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Dear editor,
The cooperative control of multi-agent systems has
attracted wide attention from scholars in various
fields because of its wide applications. The con-
trollability and consensus problem of multi-agent
systems are two basic issues, which have been
widely studied in recent years [1–4].

Most of the existing studies on consensus are
concerned with the states of agents (i.e., nodes
dynamics). But in many physical problems, we
should consider not only the states of agents in
the system, but also the states of links between
agents (i.e., edges dynamics), such as transport
network system, electric power system, friendship,
trust, and communication channel. Zelazo et al. [5]
considered the consensus problems of the node sys-
tem after adding the edge information. By study-
ing the relationship between edges and nodes, in-
cidence matrices were introduced. The Laplacian
matrix was defined by using the incidence matri-
ces. In [6–8], Wang et al. investigated the dy-
namics of edges and established discrete-time and
continuous-time edge consensus protocols for di-
rected and undirected multi-agent systems, respec-
tively. By mapping the original node digraph to
its edge topology (i.e., line graph), the edge con-
sensus was analyzed under the condition that the
original digraph/undirected graph is strongly con-
nected/connected.

Despite the above results, further research is

needed to characterize the relationship between
agents rather than agents themselves. This re-
quires line graphs to convey the relationship be-
tween agents. It is worth pointing out that the
study on edge states and edge interactions was well
developed in social balance theory, which states
that the relationship can be positive or negative.
In this study, we discuss the bipartite consensus
of the edges under a directed graph with antag-
onistic interactions in the first-order and second-
order edge dynamic system. We consider coopeti-
tion systems rather than cooperative systems. The
cooperative relationship among agents is charac-
terized by positive weight, while competitive rela-
tionship is represented by negative weight. That
is, if there are antagonistic relationships among
agents, negative weights will be produced in the
corresponding topologies. If we still use the con-
sensus protocols under the nonnegative weights,
the corresponding Laplacian matrix will have neg-
ative eigenvalues, which leads to the instability of
the system, and the system would not asymptot-
ically reach consensus. In this study, in order to
achieve a certain consensus, new distributed pro-
tocols are designed and necessary and sufficient
conditions are derived. Under the designed proto-
cols, the first-order and second-order edge dynam-
ics systems asymptotically reach the edge bipartite
consensus, respectively.

Model and methodology. We define a signed di-

*Corresponding author (email: jizhijian@pku.org.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9533-3&domain=pdf&date_stamp=2019-4-16
https://doi.org/10.1007/s11432-018-9533-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9533-3
https://doi.org/10.1007/s11432-018-9533-3


Tian L, et al. Sci China Inf Sci December 2019 Vol. 62 229201:2

graph G = {V , E ,A}, where E = {(i, j)| if i can
receive information from j} and A = [aij ] ∈ R

n×n

is the adjacency matrix of G, where aij 6= 0 ⇔
(i, j) ∈ E . aij = 1 and aij = −1 represent the
cooperation and competition relationships from j

to i, respectively. (More theories of graph are in
Appendix A.) For a digraph G = {V , E ,A} with n

nodes and m edges, its line graph L(G) is defined
as follows [9]:

(1) A node (i, j) of L(G) corresponds to a di-
rected edge (i, j) of G;

(2) For node i of G, its incoming edge (i, j) is
adjacent to its outgoing edge (k, i) in L(G).

It can be seen that the line graph of a di-
graph is still a directed graph, and the number of
nodes in the line graph is equivalent to

∑n

i=1 din(i),
which is the number of edges in the original graph.
For a digraph, it is obvious that

∑n

i=1 din(i) =
∑n

i=1 dout(i). In the original digraph G, each node
i has din(i) incoming edges and dout(i) outgoing
edges, so the node i can derive din(i) ·dout(i) edges
in the line graph L(G), and the total number of
edges of L(G) is

∑n

i=1 din(i) · dout(i).
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Figure 1 (Color online) (a) A digraph; (b) its line graph.

For example, Figure 1(b) is a line graph cor-
responding to the original graph in Figure 1(a),
where the real lines represent the cooperative rela-
tionship among agents, and the dotted lines repre-
sent the competitive relationship between agents.
It is noteworthy that we have the following rules
in a signed digraph and its line graph:

(1) Edges in the line graph derived from nega-
tive weighted edges of the original graph take neg-
ative weights;

(2) Edges in the line graph derived from positive
weighted edges of the original graph take positive
weights.

If a digraph G contains more than one node and
is strongly connected, then its line graph L(G)
is also strongly connected (Lemma 2 in Appen-
dix A.2). And for a strongly connected, digon sign-
symmetric signed digraph G, its line graph L(G) is
structurally balanced if and only if G is structurally
balanced (Lemma 3 in Appendix A.2).

Let xij(t), vij(t) represent the position and ve-
locity of edge (i, j) at time t, respectively. Con-
sider the following first-order continuous time edge

dynamics model:

ẋij(t) = uij(t), ∀(i, j) ∈ E , (1)

and second-order continuous time edge dynamics
model

ẋij(t) = vij(t), v̇ij(t) = uij(t), ∀(i, j) ∈ E . (2)

We want to design distributed edge bipartite
consensus protocols such that all edges can asymp-
totically reach certain consensus. We consider (1)
to solve the bipartite consensus of edges if and only
if |xij | − |xks| → 0, ∀i, k = 1, 2, . . . , n, j ∈ N (i),
s ∈ N (k) as t → ∞, and (2) to solve the bipartite
consensus of edges if and only if |xij | − |xks| → 0
and |vij | − |vks| → 0 as t → ∞. Notice that
the state of edge (i, j) in the original graph corre-
sponds to the state of node (i, j) in the line graph,
where the labels of xij are arranged in ascending
order (first i, and then j). Therefore, we can trans-
form the characterization of the edge dynamics in
the original digraph to the characterization of the
node dynamics in the corresponding line graph.

Results and discussion. For system (1), we as-
sume that

uij(t) =
∑

r∈N (j)

|ajr|[sgn(ajr)xjr(t)− xij(t)], (3)

where i = 1, 2, . . . , n, j ∈ N (i). Let X = (xij) ∈
R

M×1, M =
∑n

i=1 din(i). System (1) can be de-

noted by Ẋ(t) = −L′X(t), where L′ is the Lapla-
cian matrix of the line graph L(G). Let A′ = [a′st]
be the adjacency matrix of L(G), C′ be the in-
degree matrix of L(G), which is a diagonal ma-
trix and the diagonal element is

∑

t∈N (s) |a
′
st|,

s = 1, 2, . . . , n. L′ is defined as follows: L′ =
[l′st]M×M = C′ −A′, where

l′st =











− a′st, s 6= t,
∑

t∈N (s)

|a′st|, s = t.

Let signed digraph G(A) be digon sign-
symmetric and strongly connected. For a contin-
uous time edge dynamics system (1), under pro-
tocol (3), all states of edges asymptotically reach
the bipartite consensus if and only if G(A) is struc-
turally balanced (Theorem 1 in Appendix B.1). In
this case, limt→∞ X(t) = wT

l DX(0)Dwr, where
D = diag{d1, . . . , dn}, di = ±1, i ∈ M is the
gauge transformation such that DA′D is nonneg-
ative, wr and wl are the right and left eigenvec-
tors associated with µ = 0 of the Laplacian ma-
trix DL′D, respectively, and wT

l wr = 1. If G(A) is
structurally unbalanced, system (1) is asymptoti-
cally stable, that is, limt→∞ X(t) = 0.
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For second-order edge dynamics system (2), the
bipartite consensus protocol is as follows:

uij(t) =− k1vij +
∑

r∈N (j)

|ajr |[(sgn(ajr)xjr(t)

− xij(t))+k2(sgn(ajr)vjr(t)−vij(t))], (4)

where k1, k2 > 0 are feedback gains. Let the cor-
responding signed digraph G(A) be strongly con-
nected, digon sign-symmetric and structurally bal-
anced. System (2) can asymptotically reach the
edge bipartite consensus under protocol (4), if

k1 − k2Re(µi) > 0 (5)

and

(k1 − k2Re(µi)) · k2 · (Im(µi))
2

− (k1 − k2Re(µi))
2Re(µi)− (Im(µi))

2 > 0, (6)

where µi (i = 1, 2, . . . ,M) are the eigenvalues of
Laplacian matrix −L′ of the line graph. More-
over, if k1 = 0, the consensus values of edges are
as follows:

lim
t→∞

X(t) = wT
l DX(0)Dwr + twT

l DV (0)Dwr,

lim
t→∞

V (t) = wT
l DV (0)Dwr,

where wr and wl are the right and left eigenvec-
tors associated with µi = 0 of the Laplacian matrix
−DL′D, respectively, wT

l wr = 1, and D is defined
as above. If k1 6= 0, the consensus values of edges
are as follows:

lim
t→∞

X(t) = wT
l DX(0)Dwr +

1

k1
wT

l DV (0)Dwr ,

lim
t→∞

V (t) = 0.

If the signed digraph G(A) is structurally unbal-
anced, the positions and velocities of edges tend to
0, under conditions (5) and (6) (Theorem 2 in Ap-
pendix B.2).

We give numerical simulation in Appendix C.
Conclusion. We discuss the bipartite consen-

sus problems of the edge dynamics for multi-agent
systems with cooperation and competition interac-
tions, where signed digraphs are used to represent
such systems. The strongly connected digraph is
mapped to its line graph. With the help of line
graph, it is found and proved that the line graph
corresponding to a structurally balanced topol-
ogy is still structurally balanced, and vice versa.

Under the first-order and second-order edge dy-
namics, the necessary or sufficient conditions for
the edge states to asymptotically achieve bipar-
tite consensus are obtained by using some analysis
methods of matrix theory and graph theory, and
the decision values are obtained. We also study
the structural unbalanced case. It is found that
the states of edges can still achieve consensus un-
der the given protocol, but this consensus is trivial,
that is, the state of each edge tends to 0.
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