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Recent years have witnessed great progress of deep
convolutional neural networks (DCNNs) for solv-
ing scene understanding tasks [1–3]. These ad-
vances prefer to construct deeper and larger net-
work to achieve higher accuracy, yet with the sac-
rifice of implementing efficiency. In the context of
many real-world scenarios, such as augmented re-
ality, robotics, and self-driving, the computation-
ally cheap networks are often required to carry
out real-time estimation and decision. Therefore,
those accurate networks requiring enormous re-
sources are not suitable for the mobile devices
(e.g., drones, robots, and smartphones), which
have limited energy overhead, restrictive memory
constraints, and reduced computational capabil-
ities. Recently, it is widely accepted that pur-
suing the best performance in limited computa-
tional budgets has become a primary trend in com-
puter vision. To this end, this essay introduces
an open-source project of a lightweight encoder-
decoder network (EDN) for the task of real-time
image semantic segmentation.

Network overview. The entire architecture of
LEDNet is shown in Figure 1, which composes
of encoder and decoder counterpart. Similar to
most EDNs, the encoder employs convolution and
pooling operation to abstract high-level features.
Inspired by the convolution factorization princi-

ple [4], however, the core component of the en-
coder is a novel residual module, called ss-nbt,
that adopts a split-transform-merge strategy, ap-
proaching the representational power of large and
dense convolution layers. In contrast to ShuffleNet
[5] that adopts depthwise and 1×1 group convolu-
tion, our ss-nbt employs factorized convolution to
avoid using pointwise convolution, saving a large
number of computational costs. In addition, the
residual layer of ShuffleNet [5] only performs con-
volution on half number of input feature channels.
Conversely, our split-transform-merge strategy al-
lows both split branches to undergo a set of factor-
ization convolution to enhance network representa-
tion ability. Note the downsampling is postponed
in the encoder, adding a bit of computational bur-
den, but helping to gather more context. To im-
prove segmentation performance, we utilize dilated
convolutions to enlarge receptive field. In contrast
to the approaches that extend field-of-view using
larger kernel sizes, this technique is more effective
in terms of computational cost and size of models.

On the other hand, unlike most EDNs that se-
quentially enlarge feature resolution using decovo-
lution operation, the decoder of LEDNet adopts an
attention mechanism [6] to reweight convolutional
feature responses, in which an attention pyramid
module (APN) is employed to model the interde-
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Figure 1 (Color online) The overall asymmetric architecture of the proposed LEDNet. The encoder employs an FCN-like
network, while an attention pyramid network is adopted in the decoder.

pendencies between features within different spa-
tial locations and different channels. The pyramid
structure fuses information of different scales step-
by-step, where the context cues of neighbor scales
are integrated more precisely. Hereafter, the ab-
stracted attention weights are pixel-wisely multi-
plied with the convolutional features, derived from
the output of encoder using a 1 × 1 convolution.
To further boost accuracy, a global average pooling
branch is added to integrate global prior attention.
Finally, an upsampling operation is implemented
to recover the resolution. Benefiting from APN,
the decoder of LEDNet can capture multi-scale
context cues, and produce pixel-channel-level at-
tention for convolutional features.

Usage. LEDNet is an open-source project for
the task of real-time image semantic segmenta-
tion. One may first build up implementing en-
vironment with at least PyTorch 0.4.1, Cuda 9.0,
Cudnn 7.1, and Python 3.6. If one wants to train
the model, the Cityscapes dataset [7] should be
first downloaded, which includes 5000 finely an-
notated ground truth and over 20000 coarsely an-
notated images collected from 50 different Euro-
pean cities. This dataset is divided into three
parts, where 2975, 500, and 1525 images are used
respectively for training, validation, and testing.
After the file path of training data and model
hyper-parameters is correctly set, one may per-
form “main.py” to train LEDNet only using finely
annotated training data. If one wants to train
the model with additional coarsely annotated im-
ages, the training data should be reloaded and the
whole LEDNet framework should be rebuilt. In
addition, we provide the code to train encoder of
LEDNet using Imagenet dataset, where one can
first run “lednet imagenet.py”, and then fine-tune
the trained model using training images. After
the network is well trained, LEDNet can be eval-
uated using “eval cityscapes server.py” in terms
of intersection-over-union (mIoU), inference time

(FPS) and model size (number of parameters).
In this project, we release two lightweight ver-
sions of LEDNet, where the difference, as shown in
Figure 1, is the number of feature channels D in
APN of the decoder. One may choose to train
heavier LEDNet when D = 128, or lighter version
when D = 20. The lighter version yields 70.6%
class mIoU and 87.1% category mIoU, respectively,
and has only 0.94 M parameters with 71 FPS infer-
ence speed using a single GTX 1080Ti GPU. The
heavier version has nearly 3× larger model size
than lighter one, but achieves 1.6% improvement
in terms of class mIoU. Compared with recent
state-of-the-art lightweight networks [5, 8–10], the
proposed LEDNet achieves superior performance
in terms of segmentation accuracy and implement-
ing efficiency trade-off.

Access method. LEDNet can be downloaded
from https://github.com/xiaoyufenfei/LEDNet.
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