
SCIENCE CHINA
Information Sciences

December 2019, Vol. 62 222202:1–222202:16

https://doi.org/10.1007/s11432-018-9844-3

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. RESEARCH PAPER .

Event-triggered attitude tracking for rigid spacecraft

Deheng CAI1†, Hengguang ZOU1,2†, Junzheng WANG1, Yuan HUANG1 & Dawei SHI1*

1State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation,
Beijing Institute of Technology, Beijing 100081, China;

2China Academy of Space Technology, Beijing 100094, China

Received 9 October 2018/Revised 28 January 2019/Accepted 4 March 2019/Published online 12 November 2019

Abstract This study aims to investigate the problem of attitude control for a spacecraft with inertial

uncertainties, external disturbances, and communication restrictions. An event-triggered active disturbance

rejection control approach is proposed for attitude tracking of the spacecraft. An event-triggered mechanism

is introduced together with an extended state observer to jointly monitor the system states and total distur-

bances. The observation error is proved to be uniformly bounded. Based on the proposed control scheme,

the integrated tracking system is shown to be asymptotically stable, implying successful attitude tracking of

the spacecraft for the desired motion. Numerical results illustrate the effectiveness of the control strategy in

achieving satisfactory tracking performance with a reduced data-transmission cost.
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1 Introduction

Control systems play an important role in achieving attitude maneuvering, attitude tracking, and high-

precision pointing of spacecraft. Because the kinematic and dynamic equations of rigid spacecraft possess

highly coupled nonlinear characteristics and systems may suffer from external disturbances, inertia-matrix

uncertainties, and even actuator failures, the attitude-control problem has attracted significant attention

over the past few decades [1–5].

A few strategies have been investigated for attitude-control problems of rigid spacecraft under differ-

ent restrictive conditions, such as sliding mode control [6, 7], adaptive robust control [8, 9], and optimal

control [10]. Considering the limitations of the onboard communication and computation resources for

embedded computer systems on spacecraft, resource-aware control strategies should be investigated for

attitude control. One feasible strategy for this is event-triggered control, wherein signals are only trans-

mitted when the pre-designed event-triggering conditions are violated. In this regard, event-triggered

control can reduce communication bandwidth and power to save more resources for other tasks, and also

can increase the service lifetime of the entire system. Event-based sampling and control was originally

introduced in [11] and has been applied in many control problems [12–15], including attitude control

of the spacecraft [16–19]. In [16], an event-triggered control approach to reduce the control-updating

frequency was proposed for spacecraft-attitude stabilization, but without considering the effect of dis-

turbances. The same problem was addressed in [17], where two different types of triggering events, i.e.,
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fixed- and relative-threshold strategies, were proposed. Attitude stabilization with an event-triggered

mechanism and external disturbances was considered in [18]. In [19], an observer-based event-triggered

control approach was proposed to cope with external disturbances and actuator faults and to reduce the

control-updating frequency.

Unlike Refs. [16–19], which focused upon attitude stabilization, we investigated an event-triggered

attitude-tracking problem for a spacecraft with inertial uncertainties and external disturbances. In par-

ticular, we reduced the transmission frequency of measurements of the states, rather than the control-

updating frequency. Moreover, we considered the effect of inertial uncertainties that are coupled to the

system states and make the attitude tracking more difficult to achieve with reduced sampling frequency.

To attenuate these effects, we utilize an active disturbance rejection control (ADRC) approach to the

control-system design. ADRC has shown its effectiveness in uncertainty and external disturbance rejec-

tion [20–22], and has been adopted in a wide range of applications [23–26]. The core of ADRC is to

regard the internal uncertainties and external disturbances as a state of the system, which is the so-called

extended state estimated by an extended state observer (ESO). Herein, to reduce the data-transmission

rate, the ESO is integrated with the designed event-triggered mechanism. Some related investigations

had been done by the authors’ group [27, 28]. In [27], an event-triggered ESO (ET-ESO) was proposed,

and the observation error was proved to be uniformly bounded. In [28], trajectory tracking of a DC

torque motor was achieved based on the proposed event-triggered ADRC, where ET-ESO was utilized.

Unlike Refs. [27, 28], a few challenges exist in the event-triggered attitude-tracking problem. First, the

attitude kinematics and dynamics of a rigid spacecraft modeled by the unit quaternion technique possess

highly coupled nonlinear characteristics; second, system dynamics including the gains of the inputs are

strongly affected by external disturbances and inertial uncertainties, making the stabilization a nontrivial

problem. Specifically, we focus on how to utilize ESO to observe the coupled three-channel disturbances

and how to design an event-triggered mechanism to guarantee the stability of the integrated tracking sys-

tem without information about the disturbances. The main contributions of this paper are summarized

as follows.

(1) An event-triggeredmechanism is proposed for attitude tracking of a spacecraft under communication-

resource restrictions. The event-triggered mechanism only needs measurements of spacecraft-attitude

orientation and angular velocity, without information concerning parameter uncertainties and external

disturbances.

(2) Using the designed event-triggered mechanism, an event-triggered ADRC (ET-ADRC) scheme is

proposed and the corresponding theoretical analysis is also developed. The asymptotic upper bounds

on the steady-state-observation errors with parameters in the event-triggering condition are provided.

Moreover, the tracking system is proved to be asymptotically stable, such that control of the spacecraft

tracking the desired attitude motion is achieved based on the proposed scheme.

The developed results are validated by numerical simulations, which show that in comparision with the

time-triggered ADRC scheme, the ET-ADRC scheme possesses satisfactory tracking performance at a

reduced average data transmission rate. The remainder of this paper is organized as follows. In Section 2,

the attitude-tracking system for a rigid spacecraft is described and the problem is formulated. The

theoretical analysis of the performance of the event-triggered ADRC scheme is presented in Section 3.

The simulation results are provided in Section 4, and Section 5 presents some concluding remarks.

Notation. R denotes the field of all real numbers. Rn denotes the n-dimensional real vector space. ‖·‖

and | · | denote the Euclidean norms of real vectors and the absolute values of scalars, respectively. In is

the identity matrix of dimension n. aT denotes the transposition of a. The shorthand diag{b1, b2, . . . , bn}

denotes a diagonal matrix with diagonal blocks b1, b2, . . . , bn. The operator a
× denotes a skew-symmetric

matrix of any vector a = [a1, a2, a3]
T such that

a× =









0 −a3 a2

a3 0 −a1

−a2 a1 0









.
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Figure 1 Schematic of the event-triggered ADRC scheme.

2 Problem formulation

Consider the event-triggered control scheme for attitude tracking in Figure 1. The attitude kinematics

and dynamics of a rigid spacecraft can adequately be modeled as follows [1] in terms of the unit quaternion

that is free of singularity:

q̇v =
1

2
(q4I3 + q×v )ω, q̇4 = −

1

2
qTv ω, Jω̇ = −ω×Jω + u+ d, (1)

where ω ∈ R
3 is the angular velocity of the spacecraft; u ∈ R

3 and d ∈ R
3 are the control torques and

external unknown disturbances, respectively; J ∈ R
3×3 is the symmetric inertial matrix of the spacecraft;

the unit quaternion q = [qTv , q4]
T ∈ R

3 ×R represents the attitude orientation of a body-fixed frame with

respect to an inertial frame comprising a vector part qv = [q1, q2, q3]
T ∈ R

3 and scalar component q4 ∈ R,

which satisfies the constraint qTv qv + q24 = 1.

The attitude-tracking problem is formulated according to the related investigations [7,10]. The desired

attitude motion is supposed to be generated by

q̇dv =
1

2
(qd4I3 + q×dv)ωd, q̇d4 = −

1

2
qTdvωd, (2)

where qd = [qTdv, qd4]
T ∈ R

3 × R is the target-attitude unit quaternion satisfying qTdvqdv + q2d4 = 1; ωd is

the target angular velocity. Following the discussions in [10], ωd, ω̇d and ω̈d are assumed to be bounded.

Subsequently, the objective of attitude tracking can be expressed as

lim sup
t→∞

η1(t) = 0, η1(t) = q(t)− qd(t); lim sup
t→∞

η2(t) = 0, η2(t) = ω(t)− ωd(t). (3)

This problem can be turned into the stabilization problem by considering the attitude-tracking-error

quaternion qe = [qTev, qe4]
T ∈ R

3 × R introduced in [1]

qev = qd4qv − q×dvqv − q4qdv, qe4 = qTdvqv + q4qd4, ωe = ω − Cωd, (4)

where C = (1 − 2qTevqev)I3 + 2qevq
T
ev − 2qe4q

×
ev with ‖C‖ = 1 and Ċ = −ω×

e C; the error quaternion also

satisfies the constraint qTevqev+q2e4 = 1 according to [10]. The attitude-tracking system can be formulated

as follows:

q̇ev =
1

2
(qe4I3 + q×ev)ωe, q̇e4 = −

1

2
qTevωe, (5)

Jω̇e = −(ωe + Cωd)
×J(ωe + Cωd) + J(ω×

e Cωd − Cω̇d) + u+ d. (6)

For the purpose of the control-law design, Lemmas 1 and 2 are presented as follows.
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Lemma 1. The objectives (3) can be achieved if there exists a control law for system (5) and (6) such

that limt→∞ qev(t) = 0 and limt→∞ ωe(t) = 0.

Proof. This result can be proved based on analysis of sections II and III in [29].

Taking the coordinate transformation of z = ωe +Kqev in [9], systems (5) and (6) can be rewritten as

q̇ev =
1

2
(qe4I3 + q×ev)ωe, q̇e4 = −

1

2
qTevωe, (7)

Jż = −(ωe + Cωd)
×J(ωe + Cωd) + J(ω×

e Cωd − Cω̇d) +
1

2
JK(qe4I3 + q×ev)ωe + u+ d, (8)

where K is a positive definite matrix.

Lemma 2 ([7]). Consider the rigid spacecraft governed by systems (7) and (8). Then, for any z(t)

satisfying limt→∞ z(t) = 0, it follows that limt→∞ qev(t) = 0 and limt→∞ ωe(t) = 0, respectively.

Owing to the fuel consumption and payload variations, parameter uncertainties of the inertial matrix

may exist in the control system. Similar to [7], the inertial matrix containing parameter uncertainties is

in the form J = J0 +∆J , where J0 denotes the known nominal matrix that is selected to be nonsingular

and ∆J is the uncertainty associated with J . Thus, the dynamics given by (8) can be rewritten as

(J0 +∆J)ż =− (ωe + Cωd)
×(J0 +∆J)(ωe + Cωd) + (J0 +∆J)(ω×

e Cωd − Cω̇d)

+
1

2
(J0 +∆J)K(qe4I3 + q×ev)ωe + u+ d. (9)

In fact, the disturbance forces caused by solar radiation, aerodynamics, and magnetic fields vary slowly

in time, and the properties of the spacecraft (e.g., shape and mass) also vary slowly in time because of

fuel consumption and payload variations. Therefore, reasonable assumptions are given out as follows.

Assumption 1. The disturbance d in (1) is assumed to be bounded as ‖d‖ 6 D1 and to be differentiable

with the bound, i.e., ‖ḋ‖ 6 D2, where the D1 and D2, are unknown positive constants.

Assumption 2. The uncertainty part of the inertial matrix ∆J is assumed to be bounded as ‖∆J‖ 6 Jc,

where Jc is an unknown positive constant. The inertial matrix is assumed to be slowly varying, that is,

‖J̇‖ 6 Jd with Jd being an unknown positive constant.

As suggested in [7, 30, 31], these assumptions are quite common in the framework of robust attitude

control of the rigid spacecraft.

On the other hand, utilizing the matrix inversion lemma, (J0 +∆J)−1 can be expressed as follows:

(J0 +∆J)−1 = J−1
0 +∆J̃ , with ∆J̃ = −(I3 + J−1

0 ∆J)−1J−1
0 ∆JJ−1

0 ,

where ∆J̃ is an additive uncertainty. Then, following some simple algebraic transformations to (9), we

obtain

ż = F +G+ J−1
0 u+ d̄, (10)

where

F =J−1
0

[

−ω×J0ω + J0(ω
×
e Cωd − Cω̇d) +

1

2
J0K(qe4I3 + q×ev)ωe

]

, (11)

G = J−1
0

[

−ω×∆Jω +∆J(ω×
e Cωd − Cω̇d) +

1

2
∆JK(qe4I3 + q×ev)ωe

]

+∆J̃

[

−ω×Jω + J(ω×
e Cωd − Cω̇d) +

1

2
JK(qe4I3 + q×ev)

]

+∆J̃u, (12)

d̄ =(J−1
0 +∆J̃)d. (13)

It is obvious that the attitude-tracking system in the presence of parameter uncertainties and unknown

bounded disturbances has been modeled in (10). Finally, according to Lemmas 1 and 2, if there exists

a dynamic state-feedback-control law for system (10) such that limt→∞ z(t) = 0, it follows that the
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tracking objectives in (3) are achieved. Herein, we introduce ADRC to design one such control law.

ADRC inherits a simple structure from proportional-integral-derivative (PID) that is error-driven rather

than model-based and takes from modern control theory its best offering of the state observer [20]. The

core of ADRC is to regard the disturbances including modeling errors as an additional state of the

system, and then to compensate for them in the control law, which can be designed as a linear feedback

or nonlinear feedback of the tracking errors. According to the original ESO formulation in [20, 32, 33],

internal uncertainties and external disturbances can all be regarded as the “total disturbance”, which is

defined as an extended state. In this regard, we define the extended state x2 as

x2 = F +G+ d̄. (14)

Furthermore, we write x1 := z; then the system (10) can be written as

ẋ1 = x2 + J−1
0 u, ẋ2 = h(t), (15)

where the function h(t) is the derivative of the extended state assumed to satisfy Assumption 3.

Assumption 3. The derivative of the extended state is assumed to be bounded, namely, |hi(t)| 6 Mi,

where i ∈ {1, 2, 3}, and Mi are some nonnegative constants.

Remark 1. The extended state x2 in (14) represents the total disturbances, which integrate the various

information of disturbances, actual, desired angular velocities and attitude unit quaternions. Suppose

Assumptions 1 and 2 hold; then, from (13), it is clear that ˙̄d, the derivative of d̄ is bounded. Note that

the spacecraft is always under smooth operation, which implies that angular velocity ω and its derivative

are bounded. ωd, ω̇d and ω̈d are the desired system states that are designed to be bounded. Furthermore,

qev, qe4 and C and their derivatives are bounded due to ‖qe‖ = ‖C‖ = 1. Then, according to (11), we

can conclude that Ḟ is bounded. The control law u and its derivative can be designed to be bounded,

and with the bounded conditions on Ḟ and ˙̄d, we can conclude that Ġ is bounded based on (12). By

combining the discussions above, we find that the derivative of x2 is bounded. Similar assumptions are

also made in [34,35]. Note that F includes additional uncertainties due to the asynchronous information

caused by the event-triggered sampling scheme adopted herein. Consequently, we treat F as additional

disturbances to be a part of the extended state in our design, which differs from [7].

Now we introduce the ET-ESO:

˙̂x1(t) = x̂2(t) + g1

(

1

ε
[ξ(t)− x̂1(t)]

)

+ J−1
0 u, x̂1(t0) = x̂10,

˙̂x2(t) =
1

ε
g2

(

1

ε
[ξ(t)− x̂1(t)]

)

, x̂2(t0) = x̂20, (16)

where the above observer contains three subobservers. The suffix i denotes the ith element of the vector

state. [x̂1i, x̂2i]
T ∈ R

2, i ∈ {1, 2, 3} is the state of the ith observer, [x̂1i0, x̂2i0]
T ∈ R

2 is the initial value of

[x̂1i, x̂2i], εi is the high-gain parameter of the ith observer and 1
ε
= diag{ 1

ε1
, 1
ε2
, 1
ε3
}. The operators gj(a) ∈

R
3, j ∈ {1, 2} on any vector a = [a1, a2, a3]

T ∈ R
3 are defined as gj(a) = [gj1(a1), gj2(a2), gj3(a3)]

T, where

the detailed expressions of gji(·) are discussed next. ξ(t) denotes the previously received output x1 which

is given by

ξ(t) =

{

x1(tk), if Γ(t) = 0,

x1(t), otherwise,
(17)

where Γ(t) is the triggering condition to be presented next and tk is the transmission instant determined

by the event-triggering condition. The value of ξ(t) will be updated only when Γ(t) = 1.

For the ith observer, g1i(·) and g2i(·) are selected as g1i(y1) = biy1 + ϕ(y1) and g2i(y1) = ciy1 with
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ϕ(θ) defined as follows:

ϕ(θ) =



























−
1

4
, θ < −

Π

2
,

1

4
sin θ, −

Π

2
6 θ 6

Π

2
,

1

4
, θ >

Π

2
.

(18)

Moreover, bi and ci are some constants such that the matrix A := [ −bi 1

−ci 0
] is Hurwitz; then there exists a

matrix P̃ > 0 satisfying

P̃A+ATP̃ = −I. (19)

We define functions Pi : R
2 → R as Pi(y) = 〈P̃ y, y〉+

∫ y1

0 ϕ(s)ds. By choosing the functions g1i, g2i, and

ϕ in this form with bi and ci satisfying the inequality of (1 + ci)/bi + bi < 4, which are discussed in the

supplementary document of [36], there exist nonnegative-definite functions Θi : R
2 → R such that

λ1i‖y‖
2
6 Pi(y) 6 λ2i‖y‖

2, (20)

λ3i‖y‖
2
6 Θi(y) 6 λ4i‖y‖

2, (21)

∂Pi

∂y1
(y2 − g1i(y1))−

∂Pi

∂y2
g2i(y1) 6 −Θi(y), (22)

∥

∥

∥

∥

∂Pi

∂y

∥

∥

∥

∥

6 τi‖y‖, (23)

where λ1i, λ2i, λ3i, λ4i, and τi are some positive constants. The minimum and maximum values of

the corresponding parameters of the three subobservers are denoted with the suffixes min and max,

respectively, e.g., {λ1i} with λ1min and λ1max. The choice of ϕ(θ) is not unique as long as it satisfies the

requirements above.

With the disturbances estimated by the ET-ESO, a dynamic state-feedback control law is designed as

u = −J0K̃x̂1 − J0x̂2, (24)

where K̃ = diag{K̃1, K̃2, K̃3}, and K̃i are some positive constants.

For convenience of analysis, we define x̃j , ej and ẽi as

x̃j := xj − x̂j , ej := [ej1, ej2, ej3]
T =

[

x̃j1

ε2−j
1

,
x̃j2

ε2−j
2

,
x̃j3

ε2−j
3

]T

, j ∈ {1, 2},

ẽi := [e1i, e2i]
T, i ∈ {1, 2, 3}, (25)

where the ẽi is related to the observation error of the ith observer consisting of the ith element of e1 and

e2. We define the sampling error σ(t) as σ(t) := 1
ε
[x1(tk)− x1(t)], t ∈ [tk, tk+1) and, for notional brevity,

we define αj(e1, σ) as αj(e1, σ) := gj(e1 + σ) − gj(e1), j ∈ {1, 2}.

In this work, we consider the following problems:

(1) Is there an event-triggering condition such that the observation errors’ boundedness of three sub-

observers can be guaranteed?

(2) Based on the proposed event-triggering condition and the designed control law, can we stabilize

the system (10) in the presence of inertial uncertainties and unknown disturbances?

3 Main results

Herein, the problems outlined in the previous section are investigated. The control law u in (24) can also

be expressed as

u = −J0K̃x1 + J0K̃(x1 − x̂1)− J0x̂2 = −J0K̃x1 + J0K̃εe1 − J0x̂2, (26)
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where ε = diag{ε1, ε2, ε3}. The minimum and maximum values of {εi} are denoted as εmin and εmax,

respectively. An event-triggering condition of the observer is proposed to have the following form:

Γ(t) =















0, if
3
∑

i=1

2
∑

j=1

|αji(e1i, σi)| 6 Ψεmin,

1, otherwise,

(27)

where αji(·) is the ith component of vector αj(·) and Ψ is a given constant. Now, we are ready to analyze

the performance of the proposed event-triggered control scheme in Theorem 1.

Theorem 1. Consider the closed-loop system in (7) and (8), the ESO in (16), and the control law

in (24). Suppose that Assumptions 1–3 hold. For any initial values of x1, x2 and x̂1, x̂2, and a given

Ψ > 0, there exist ε∗ > 0 and an event-triggering condition in (27) of the observer such that for any

εi ∈ (0, ε∗), i ∈ {1, 2, 3}, it holds that, for j ∈ {1, 2},

lim sup
t→∞

‖xj − x̂j‖ 6 ε2−j
max

√

3ε
1

2

max

2γλ1min
[(τM)max + (τΨ)max], (28)

lim sup
t→∞

‖z‖ 6

√

3ε
1

2

max

γ
[(τM)max + (τΨ)max], (29)

where (τM)max and (τΨ)max are the maximum values of {τiMi} and {τiΨ}, i ∈ {1, 2, 3}, respectively.

Proof. From (15), (16) and the definitions of x̃j and ej in (25), we find that

˙̃x1 = x2 − x̂2 − g1

(

1

ε
[ξ(t)− x̂1(t)]

)

= x̃2 − g1

(

1

ε
[x1(t)− x̂1(t)] +

1

ε
[ξ(t) − x1(t)]

)

= x̃2 − g1(e1(t))− α1(e1(t), σ(t)),

˙̃x2 = h(t)− g2

(

1

ε
[ξ(t)− x̂1(t)]

)

= h(t)−
1

ε
g2(e1(t))−

1

ε
α2(e1(t), σ(t)).

Then, through a simple computation, we obtain the dynamics of ej as

ė1(t) =
1

ε
e2(t)−

1

ε
g1(e1(t)) −

1

ε
α1(e1(t), σ(t)),

ė2(t) = h(t)−
1

ε
g2(e1(t))−

1

ε
α2(e1(t), σ(t)). (30)

Consider a nonnegative-definite function V (x1, e1, e2) as

V (x1, e1, e2) =
1

2
xT
1 x1 +

3
∑

i=1

Pi(ẽi), (31)

where Pi(ẽi) and ẽi are provided in (1) and (25), respectively. From the dynamics of ej in (30), we

observe through a simple computation that

dV

dt
= xT

1 ẋ1 +
3
∑

i=1

∂Pi

∂e1i
ė1i +

3
∑

i=1

∂Pi

∂e2i
ė2i

= xT
1 ẋ1 +

3
∑

i=1

∂Pi

∂e1i

[

1

εi
e2i(t)−

1

εi
g1i(e1i(t))−

1

εi
α1i(e1i(t), σi(t))

]

+
3
∑

i=1

∂Pi

∂e2i

[

hi(t)−
1

εi
g2i(e1i(t))−

1

εi
α2i(e1i(t), σi(t))

]

6 xT
1 ẋ1 +

3
∑

i=1

∣

∣

∣

∣

∂Pi

∂e2i

∣

∣

∣

∣

|hi(t)|+
3
∑

i=1

1

εi

[

∂Pi

∂e1i
(e2i − g1i(e1i))−

∂Pi

∂e2i
g2i(e1i)

]
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−

3
∑

i=1

1

εi

[

∂Pi

∂e1i
α1i(e1i, σi) +

∂Pi

∂e2i
α2i(e1i, σi)

]

. (32)

According to (15) and control law u in (26), we have

xT
1 ẋ1 = xT

1 [x2 − K̃x1 + K̃(x1 − x̂1)− x̂2] = xT
1 (−K̃x1 + K̃εe1 + e2)

6− K̃min‖x1‖
2 + K̃maxεmax‖x1‖‖e1‖+ ‖x1‖‖e2‖

6− K̃min‖x1‖
2 +

1

2

(

K̃2
maxε

5

2

max‖x1‖
2 + ε

− 1

2

max‖e1‖
2
)

+
1

2

(

ε
1

2

max‖x1‖
2 + ε

− 1

2

max‖e2‖
2
)

. (33)

Considering the properties of functions Pi(·) and Θi(·) in (21) and (22), we find that

3
∑

i=1

1

εi

[

∂Pi

∂e1i
(e2i − g1i(e1i))−

∂Pi

∂e2i
g2i(e1i)

]

6 −

3
∑

i=1

1

εi
Θ(ẽi) 6 −

3
∑

i=1

λ3i

εi
‖ẽi‖

2

6 −
λ3min

εmax
(‖e1‖

2 + ‖e2‖
2). (34)

According to (23) and the event-triggering condition in (27), we observe that

−

3
∑

i=1

1

εi

[

∂Pi

∂e1i
α1i(e1i, σi) +

∂Pi

∂e2i
α2i(e1i, σi)

]

6

3
∑

i=1

1

εi

[
∣

∣

∣

∣

∂Pi

∂e1i
α1i(e1i, σi)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂Pi

∂e2i
α2i(e1i, σi)

∣

∣

∣

∣

]

6

3
∑

i=1

1

εi
τi‖ẽi‖Ψεi 6

3
∑

i=1

τiΨ

2

(

ε
− 1

2

max‖ẽi‖
2 + ε

1

2

max

)

6
(τΨ)max

2

(

ε
− 1

2

max‖e1‖
2 + ε

− 1

2

max‖e2‖
2 + 3ε

1

2

max

)

. (35)

Similarly, according to Assumption 3, we obtain that

3
∑

i=1

∣

∣

∣

∣

∂Pi

∂e2i

∣

∣

∣

∣

|hi(t)| 6

3
∑

i=1

τi‖ẽi‖Mi 6

3
∑

i=1

τiMi

2

(

ε
− 1

2

max‖ẽi‖
2 + ε

1

2

max

)

6
(τM)max

2

(

ε
− 1

2

max‖e1‖
2 + ε

− 1

2

max‖e2‖
2 + 3ε

1

2

max

)

. (36)

Combining the results (30)–(36), we finally obtain

dV

dt
6−

1

εmax

[

λ3min −
(τM)max + (τΨ)max

2
ε

1

2

max −
1

2
ε

1

2

max

]

(‖e1‖
2 + ‖e2‖

2)

−

(

K̃min −
1

2
ε

1

2

max −
K̃2

max

2
ε

5

2

max

)

‖x1‖
2 +

3

2
ε

1

2

max[(τM)max + (τΨ)max].

We write

β1 := K̃min −
1

2
ε

1

2

max −
K̃2

max

2
ε

5

2

max,

β2 := λ3min −
(τM)max + (τΨ)max

2
ε

1

2

max −
1

2
ε

1

2

max, (37)

and define ε∗ as

ε∗ = max{εmax ∈ R|β1 > 0, β2 > 0, and εmax > 0}. (38)

It is obvious that β1 and β2 are monotonically decreasing functions of εmax, that limεmax→0 β1 > 0,

limεmax→0 β2 > 0, and that β1 < 0, β2 < 0 when εmax becomes sufficiently large. Thus, ε∗ is well defined.

For εmax ∈ (0, ε∗), we have

dV

dt
6− β1‖x1‖

2 −
β2

εmax
(‖ẽ1‖

2 + ‖ẽ2‖
2 + ‖ẽ3‖

2) +
3

2
ε

1

2

max[(τM)max + (τΨ)max]
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6− 2β1
1

2
xT
1 x1 −

β2

εmaxλ2max

3
∑

i=1

Pi(ẽi) +
3

2
ε

1

2

max[(τM)max + (τΨ)max].

Furthermore, we define

γ := min

{

2β1,
β2

εmaxλ2max

}

, φ(t, t0) := exp(−γ(t− t0)), (39)

and then dV
dt can be rewritten as

dV

dt
6 −γV +

3

2
ε

1

2

max[(τM)max + (τΨ)max]. (40)

From (31), it is clear that V > 0, and then according to a comparison lemma in [37], we obtain that

V (x1(t), e1(t), e2(t)) 6 W (t), (41)

where W (t) is the solution of the differential equation

Ẇ = −γW +
3

2
ε

1

2

max[(τM)max + (τΨ)max], W (t0) = V (x1(t0), e1(t0), e2(t0)). (42)

Solving the differential equation in (42), we have

W (t) = V (x1(t0), e1(t0), e2(t0))φ(t, t0) +
3

2
ε

1

2

max[(τM)max + (τΨ)max]

∫ t

t0

φ(t, ν)dν. (43)

Then, we obtain

V (x1(t), e1(t), e2(t)) 6 W (t)

6 V (x1(t0), e1(t0), e2(t0))φ(t, t0) +
3

2γ
ε

1

2

max[(τM)max + (τΨ)max](1− φ(t, t0)).

Because φ(t, t0) → 0 when t → ∞, we have that when t → ∞

V (x1, e1, e2) 6
3

2γ
ε

1

2

max[(τM)max + (τΨ)max]. (44)

Using the fact in (20), when t → 0 we find that

1

2
‖x1‖+ λ1min(‖e1‖

2 + ‖e2‖
2) 6 V (x1, e1, e2). (45)

From (44) and (45), we observe that

lim sup
t→∞

‖z‖ = lim sup
t→∞

‖x1‖ 6

√

3ε
1

2

max

γ
[(τM)max + (τΨ)max]. (46)

Similarly, we obtain that, for j ∈ {1, 2}

lim sup
t→∞

‖ej‖ 6

√

3ε
1

2

max

2γλ1min
[(τM)max + (τΨ)max], (47)

and from the definitions of ej , that

lim sup
t→∞

‖xj − x̂j‖ 6 ε2−j
max

√

3ε
1

2

max

2γλ1min
[(τM)max + (τΨ)max]. (48)

This completes the proof.
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Remark 2. The ESO in (16), the control law in (24), and the event-triggering mechanism proposed

in (27) can guarantee the asymptotic boundedness of the observation error and stabilize the system

(10). According to Lemmas 1 and 2, the stability of system (10) implies that the states of the rigid

spacecraft system governed by (1) can track the given desired attitudinal motion (2) in the presence of

parameter uncertainties and unknown disturbances. Moreover, from (46) and (48), the system state z and

observation errors can converge to an arbitrarily small bounded range around zero for properly chosen

values of {εi} and Ψ, even though the bound of the derivative of the extended state is unknown. The

input-to-state stability of the ith ESO is ensured by the parameterization of the functions gji, j ∈ {1, 2},

and ϕ(θ), as chosen in Section 2, which satisfy the requirements in (19) and (20)–(23). The function ϕ(θ)

is the nonlinear part of the ESO. The proposed event-triggering condition in (27) is related to the value

of the sampling errors σ(t) and Ψ. Only when σ(t) becomes sufficiently large will the value of ξ(t) be

updated, so that the data-transmission cost is reduced. The transmission cost decreases with the increase

of Ψ and vise versa. Furthermore, the system performance can also be adjusted by changing the value of

parameter Ψ according to the quantitative relations in (46) and (48).

4 Numerical example

In this section, the effectiveness of the introduced event-triggered control scheme is evaluated by numerical

simulations. Consider the nominal inertia matrix of the spacecraft model (1) of the following form [7]:

J0 =









20 1.2 0.9

1.2 17 1.4

0.9 1.4 15









kg ·m2. (49)

Moreover, parameter uncertainties of the inertial matrix are described as ∆J = diag[sin(0.1t), 2sin(0.2t),

3sin(0.3t)] kg ·m2. The external disturbances are described as d(t) = [0.1sin(0.1t), 0.2sin(0.2t),

0.3sin(0.2t)]T N ·m. We performed two groups of simulations with different desired angular velocities,

having sinusoid and square wave forms, respectively. The corresponding desired unit quaternion to be

tracked is generated by (5).

Furthermore, all the initial values of the parameters in the two groups stay the same. The initial

attitude orientation of the unit quaternion is q(0) = [0.3,−0.2,−0.3, 0.8832]T, and the initial target unit

quaternion is qd(0) = [0, 0, 0, 1]T. The initial value of the angular velocity is ω(0) = [0, 0, 0]T rad/s.

For comparison purpose, in addition to the ET-ADRC controller, a time-triggered continuous-time

ADRC (CT-ADRC) controller is also implemented for each group. In these simulations, the ADRC

controllers are implemented by difference approximation with a sampling time ts = 0.001 s. To evaluate

the tracking performance of the system, we define the tracking errors of the angular velocity (Ev), unit

quaternion (Eq), and average sampling time (TA) as follows:

Ev =
1

3T

∫ T

0

3
∑

i=1

|ωi − ωdi|dt, Eq =
1

4T

∫ T

0

4
∑

i=1

|qi − qdi|dt, (50)

TA =







10, for CT-ADRC scheme,

T

Ns

, for ET-ADRC scheme,
(51)

where we recall that the suffix d represents the desired target state, the suffix i denotes the ith element

of the vector state, T is the total simulation time in milliseconds, and Ns is the total triggering counts

in one simulation. Moreover, because energy consumption in attitude control is an extremely important

fact to consider, comparison of energy consumption between the time- and event-triggered approaches is

performed based on the energy-consumption model in [38] as follows:

Ec =
N
∑

k=1

3
∑

i=1

∣

∣

∣

∣

1

2
ω2
i (k)−

1

2
ω2
i (k − 1)

∣

∣

∣

∣

, (52)
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Figure 2 (Color online) Attitude quaternion tracking performance of sinusoidal form. Tracking performance for (a) q1,

(b) q2, (c) q3, and (d) q4.
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Figure 3 (Color online) Angular-velocity-tracking performance of sinusoidal form.

where ωi(k) is the ith angular velocity at step k, and N denotes the total number of time steps in the

whole simulation. Note that the difference here is that the mass of the spacecraft is not considered as it

does not affect the comparison.

4.1 Desired angular velocity in sinusoidal form

The attitude-tracking problem for a spacecraft with the desired angular velocity in sinusoidal form is

simulated in this subsection. The desired angular velocity is supposed to have the form

ωd(t) = 0.05

[

sin

(

πt

20

)

, sin

(

2πt

20

)

, sin

(

3πt

20

)]T

rad/s. (53)

Without loss of generality, the parameters of three sub-ESOs in (16) are selected to be the same, such

that for any i ∈ {1, 2, 3}, g1i(y1) = 2y1 + ϕ(y1) and g2i(y1) = y1. The high-gain parameters are chosen

as ε1 = ε2 = ε3 = 0.4. The parameters K in (8) and K̃ in (24) are chosen as K = 2I3 and K̃ = 4I3,

respectively.

In particular, we performed the simulations considering the utilization of sampling periods equal to 1

and 400 ms for the time-triggered cases, and the utilization of event-triggering parameters, Ψ, that lead

to different average sampling periods, i.e., 60.9 and 402 ms, for the event-triggered cases. The track-

ing results of the attitude quaternion and the angular-velocity component for the CT-ADRC scheme

with 1-ms sampling periods and the ET-ADRC scheme with Ψ = 0.1 are shown in Figures 2 and 3,

respectively. Moreover, the corresponding performances of the ESO observing states x1 and x2 for both

schemes are shown in Figures 4 and 5, respectively. The tracking errors Ev, Eq, average sampling time
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Figure 4 (Color online) Observation performance of ESO

with event-triggered mechanism of sinusoidal form. Obser-

vation performance for (a) x1 and (b) x2.

Figure 5 (Color online) Observation performance of ESO

with time-triggered mechanism of sinusoidal form. Obser-

vation performance for (a) x1 and (b) x2.

Table 1 Performances of two control schemes of sinusoidal form

Simulation scheme Average sampling time TA (ms) Tracking errors Ev/Eq QEC Ec

Time-triggered
1 0.0115/0.0059 0.58

400 0.0407/0.0073 3.41

Event-triggered
101.21 (Ψ = 0.1) 0.0122/0.0059 0.59

402.13 (Ψ = 1.5) 0.0268/0.0075 0.84

TA, and qualitative energy consumption (QEC) Ec are summarized in Table 1. From Table 1, we observe

that, in comparison with a small sampling period (1 ms) for time-triggered control, the proposed scheme

can maintain a comparable control performance and almost identical energy consumption (achieved by

a time-triggered controller with a high sampling frequency) at a much smaller average sampling rate.

Moreover, we also observe that when the (average) sampling periods are both increased to larger val-

ues (approximately 400 ms), the proposed scheme leads to a much smaller energy consumption index.

The implication is that ET-ADRC scheme is more energy-efficient in certain extreme cases (e.g., sensor

faults or communication bandwidth outrage) and bears improved fault-tolerant robustness in terms of

performance and energy efficiency. Additionally, the results of sampling intervals between two consec-

utive event-triggering instants are provided in Figure 6, where we can observe that nonzero sampling

intervals can be guaranteed to avoid Zeno behavior. With longer inter-triggering intervals, the cost of

data transmission and computation can be reduced.

For the ET-ADRC scheme with Ψ = 0.1, we perform comparative analysis concering the effects of

uncertainties in terms of tracking errors and average input signal. In particular, the uncertainties con-

sidered in the simulations include the external disturbances and parameter uncertainties of the inertial

matrix. The results are presented in Table 2; we observe that the ET-ADRC scheme with uncertain-

ties has similar tracking performance in terms of tracking errors but requires larger inputs in compar-

ison with the cases without uncertainties. This is because of the disturbance-rejection capability of

ADRC. Thus, the ET-ADRC scheme is required to produce larger input signals to eliminate the effects of
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Figure 6 (Color online) Sampling intervals of ET-ADRC scheme with Ψ = 1.5 for sinusoidal form.

Table 2 The effect of uncertainties upon the performance of the ET-ADRC scheme with Ψ = 0.1

Reference Simulation scenario Average inputs signal (N*m) Tracking errors Ev/Eq

Sinusoid form
With uncertainties 1.49 0.0122/0.0059

Without uncertainties 1.35 0.0123/0.0059

Squarewave form
With uncertainties 1.90 0.0158/0.0063

Without uncertainties 1.67 0.0157/0.0063

Table 3 Performances of two control schemes of square wave form

Simulation scheme Average sampling time TA (ms) Tracking errors Ev/Eq QEC Ec

Time-triggered
1 0.0152/0.0063 0.60

400 0.0575/0.0094 3.77

Event-triggered
60.90 (Ψ = 0.1) 0.0158/0.0063 0.61

401.52 (Ψ = 2.5) 0.0402/0.0092 1.16

uncertainties.

The performance of the system largely relies on the selection of parameters, especially the parameters

K̃ of the control law, εi and Ψ of the sub-ESOs, and event-triggered mechanism. Larger Ψ can reduce

resource consumption with lower average sampling rates but the observation errors are more likely to be

bigger, causing larger tracking errors. A smaller εi can speed up the convergence rate of sub-ESOs and

reduce the undesired chattering, but requires larger control inputs and energy consumption. Larger K̃

can improve the performance of attitude tracking and reduce undesired chattering, but will also require

larger control inputs.

4.2 Desired angular velocity in square wave form

The attitude-tracking problem of a spacecraft with abrupt changes in the desired angular velocity is

simulated in this subsection. Consider the desired angular velocity in the form

ωd(t) = [0.05, 0.03, 0.02]T rad/s, 2kT < t < (2k + 1)T, (54)

ωd(t) = −[0.05, 0.03, 0.02]T rad/s, (2k + 1)T < t < (2k + 2)T, (55)

where T = 10 s is the switch period.

The parameters needed for two schemes, system initial states, ESO, and the event-triggering condition

are all the same as described previously. Comparative-analysis results concerning the effects of uncer-

tainties on the ET-ADRC scheme are summarized in Table 2. The simulation results of the ET-ADRC

and CT-ADRC schemes with different average sampling periods TA in terms of tracking errors Ev and Eq

and QEC Ec are summarized in Table 3. The results of two schemes are shown in Figures 7–11. Similar

to the simulation results of the previous subsection, the proposed ET-ADRC scheme achieves similar

performances in terms of attitude quaternion and angular velocity tracking except at switch points (see

Figures 8 and 9) and similar energy consumptions but with a lower sampling rate compared to the CT-

ADRC scheme. Moreover, with the increase of average sampling times, the performance of the CT-ADRC
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Figure 7 (Color online) Sampling intervals of ET-ADRC scheme with Ψ = 2.5 for square wave form.

(a)

(c)

(b)

(d)

Time (s)

−0.4

−0.2

0

0.2

Q
u
at

er
n
io

n

Time (s)

−0.2

0

0.2

Q
u
at

er
n
io

n

Time (s)

−0.4

−0.2

0

0.2

Q
u
at

er
n
io

n

Time (s)

0.85

0.90

0.95

1.00

Q
u
at

er
n
io

n

0 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

qd1

CT-ADRC q1

ET-ADRC q1

qd2

CT-ADRC q2

ET-ADRC q2

qd3

CT-ADRC q3

ET-ADRC q3

qd4

CT-ADRC q4

ET-ADRC q4

Figure 8 (Color online) Attitude quaternion tracking performance of square wave form. Tracking performance for (a) q1,
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Figure 9 (Color online) Angular-velocity-tracking performance of square wave form.

scheme becomes worse than that of the ET-ADRC scheme (see Table 3); in particular, the ET-ADRC

scheme achieves better angular-velocity-tracking performance but with lower sampling rates and energy

consumption.

In general, we observe that, in comparison with the CT-ADRC scheme, the ET-ADRC scheme with

two kinds of desired angular velocity can guarantee a similar performance in terms of tracking errors with

a reduced average data-transmission rate.

5 Conclusion

Herein, the problem of attitude tracking with communication-resource restrictions has been investigated

for spacecraft models with inertial uncertainties and external disturbances. Based on the proposed
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Figure 10 (Color online) Observation performance of

ESO with event-triggered mechanism of square wave form.

Observation performance for (a) x1 and (b) x2.

Figure 11 (Color online) Observation performance of

ESO with time-triggered mechanism of square wave form.

Observation performance for (a) x1 and (b) x2.

scheme, attitude tracking is achieved for a rigid spacecraft. An event-triggered mechanism is designed

to guarantee the asymptotic boundedness of observation errors and the asymptotic stabilization of the

attitude-tracking system. Simulation results with different kinds of desired angular velocity have been

presented to illustrate the effectiveness of the developed method. As energy/fuel efficiency is important for

spacecraft, event-triggered-controller design with explicit consideration of energy-consumption constraints

is an interesting and relevant direction for future research, which will be considered in our next step.
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