than exhaustive attack), we call it an effective linear property. Note that in the

traditional differential-linear cryptanalysis, it is always assumed that a differential-linear hull △ → ΓC

over an n-bit random permutation has correlation 0, which is not actually true. To make differential-linear

cryptanalysis more reasonable and precise, we need to derive the correlation distribution of differential-

linear hull for an n-bit random permutation. Firstly, we introduce the following definitions.

Definition 1. The correlation of the differential-linear hull △ → ΓC given in (1) is defined as follows:

Cor△→ΓC = 2× PrP∈F
n
2
(ΓC ·E(P )⊕ ΓC · E(P ⊕△) = 0)− 1

=
1

2n
(#{P |ΓC · (E(P )⊕ E(P ⊕△)) = 0, P ∈ F

n
2}

−#{P |ΓC · (E(P )⊕ E(P ⊕△)) = 1, P ∈ F
n
2}).

Definition 2. The imbalance of the differential-linear hull △ → ΓC given in (1) is defined as follows:

Imb△→ΓC =
1

2
(#{P |ΓC · (E(P )⊕ E(P ⊕△)) = 0, P ∈ F

n
2}

−#{P |ΓC · (E(P )⊕ E(P ⊕△)) = 1, P ∈ F
n
2}).

Hence for the differential-linear hull △ → ΓC , we have Cor△→ΓC = Imb△→ΓC × 21−n.

Calculating Cor△→ΓC over random permutation. For a set S, let U(S) denote the uniform

distribution over S, and let X ∼ U(S) denote that X is distributed according to U(S).

For an n-bit Boolean function f : Fn
2 → F2, define the sets of pre-images of 0 and 1 under f , respectively,

as

Zerof := {P ∈ F
n
2 | f(P ) = 0}, Onef := {P ∈ F

n
2 | f(P ) = 1}.

The sets Zerof and Onef determine the Boolean function f completely.

Let Permn denote the set of all n-bit permutations, and let BaBFn denote the set of all n-bit balanced

Boolean functions f : Fn
2 → F2. We have the following lemmas.

Lemma 1. Let α : Fn
2 → F

n
2 be an n-bit permutation. Let ΓC be a given non-zero n-bit value and

fα : Fn
2 → F2 be a Boolean function defined as fα(P ) := ΓC · α(P ), P ∈ F

n
2 . If α ∼ U(Permn), then

fα ∼ U(BaBFn).

Proof. Since α is a permutation, fα is “balanced”, i.e., #Zerofα = #Onefα = 2n−1. Consider the map

π : α ∈ Permn 7→ fα ∈ BaBFn,

which maps permutations α to balanced Boolean functions fα. Firstly, we show that π is a “regular”

map, i.e., for any f ∈ BaBFn, f has the same number of pre-images α ∈ Permn under π, such that fα = f .

To this end, let α be an arbitrary n-bit permutation that maps elements in Zerof to Zerofid bijectively

and maps elements in Onef to Onefid bijectively, where fid : P 7→ ΓC · id(P ) = ΓC · P .
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• For such α, it holds that fα = f . The reason is as follows. For any P ∈ Zerof , α(P ) ∈ Zerofid ,

then fα(P ) = ΓC · α(P ) = fid(α(P )) = 0; for any P ∈ Onef , α(P ) ∈ Onefid , then fα(P ) = ΓC · α(P ) =

fid(α(P )) = 1. Thus Zerofα = Zerof and Onefα = Onef , which implies fα = f .

• There are (2n−1)! × (2n−1)! choices of such α. Because both f and fid are balanced, #Zerof =

#Onef = 2n−1 = #Zerofid = #Onefid , both the number of bijections from Zerof to Zerofid and that from

Onef to Onefid are (2n−1)!.

Therefore, for any f ∈ BaBFn, we have already found (2n−1)! × (2n−1)! pre-images α ∈ Permn such

that fα = f . In addition, observe that

(2n−1)!× (2n−1)!×#BaBFn = (2n−1)!× (2n−1)!×
(

2n

2n−1

)

= (2n)! = #Permn,

thus f has exactly (2n−1)!× (2n−1)! pre-images α ∈ Permn. The number of pre-images is independent of

the particular f , so the map π is regular.

Since π : Permn → BaBFn is a regular function, as α is uniformly distributed over Permn, fα = π(α)

is uniformly distributed over BaBFn. This completes the proof of Lemma 1.

Lemma 2. Let △ be a given non-zero n-bit value. For a randomly chosen balanced Boolean function

f ∈ BaBFn, n > 3, it holds that

Pr
f∼U(BaBFn)

[

#{P ∈ F
n
2 | f(P )⊕ f(P ⊕△) = 0} = 2n−1 + z

]

=















( 2n−1

2n−2+2x)×(
2n−2+2x

2n−3+x )×22
n−2

−2x

( 2n

2n−1)
, if z = 4x,

0, otherwise,

where x ∈ {−2n−3, . . . ,−1, 0, 1, . . . , 2n−3}.
Proof. Firstly, we introduce several notations.

• We call P ∈ F
n
2 “ball P”, and imagine the mapping P 7→ f(P ) as painting the ball P “red” (in the

case that f(P ) = 0) or “blue” (in the case that f(P ) = 1).

• For any ball P , we “group” the two balls P and P ⊕△ together.

• Each group contains exactly two balls, since (P ⊕△)⊕△ = P .

• There are 2n−1 disjoint groups in total.

Denote the group containing P and P ⊕△ by an unordered tuple (P, P ⊕△). Note that the way how

the balls are grouped is totally determined by the given value △, and is independent of f .

• We call f(P )⊕ f(P ⊕△) “the value of group (P, P ⊕△)”.

• If P and P ⊕△ are colored the same, the group is of value 0.

• If P and P ⊕△ are differently colored, the group is of value 1.

We want to compute the fraction of f ∈ BaBFn such that

#{P ∈ F
n
2 | f(P )⊕ f(P ⊕△) = 0} = 2n−1 + z. (2)

The total number of balanced Boolean functions is #BaBFn =
(

2n

2n−1

)

. We now compute the number of

f ∈ BaBFn satisfying (2), i.e., the number of ways to paint the balls such that Eq. (2) holds.

• Since f ∈ BaBFn, there are exactly 2n−1 red balls and 2n−1 blue balls in total.

• Denote by g0 the number of groups of value 0 and g1 (= 2n−1 − g0) the number of groups of value

1. Then Eq. (2) is equivalent to 2g0 = 2n−1 + z, i.e., g0 = 2n−2 + z/2 and g1 = 2n−2 − z/2.

• For each group (P, P ⊕△) of value 1, P and P ⊕△ are differently colored, i.e., one of the two balls

is red and another one is blue. Thus in groups of value 1, there are exactly g1 red balls (one red ball in

each group) and g1 blue balls (one blue ball in each group).

• Since there are 2n−1 red balls and 2n−1 blue balls in total, in groups of value 0, there are exactly

2n−1 − g1 (= g0) red balls and 2n−1 − g1 (= g0) blue balls. For each group (P, P ⊕△) of value 0, P and

P ⊕△ are colored the same, i.e., both of the two balls are red or blue. Thus in groups of value 0, there

are exactly g0/2 groups containing two red balls and g0/2 groups containing two blue balls.
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In summary, the process of painting the balls such that Eq. (2) holds can be decomposed into three

steps.

(1) Select groups:

• Select g0 groups taking value 0, and the remaining groups taking value 1.

• The number of possibilities in this step is
(

2n−1

g0

)

, where g0 = 2n−2 + z/2 and g1 = 2n−2 − z/2.

(2) Paint balls in groups of value 0:

• Select g0/2 groups with two balls painted red, and the remaining groups with two balls painted blue.

• The number of possibilities in this step is
(

g0
g0/2

)

.

(3) Paint balls in groups of value 1:

• For each group, select one of the two balls painted red and the other one painted blue.

• The number of possibilities in this step is
(

2
1

)g1
.

Following the multiplication principle, the number of ways to paint the balls such that Eq. (2) holds is

(

2n−1

g0

)

×
(

g0
g0/2

)

×
(

2

1

)g1

=

(

2n−1

2n−2 + z/2

)

×
(

2n−2 + z/2

2n−3 + z/4

)

× 22
n−2−z/2.

This number is meaningful only when z is a multiple of 4. For z = 4x, x ∈ {−2n−3, . . . ,−1, 0, 1, . . .,

2n−3}, the number is
(

2n−1

2n−2 + 2x

)

×
(

2n−2 + 2x

2n−3 + x

)

× 22
n−2−2x,

and consequently, the fraction of f ∈ BaBFn such that Eq. (2) holds is

(

2n−1

2n−2+2x

)

×
(

2n−2+2x
2n−3+x

)

× 22
n−2−2x

(

2n

2n−1

) .

This completes the proof of Lemma 2.

With the above two lemmas, we obtain the following theorem.

Theorem 1. Let △,ΓC be two given non-zero n-bit values. For an n-bit random permutation with

n > 3, the imbalance Imb△→ΓC of a differential-linear hull △ → ΓC is a stochastic variable with the

following distribution:

Pr
[

Imb△→ΓC = 4x
]

=

(

2n−1

2n−2+2x

)

×
(

2n−2+2x
2n−3+x

)

× 22
n−2−2x

(

2n

2n−1

) , (3)

where x ∈ {−2n−3, . . . ,−1, 0, 1, . . . , 2n−3}.
Proof. Let α : Fn

2 → F
n
2 be an n-bit permutation and fα : Fn

2 → F2 be a Boolean function defined as

fα(P ) := ΓC · α(P ), P ∈ F
n
2 . Thus fα is “balanced”, and Imb△→ΓC for α can be calculated as

Imb△→ΓC =
1

2

(

#{P ∈ F
n
2 | ΓC · (α(P ) ⊕ α(P ⊕△)) = 0}

−#{P ∈ F
n
2 | ΓC · (α(P ) ⊕ α(P ⊕△)) = 1}

)

. (4)

For an integer z, we want to compute the fraction of permutations α among all n-bit permutations

such that Imb△→ΓC = z, and it suffices to compute the fraction of permutations α such that

#{P ∈ F
n
2 | fα(P )⊕ fα(P ⊕△) = 0} = 2n−1 + z.

Thus we have

Pr
[

Imb△→ΓC = z
]

= Pr
α∼U(Permn)

[

#{P ∈ F
n
2 | fα(P )⊕ fα(P ⊕△) = 0} = 2n−1 + z

]

.

According to Lemmas 1 and 2 we immediately get (3), which ends our proof.
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In order to make the distribution given in (3) more concise and thus more applicable, we further provide

two flavors of approximations for this distribution.

Corollary 1. Let △,ΓC be two given non-zero n-bit values. For an n-bit random permutation with

n > 6, the imbalance Imb△→ΓC of a differential-linear hull △ → ΓC is a stochastic variable with a

distribution that can be approximated as follows:

Pr
[

Imb△→ΓC = z
]

≈ 4

√

2n−1

2n−1 + z
× Z

( z

2(n−1)/2

)

, (5)

for z = 4x with x ∈ {−2n−3+1, . . . ,−1, 0, 1, . . . , 2n−3} and zero otherwise, where Z distribution denotes

the standard normal distribution.

Proof. We start with the expression of (3). If 2n−1 is large and 2n−3 + x > 0 (i.e., x 6= −2n−3), we

have
(

2n−1

2n−2 + 2x

)

≈ 22
n−1 × Z

(

2x

2(n−3)/2

)

,

(

2n−2 + 2x

2n−3 + x

)

≈ 22
n−2+2x × 1√

2π
×
√

4

2n−2 + 2x
,

and
(

2n

2n−1

)

≈ 22
n × 2−(n−2)/2

√
2π

.

Thus,

Pr
[

Imb△→ΓC = 4x
]

≈ 2

√

2n−2

2n−2 + 2x
× Z

(

2x

2(n−3)/2

)

= 4

√

2n−1

2n−1 + 4x
× Z

(

4x

2(n−1)/2

)

.

This implies (5) when substituting 4x by z.

Corollary 2. Let △,ΓC be two given non-zero n-bit values. For an n-bit random permutation with

n > 30, the imbalance Imb△→ΓC of a differential-linear hull △ → ΓC is a stochastic variable with a

distribution that can be approximated as

Pr
[

Imb△→ΓC = z
]

≈ 4Z
( z

2(n−1)/2

)

, (6)

for z = 4x with x being an integer and x ∈ {−22n/3, . . . ,−1, 0, 1, . . . , 22n/3}, and zero otherwise.

Proof. We can further simplify the expression (5) in Corollary 1 as follows. Let n > 30, we have

• For z = 4x with x ∈ {−22n/3, . . . ,−1, 0, 1, . . . , 22n/3}, we have

1 ≈
√

1

1 + 2−n/3+3
=

√

2n−1

2n−1 + 4× 22n/3
6

√

2n−1

2n−1 + z
6

√

2n−1

2n−1 − 4× 22n/3
=

√

1

1− 2−n/3+3
≈ 1,

It follows that

4

√

2n−1

2n−1 + z
× Z

( z

2(n−1)/2

)

≈ 4Z
( z

2(n−1)/2

)

. (7)

• For z = 4x with x /∈ {−22n/3, . . . ,−1, 0, 1, . . . , 22n/3}, z2 > 24n/3+4, then

4

√

2n−1

2n−1 + z
× Z

( z

2(n−1)/2

)

6 4
√
2n−1 × Z

( z

2(n−1)/2

)

= 4
√
2n−1 × 1

2(n−1)/2
√
2π

e−
z2

2n

=
4√
2π

e−
z2

2n <
4√
2π

e−2n/3+4 ≈ 0. (8)

Combining (7) and (8), we obtain Corollary 2 immediately.

With Corollary 2 we can easily obtain the following result.
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Proposition 1. Let △,ΓC be two given non-zero n-bit values. For an n-bit random permutation with

n > 30, the correlation Cor△→ΓC of a differential-linear hull △ → ΓC is a stochastic variable with a

distribution that can be measured as follows:

Pr
[

Cor△→ΓC = x× 23−n
]

≈ 1√
2π2

n−5

2

e−
x2

2n−4 , (9)

for x is an integer between −22n/3 and 22n/3 and zero otherwise.

4 Key-dependent differential-linear hull and its possible application

4.1 Key-dependent differential-linear hull

For the differential-linear hull △ → ΓC (as shown in (1)) over the n-bit block cipher E, firstly we need to

explore whether this linear hull is key-independent (i.e., for any secret key used in E, the absolute value

of correlation of the linear hull keeps same or has a deviation much smaller than the absolute value of

the correlation) or not (i.e., key-dependent).

So far there has not been any effective way to determine whether a differential-linear hull is key-

independent or not. However, for block ciphers with small block size such as SIMON32/64, we can

investigate correlation of linear hull experimentally (i.e., experimentally derive the correlation under each

fixed key). Here we use a 13-round differential (0x0000, 0x0040) → (0x4000, 0x0000) given in [38], and

a 10-round zero-correlation linear hull (0x0000, 0x0001) → (0x0000, 0x0080) given in [39], to construct a

differential-linear hull of 23-round SIMON32/64 (rounds 0 ∼ 22) which is described as follows:

(0x0000, 0x0080) · C1 ⊕ (0x0000, 0x0080) · C2 = 0, (10)

where C1 and C2 are the ciphertexts of plaintexts P1 and P2 under 23-round SIMON32/64 encryption,

respectively, and P1 ⊕ P2 = (0x0000, 0x0040).

To derive the correlation of the linear hull given in (10), we implement a group of 220 experiments,

and the description of the group of experiments is given as follows:

• Randomly choose a secret key and for all possible pairs (P1, P2) satisfying P1⊕P2 = (0x0000, 0x0040),

obtain the corresponding ciphertext pairs (C1, C2) under 23-round SIMON32/64. Then calculate the

correlation of the linear hull given in (10).

• Repeat the above procedure 220 times.

We find that among all the 220 experiments, the values of |Cor| range from 0 to 2−13 and almost all of

them are different from each other. Thus this linear hull is actually key-dependent. More specifically, in

our experiments, a rough distribution of the correlations under 220 different keys is given as follows:

• About 2−14.1 satisfies 2−13.5 < |Cor| < 2−13;

• About 2−4.96 satisfies 2−14.4 < |Cor| < 2−13;

• About 2−4.82 satisfies 0 < |Cor| < 2−20;

• About 2−5.8 satisfies 0 < |Cor| < 2−21;

• About 2−6.82 satisfies 0 < |Cor| < 2−22;

• About 2−7.81 satisfies 0 < |Cor| < 2−23;

• About 2−8.81 satisfies 0 < |Cor| < 2−24;

• About 2−9.84 satisfies 0 < |Cor| < 2−25;

• About 2−10.76 satisfies 0 < |Cor| < 2−26.

4.2 Exploiting key-dependent differential-linear hull

For an n-bit block cipher, it is always intriguing to build a long differential-linear hull and then use it to

distinguish the cipher (or reduced version of the cipher) from an n-bit random permutation. However, it

seems that such a long differential-linear hull is much likely a kind of key-dependent linear hull, and there

has not been any known means to make full use of this kind of linear hull so far. With the correlation
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distribution of differential-linear hull over random permutation given in (9), we now propose a possible

way to exploit key-dependent differential-linear hull.

Proposition 2. Let E be an n-bit (n > 30) block cipher with k-bit (k > n) key size. Suppose that

△ → ΓC is a key-dependent differential-linear hull of E which is expressed as

ΓC · C1 ⊕ ΓC · C2 = 0,

where C1 and C2 are the ciphertexts of plaintexts P1 and P2 under E, respectively, and P1 ⊕ P2 = △.

Let Cor△→ΓC denote the correlation of △ → ΓC . If there exist some values α (0 < α 6 1) and t (t is an

integer, 0 6 t 6 22n/3) such that

• For about α× 2k secret keys, |Cor△→ΓC | > t× 23−n,

• Let β ,
∑⌊22n/3⌋

x=t
1

√
2π2

n−5
2

e−
x2

2n−4 +
∑−t

x=−⌊22n/3⌋
1

√
2π2

n−5
2

e−
x2

2n−4 , β is small enough satisfying α ×
β−1 > 1,

or

• For about α× 2k secret keys, |Cor△→ΓC | 6 t× 23−n,

• Let β ,
∑t

x=0
1

√
2π2

n−5
2

e−
x2

2n−4 +
∑0

x=−t
1

√
2π2

n−5
2

e−
x2

2n−4 , β is small enough satisfying α× β−1 > 1,

then the linear hull △ → ΓC can be used to distinguish E from an n-bit random permutation with an

advantage of (log2
α
β ) bits.

Proof. For an n-bit random permutation, according to Proposition 1 in Section 3, the probability that

|Cor△→ΓC | > t× 23−n can be measured as

β =

⌊22n/3⌋
∑

x=t

1√
2π2

n−5

2

e−
x2

2n−4 +

−t
∑

x=−⌊22n/3⌋

1√
2π2

n−5

2

e−
x2

2n−4 ,

while for the block cipher E, there are about α fraction of all possible secret keys always satisfying

|Cor△→ΓC | > t× 23−n, which comes to our result if combining with the condition that α× β−1 > 1.

Similarly, for the case that in Proposition 2 α is relatively small and β satisfies α−1 ×β > 1, the linear

hull △ → ΓC can also be used to distinguish E from an n-bit random permutation.

5 Conclusion

In this paper, we studied a powerful extension of linear cryptanalysis — differential-linear cryptanalysis,

and refined it by deriving a concrete and concise correlation distribution of differential-linear hull over

random permutation. This could make differential-linear cryptanalysis more reasonable and precise (As it

is always assumed that a differential-linear hull over random permutation has correlation 0, which is not

actually true). Moreover, we demonstrated that with this newly-proposed correlation distribution, it is

possible to make differential-linear cryptanalysis more applicable by exploiting key-dependent differential-

linear hull.

While determining whether a differential-linear hull is key-independent or not, as well as applying

key-dependent differential-linear hull to cryptanalysis of specific block ciphers, we leave them as open

problems for further research on linear cryptanalysis.
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