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Dear editor,
Three-dimensional (3D) object detection is a fund-
amental computer vision issue and demonstrates
promising potential in intelligent surveillance,
robot grasping, and autonomous driving. How-
ever, 3D object detection remains a challenging
problem because it must predict many object de-
tails in 3D space, i.e., depth, shape, and orien-
tation. Current 3D object detectors involve one-
stage and two-stage frameworks.

The two-stage framework first uses a region pro-
posal network (RPN) that produces non-uniform
region proposals and converts their region-wise
features into an identical form. Then, the identical
features are sent to another network to filter and
refine the initial proposals. The one-stage frame-
work adopts a hypothetical region proposal scheme
that imposes hypothetical non-uniform proposals
to certain activations of the network and thus re-
moves the region of interest (ROI) pooling block.

One-stage detectors ignore the statistic shape
priors of the objects involved. Obviously, shape-
specific proposals would aggregate more discrimi-
native features and thus enhance detector perfor-
mance, which is virtually the same as the top-down
attention scheme [1] discovered in the human vi-
sion field.

We propose an attention RPN to provide a
statistic shape prior to the one-stage detector. The
proposed attention RPN is an embeddable, end-
to-end and learnable network which is motivated

by the success of attention modules in the natu-
ral language processing field [2]. To eliminate the
non-uniform sampling of light detection and rang-
ing (LiDAR) data as much as possible, we propose
a distance-based sampling technique. The results
are submitted to the KITTI benchmark [3] and
demonstrate that the proposed attention region
proposal network (ARPNET) outperforms many
state-of-the-art techniques.

ARPNET. ARPNET takes a raw LiDAR point
cloud as input, utilizes a distance-based voxel gen-
erator and a voxel feature extractor to generate
voxel features, and then encodes with sparse con-
volutional layers and a feature pyramid network.
Finally an attention RPN (Figure 1) provides in-
formation for 3D object detection.

We follow the procedure described in [4] to
generate voxel representation from LiDAR point
clouds. Assume the LiDAR point cloud includes a
3D space with range H , W , D, which represents
vertical height, horizontal position, and distance,
respectively. Each voxel has a size ∆H = 0.4,
∆W = 0.2, ∆D = 0.2. Then, the size of the
whole voxel grid is H/∆H , W/∆W , D/∆D. The
Velodyne HDL-64E LiDAR scanner has an angular
resolution (azimuth) of 0.08◦ and a vertical reso-
lution of 0.4◦ between every two rays. This leads
to highly variable point density throughout the
3D space. The distribution of LiDAR point cloud
is shown in Appendix A. We propose a distance-
based sampling to handle the non-uniform sam-
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Figure 1 (Color online) Structure of attention RPN.

pling of LiDAR data. We define a sample point
as a valid sample point if it satisfies all Dist > M .
The Dist in 3D space can be formulated as a Eu-
clidean distance. To further accelerate processing,
we use an absolute value distance Eq. (1), where
∗val represents all existing valid sample points and
x, y, z are points in the 3D space. Here, M is a nu-
merical value, which indicates that we do not uti-
lize two very close sample points in a single voxel.
The representation of a voxel near the LiDAR sen-
sor can be more stable and reasonable than the
original random sampling.

Dist = |x− xval|+ |y − yval|+ |z − zval|. (1)

The feature extraction layers include a voxel fea-
ture extractor, sparse convolution layers, and a
feature pyramid network (FPN). The voxel feature
extractor includes voxel feature encoding layers
and a fully connected network (FCN) [4] to gener-
ate voxel-wise features. The sparse convolutional
layers include two sparse convolution phases to
perform down-sampling along the z-axis. The first
phase of sparse convolution involves a submanifold
layer [5] and one sparse convolution layer. The
second phase of sparse convolution includes two
submanifold layers and a sparse convolution layer.
The structure of the FPN is taken from [4,6]. The
FPN includes down-sampling convolutional layers,
convolutional layers (Conv2D), de-convolutional
layers, and a concatenation layer. Each convolu-
tional layer follows a BatchNorm layer and a ReLU
layer. With the exception of the de-convolutional
layer, all the convolutional layers use a 3 × 3 ker-
nel. The kernel size of the de-convolutional layer
depends on the expanding scale. When the scale
is × 1, this is a Conv2D.

The attention RPN can generate shape-specific
proposals that are ignored in existing one-stage
detectors, and it can be embedded into nearly
all one-stage detection networks to aggregate fea-

tures with the learnable weights according to the
statistic shape prior of objects. The naive atten-
tion mechanism of two-stage detectors is not effec-
tive when the RPN predicts a bounding box with
plenty of background for an object or more than
one object in a box. This will reduce performance
due to both effective and ineffective features using
the same weight in the ROI pooling layer. This
problem can be improved by embedding an atten-
tion mechanism module that selects the important
features by assigning different weights to each cell
of a feature map according to the different signifi-
cance.

Note that one-stage detectors suffer from some
critical constraints, i.e., they cannot use the in-
formation of a predicted bounding box to obtain
an ROI, and the output of one-stage detectors de-
pends on the feature of the current anchor. We
solve this problem as follows. Step 1: predefining
a region. For example, we predefine a 3 × 3 kernel
for each current anchor. The predicted informa-
tion of a 3D object depends on the features of these
regions. Here, we use G = {(−1,−1), (−1, 0), . . . ,
(0, 1), (1, 1)} to represent the relative position of a
current anchor. The relative location of the cur-
rent anchor is (0, 0). Step 2: embedding atten-
tion mechanism. The proposed one-stage detec-
tor must predict nine attention weights to corre-
spond to the predefined 3 × 3 region. The fea-
ture of the current anchor learns nine attention
weights Fatt using a convolutional layer and then
reshapes Fatt into 3 × 3. Simultaneously, the fea-
ture map of the local region utilizes an encoding
convolutional layer to generate Fen. Then, for each
anchor, we repeat the reshaped Fatt and take an
element-wise product of the repeated feature and
Fen. Step 3: hybrid attention feature maps. The
outputs of one-stage detectors only depend on only
the feature of the current anchor (a size of 1 ×
1); however, the size of obtained attention feature
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maps for each anchor is 3 × 3. To handle this, an
common choice is to concatenate the obtained fea-
ture maps for each anchor together (in a feature
channel) or perform an element-wise summation.
We address this issue by hybridizing concatena-
tion and element-wise summation (Figure 1). The
reasons for performing this hybridization process
are summarized as follows. When there is a large
predefined region (e.g., 5 × 5), the concatenation
operation leads to a huge feature map and weak-
ens the effect of the feature of the current anchor.
Unlike two-stage detectors that provide a valid
ROI, one-stage detectors must consider problems
related to an invalid border. The element-wise
summation operation can handle this problem to
some extent, and we want to keep the current an-
chor’s feature.

Taking a 3 × 3 predefined region as an exam-
ple, the process of generating the local attention
of each anchor can be formulated as

Fatt = Convatt(Fin(0, 0)),

Fen = Conven(Fin),

Fop = Fen · Repeat(Reshape(Fatt)),

Fhybrid =



Fop(0, 0),

N
∑

G(i) 6=(0,0)

Fop(G(i))



 .

(2)

Here, the Fin and Fhybrid mean the input and out-
put of the local attention, respectively, Conven is
the encoding convolutional layer with Cen chan-
nels, Convatt is the attention convolutional layer
with nine channels, G is the relative position of
the current anchor, · is the element-wise product,
Repeat is the operation to copy the feature map,
∑

is element-wise summation, and [∗] represents
concatenation. As shown in Figure 1, Fin(0, 0)
is the current anchor’s feature, the size of Fin

is B × Cin × 3 × 3, and the size of Fhybrid is
B × 2Cen × 1× 1.

We define the loss function as follows:

Loss = αLcls + βLreg + γLdir. (3)

Here, Lcls is the classification loss, Lreg is the re-
gression loss, and Ldir is the direction classification
loss. We set α = 1.0, β = 2.0, and γ = 0.2 in our
experiments. Each L∗ is defined as follows.

Classification loss function. We apply focal loss
to the proposed network’s architecture.

Regression loss function. We set a 3D ground
truth bounding box as xg, yg, zg, lg, wg, hg, θg,
where x, y, x represent the center location, l, w,
h represent the length, width, and height of the
3D bounding box, respectively, and θ is the yaw
rotation around the z-axis. The positive anchor is
parameterized as xa, ya, za, la, wa, ha, θa. ∆x,

∆y, ∆z, ∆l, ∆w, ∆h, and ∆θ represent the cor-
responding residual. The residual is expressed as
Eq. (4). Note that we use the SmoothL1 function
to compute the regression loss.

∆x=
xg − xa

da
, ∆y =

yg − ya
da

, ∆z =
zg − za

ha

,

∆l=log

(

lg
la

)

, ∆w=log

(

wg

wa

)

, ∆h=log

(

hg

ha

)

,

∆θ=θg − θa.

(4)

Here, da =
√

l2a + w2
a is the diagonal of the base of

the anchor.
Experiments. We evaluated the proposed ARP-

NET on the KITTI benchmark [3] for bird’s eye
view detection (BEV), 3D object detection (3D)
and object orientation estimation (Ori.) which
comprises 7481 training samples and 7518 test-
ing samples, covering three classes for testing,
i.e., Car, Pedestrian, and Cyclist. Compared to
LiDAR-based methods [4,6], the proposed method
achieves ≈ 8%–9% improvement in BEV for the
Car and Cyclist classes, ≈ 5.3% improvement in
3D for the Cyclist class, and ≈ 7%–11% improve-
ment in Ori. for the Car and Cyclist classes.
The experimental details can be found in Append-
ixes B and C.
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