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Dear editor,
For semantic segmentation tasks, convolutional
neural network (CNN) based methods have been
prevalent for both 2D image semantic segmenta-
tion and 3D semantic segmentation. Though tra-
ditional methods often use local features to seg-
ment a target (For example, in [1] both 2D local
features and 3D local features are used to boost
recognition ability), CNN based methods [2,3] ex-
hibit much better performance than traditional
methods [4]. In all the CNN based methods on
images, fully convolutional networks (FCNs) [2]
are firstly proposed for end-to-end training. Ba-
sically, all the following methods are the variants
of FCNs. For 3D input, some studies leverage 3D
convolution to predict dense 3D semantic voxel
maps [5]. However, 3D convolution has the lim-
itation of low resolution as the GPU memory con-
straint. Additionally, RGB information is not well
considered though it is very important. As seman-
tic segmentation on images has been very good,
we can project the semantic segmentation results
of images to 3D mesh based on the geometric re-
lationship. In this study, we mainly exploit the
multi-view based neural network for semantic seg-
mentation on 3D scenes.

We bridge the gap between 2D images and 3D
scene understanding because each pixel in the im-
ages has a corresponding point or face in the re-
constructed 3D model. We try to make better use
of well-defined 2D neural networks to segment im-

ages. After that, the views are projected to a 3D
model by the one-to-one correspondence. In order
to make the entire segmentation consistent and co-
herent, conditional random field (CRF) is adopted
to take multi-view projective results into account
so that the semantic segmentation on the whole
3D scene is optimal.

In summary, we present a novel architecture
about a multi-view based neural network for se-
mantic segmentation on 3D scenes. Our contri-
butions are twofold: (1) we propose a pipeline to
deal with 3D scene semantic segmentation by us-
ing a multi-view based method, which bridges the
gap between images and a 3D scene; (2) we use the
CRF based method to optimize the final labels of a
3D scene to obtain a coherently consistent results,
which obviously improves the results.

Given an input 3D scene and corresponding im-
ages, the goal of our method is to label each face in
the 3D scene. In order to make use of the images
with rich textural information and the 3D geomet-
ric structure of a 3D scene, we construct a multi-
view encoder-decoder architecture as shown in Fig-
ure 1(a). It takes as input a set of images from
multiple views which are used to reconstruct the
3D scene and extracts confidence maps through 2D
CNN layers. The confidence maps are then com-
bined and projected onto the 3D scene. Finally,
we use the CRF based multi-view optimization
method to obtain the final semantic segmentation
result in order to keep geometric consistency.
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(a)

Method GCO [8] GCO+recode [8] AutoContext [9] Ours

Mean IoU (%) 37.33 41.92 63.70 67.34

(b)

Figure 1 (Color online) (a) The proposed multi-view based neural network architecture for semantic segmentation on the
3D scenes. The encoder-decoder structure is based on the ResNet101 backbone and multi-stage decoder is used to restore
resolution. The feature aggregation module is used to aggregate the features from multi-view feature maps. The multi-view
optimization module is used to optimize the semantic segmentation result by conditional random field (CRF). (b) The
performance (mean intersection of unison) comparison with other methods on the 3D scenes of the RueMonge dataset.

Encoder-decoder. In the 2D image CNN step,
we use encoder-decoder structure, which is mostly
adopted in 2D image semantic segmentation tasks
[6]. The encoder network extracts features from
an image and the decoder network produces the
final semantic segmentation labels. The encoder
network is combined with layers of convolution,
pooling, non-linear activation which generally uses
a pretrained model (ResNet [7]) as the backbone.
The output of each convolution layer in the en-
coder network can be interpreted as features with
different receptive fields. After the spatial pooling
operation, the size of the feature map produced
by the encoder network is smaller than the origi-
nal image. The decoder network will then enlarge
the feature map using upsampling and unpooling
in order to produce the probility map with the
same size as the input.

In our encoder-decoder structure, we use “skip
connections” [6] to make better use of previous fea-
ture maps. The skip connection directly links an
encoder layer to a decoder layer. We use ResNet-
101 as the backbone to extract feature maps and
then use them in the decoder module. The out-
puts of the encoder-decoder are of the same size
as the input images. We use multiple branches for
multiple views and the weights for these branches
are shared.

Feature aggregation. In order to encode the ge-
ometric information into 2D CNN, we add a fea-
ture aggregation layer at the end of 2D CNNs.
Because the images from multiple views can be
used to reconstruct the 3D scene, the projection
between the pixels and the faces of 3D scene is
known. In other words, we can obtain the pixels

of different images that are mapped to the same
face. As these pixels correspond to the same face
in a 3D scene, they should have similar features.
In order to gain better performance, we aggregate
the feature maps of the related pixels from differ-
ent images. Comprehensively, after obtaining fea-
tures f1, f2, . . . , fK (K views), we can use the pre-
computed Face-ID map, which stores the face id of
each corresponding pixel in the image, to find all
the pixels (pi1, p

i
2, . . . , p

i
n) in different images which

are mapped to the same face id i. As these pix-
els correspond to the same face in a 3D scene, the
feature maps for them should be consistent. Thus,
we aggregate these feature maps as

Fi =
1

K

K
∑

j=1

fj , (1)

where Fi is of the same channels as the original
features. The Fi is then used to replace all the
features (f1, f2, . . . , fK). In this way, after feature
aggregation the feature maps are consistent for all
the pixels corresponding to the same face. We then
add a layer for each view. It is composed of convo-
lution, BN and relu operation. The output of 2D
CNN is the probability map C ×H ×W , where C
is the category we want to classify.

Multi-view optimization. In order to keep geo-
metric consistency in the final segmentation results
of the 3D scene, we use conditional random field
(CRF) to optimize the labeling results from all the
views. We can define a graph GM = (F , E) where
the nodes represent the triangular faces F = {fi}
of the 3D mesh M, and E is the set of graph edges,
which encode 3D adjacencies between the faces.
For all the faces in the set F , the probability vector
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set is D = {d1, d2, . . . , dn}. The labeling problem
can be defined as L = (l1, l2, . . . , ln) for n faces.
We define CRF on the graph and try to get the
maxiumum-a-posteriori (MAP) labeling L∗ of 3D
mesh where L∗ = (l∗1 , l

∗
2 , . . . , l

∗
n) for n faces and

li ∈ C = {c1, c2, . . . , ck} for k categories. The ob-
jective function can be

L∗ = argmin
L∈Cn

E(L|D), (2)

and we try to find an optimal multi-label result
L∗. The function consists of an unary data term
for each face fi and a pairwise regularity term for
each pair of adjacent faces (fi, fj).

E(L) =
∑

fi∈F

φ(di|li) + λ
∑

(fi,fj)∈E

Ψ(li, lj), (3)

where φ(di|li) is the penalty for assigning label li
for face fi. That is

φ(di|li) =
∑

cj∈C

− log p(cj |li = cj), (4)

where p(cj |li = cj) is the probability of fi assigned
label cj .

The pairwise potential Ψ(li, lj) enforces spa-
tially smooth labelling solutions over the mesh
faces by penalizing occurrences of adjacent faces
fi and fj obtaining different labels (li 6= lj). We
use a Potts model:

Ψ(li, lj) =

{

0, if li = lj,

D(fi, fj), if li 6= lj ,
(5)

where D(fi, fj) is a function used to describe the
relationship of the pair of faces (fi, fj). We use a
Gaussian function here. That is

D(fi, fj) = e−dist(fi,fj), (6)

where dist(fi, fj) is the distance of two faces. For
each face fi, we recompute the point representing

the face p(fi) =
fi(p1)+fi(p2)+fi(p3)

3 . Thus, the dis-
tance between fi and fj is the Euclidean distance
of p(fi) and p(fj).

The coefficient parameter λ is used to control
the balance between the unary term and the pair-
wise term. Here we use λ = 0.5.

Implementation and experiments. In order to
evaluate our proposed method, we perform ex-
periments on the RueMonge2014 dataset [8]. We
implement our work by using PyTorch on a PC
with Intel Core i7 3.10 GHz, 32 GB RAM and
a 1080Ti GPU. For the training step, we do some
data augmentation as commonly done in the litera-
ture. The input images are randomly cropped, ro-
tated, scaled (ranging from 0.5 to 1.2) and horizon-
tally flipped. The training input size is 400× 400

in all our experiments. In the testing step, we
use multi-scale and flipping input. As shown in
Figure 1(b) [8, 9], we compare our results with
other methods. Compared with other methods,
our pipeline shows a better performance.

Conclusion. In this study, we propose a multi-
view based neural network architecture for 3D
scene segmentation. Our architecture firstly ex-
tracts feature maps from different views by using
the encoder-decoder structure with ResNet-101 as
the backbone. The skip connection is used in the
encoder-decoder structure. The feature maps are
aggregated through the projection relationship be-
tween the images and the 3D scene. Therefore, the
feature maps from different views are kept consis-
tent. In order to make the labeling result coher-
ently consistent, we use a CRF based method to
optimize multiple view results. The experiments
show that the proposed architecture exhibits bet-
ter performance compared with other methods.
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