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Abstract Parsing inconsistency, referring to the scatters and speckles in the parsing results as well as

imprecise contours, is a long-standing problem in human parsing. It results from the fact that the pixel-wise

classification loss independently considers each pixel. To address the inconsistency issue, we propose in this

paper an end-to-end trainable, highly flexible and generic module called feature context module (FCM).

FCM explores the correlation of adjacent pixels and aggregates the contextual information embedded in

the real topology of the human body. Therefore, the feature representations are enhanced and thus quite

robust in distinguishing semantically related parts. Extensive experiments are done with three different

backbone models and four benchmark datasets, suggesting that FCM can be an effective and efficient plug-in

to consistently improve the performance of existing algorithms without sacrificing the inference speed too

much.
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1 Introduction

Human parsing is a particular segmentation task, aiming to segment a human body into fine-grained

semantic parts. In recent years, human parsing has received growing interests in computer vision com-

munity due to its potential applications in human behavior analysis [1], human fashion [2], and person

re-identification [3]. Benefiting from the success of fully convolutional networks [4] in semantic segmenta-

tion [5,6], significant progresses have been achieved by adapting convolutional neural networks to human

parsing.

However, unlike general semantic segmentation or instance segmentation, human parsing is essentially

a fine-grained segmentation task. Because the semantically related body parts are quite difficult to be

distinguished, the parsing results usually suffer from the problem of inconsistency, that is, there exist

scatters, speckles and imprecise boundaries as illustrated in Figure 1. The torso should be predicted as

upper clothes but partially misclassified as coat. Moreover, the body contours and boundaries of semantic

parts are too sensitive to be accurately predicted, resulting in non-smooth contours of the hands, as well

as the imprecise boundary between socks and shoes.

In literature, Luo et al. [7] has suggested that the pixel-wise classification loss is responsible for such

an inconsistency. To remedy this, previous work can be coarsely divided into three categories, including

(1) methods using conditional random fields (CRFs) (e.g., [8]), (2) methods using adversarial learning
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Figure 1 (Color online) Overall pipeline of the proposed method. FCMs are inserted into a human parsing model (solid

black path), resulting in a more robust contextual feature and a more consistent parsing result.

(e.g., [7]), and (3) methods using extra information such as joints [9] and edges [10, 11] as a guidance

for the parsing procedure. As indicated in their papers, the topology of the human body, which can be

roughly represented by joints or edges, is of great importance for alleviating the inconsistency issue.

Inspired by the success of graph convolutional network [12, 13] in modeling the topology of graphs by

exploiting the connection relations of adjacent nodes, we propose to represent the topology of human body

as graphs. For a 2D image containing human bodies, we regard each pixel as a node and leverage a learning

module to predict the correlations between neighboring nodes. These functions are implemented inside

a network component named feature context module (FCM). FCM does not require extra annotations

and only slightly increases inference time, different from [9, 10]. As shown in Figure 1, our model can

generate consistent parsing results within a certain body part (e.g., the torso) and successfully corrects

the unreasonable spatial relation of body parts (e.g., the head), demonstrating the superiority of FCM

in correlating neighboring nodes and improving the human parsing results.

We give a thorough evaluation of FCM on four challenging benchmark datasets with three different

backbone models, and witness a remarkable performance improvement with a minor increase of inference

time. The consistent performance improvements suggest FCM is effective in addressing the inconsis-

tency issue in human parsing. Moreover, FCM possesses three distinct advantages over the competing

approaches, including (1) easy to implement: it requires no extra annotations (e.g., joints) as opposed

to [9], and is end-to-end trainable compared to the CRF-based method [8]; (2) efficiency: FCM is a highly

flexible model which can be plugged into most existing CNN-based parsing models to further improve the

performance with negligible extra time overhead; (3) generalization: FCM shows favorable generalization

capability on a challenging video surveillance dataset and is robust to heavy occlusions.

2 Related work

Fully convolutional networks (FCNs) [4] have demonstrated excellent performances in dense prediction

tasks, and greatly promoted the development of segmentation approaches, such as PSPNet [5] and

DeepLab [8]. Human parsing [14–18] is a fine-grained segmentation task [19–21], which targets at seg-

menting human bodies into semantic parts. It is receiving more and more attention owing to its potential

importance in various human analysis tasks. In this section, we shortly review some human parsing

methods and related methods.

Conditional random field (CRF) [22] is widely adopted as a post-processing procedure [8]. However,

CRFs are usually time-consuming and sensitive to visual appearance changes as pointed out in [23].

Inspired by the success of generative adversarial networks (GAN) [24], Luo et al. [7] introduced adversarial

loss into the human parsing task to assess whether a parsing result is reasonable. They employed two

separate discriminators to correct the inconsistencies from global and local perspectives. However, large

varieties in poses, occlusions and backgrounds bring great difficulties to judge the rationality of the

parsing result, especially when multiple person instances are crowded in an image.
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Some efforts are made to take advantage of extra guidance, such as joints and edges. Gong et al. [25]

proposed a self-supervised strategy to align parsing map with human joint structures. Nie et al. [9]

introduced a mutual learning to adapt (MuLA) scheme for boosting the performance of human parsing

and pose estimation simultaneously in a multi-task learning manner. Gong et al. [10] employed an edge

prediction branch to help distinguishing crowded person instances. However, these methods either require

extra annotations or significantly increase the inference time.

Graph convolutional network (GCN) [12, 13, 26] is widely applied to deal with data that cannot be

represented in a regular grid-like structure. Examples are social networks and 3D meshes. Kipf et al. [12]

proposed a classic convolutional architecture for graph convolutional network via localized first-order

approximation of spectral graph convolutions, which can effectively encode the graph structure. Graph

convolutional network takes the node features and corresponding adjacent matrix as input, and outputs

enriched node features by aggregating the contextual information of connected nodes. The proposed

FCM mainly follows the design of GCN. We view each pixel in the 2D image as a node in a graph and

employ convolution layers to estimate the affinity of adjacent nodes, forming the adjacent matrix. We

then aggregate the contextual information in a weighted sum manner guided by the estimated adjacent

matrix.

Our method is similar to [27] in modelling the topology of human body. They used a recurrent neural

network (RNN) to learn the dependency of adjacent superpixels. The main difference is that we estimate

the affinity of adjacent neighbors in an efficient convolutional manner on the feature maps instead of

superpixels. FCM is also related to previous work aiming at making rational use of context information.

Zhang et al. [28] proposed a context encoding module to selectively highlight the channels of feature maps.

In comparison, FCM incorporates neighboring context from spatially adjacent pixels. Wang et al. [29]

proposed a non-local operation to capture global long-range dependencies. Huang et al. [30] proposed

criss-cross attention which was a smart variant of the non-local operation and aimed at aggregating global

long-range contextual information in a more efficient way. Criss-cross attention can harvest the context

information along the criss-cross path for each pixel. By stacking two criss-cross attention models, global

contextual information from all the spatial positions can be aggregated, which is similar to the non-local

operation [29]. FCM differently estimates the correlations between a pixel and its adjacent pixels in

a local neighborhood instead of aggregating context from all positions, avoiding the intensive matrix

operations (e.g., inner product) involved in the non-local operation. Besides, experimental results also

indicate that a large context might be harmful to human parsing results.

3 Proposed approach

As illustrated in Figure 1, most human parsing methods build upon the powerful CNN model to learn

a backbone feature map Fb, which is followed by several differentiable operations (e.g., upsampling,

convolution) to generate the pixel-wise prediction. However, such an individual pixel-wise prediction

ignores the correlation between adjacent pixels, leading to an inconsistent parsing result.

As humans share a common topological structure of the body, the contextual information along the

topology of the human body is greatly helpful to more accurately parse each pixel and enforce the

consistency of the parsing result. Inspired by GCN [13], we propose the FCM that outputs a contextual

feature map Fc incorporating the aforementioned context. Note that FCMs can be plugged into most

existing CNN-based human parsing models, and trained in an end-to-end manner.

In the following, we first describe the detail of FCM in Subsection 3.1, then analyze the effect of

stacking multiple FCMs in Subsection 3.2. The training objective is given in Subsection 3.3.

3.1 Feature context module

The motivation of our work is that aggregating contextual information embedded in the topology of the

human body is helpful for detecting and correcting inconsistency in parsing results. Inspired by graph

convolutional network [13], we view a 2D image as a graph whose nodes are composed of all pixels in the
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Figure 2 (Color online) Illustration of feature context module (FCM). FCM consists of two parts: (1) context affinity

estimation which computes the correlation of each pixel with its adjacent pixels (e.g., 4 adjacent pixels under 4-connectivity

and the pixel itself), resulting in a 5-channel affinity weight map; (2) feature context aggregation which enriches the input

feature with the contextual feature in a weighted sum manner guided by the affinity weight map.

corresponding image and model the affinity of neighboring nodes1). Concretely, we design an FCM which

consists of two parts, i.e., context affinity estimation and feature context aggregation. Context affinity

estimation dynamically estimates the correlation between each node and its adjacent node in the context,

which reveals the cues of the topological structure. Based on the estimated affinity values, feature context

aggregation enriches the feature of each node with the contextual features of its neighbors. The pipeline

of FCM is given in Figure 2 and detailed as follows.

Context affinity estimation. Suppose we have an input backbone feature map Fb of size D×H×W ,

where D is the channel dimension, H is the height, and W is the width of the feature map, respectively.

That is, there are H ×W nodes in total. Context affinity estimation propagates the visual features in a

convolutional manner to estimate the correlation between each node and its adjacent nodes.

In more detail, the context affinity estimation outputs an affinity weight map A of size (K+1)×H×W ,

where K denotes the number of nodes in the considered context. The first channel of A measures the

self-affinity of each node and the rest K channels correspond to the estimated correlation of each node

to the K adjacent nodes. Adjusting the self-affinity helps to correct the inconsistency when the node

itself shows distinct features compared to its neighboring nodes. A natural choice to define the adjacent

nodes in the context is the standard 4-connectivity or 8-connectivity. For a given node, 4-connectivity

refers to its adjacent nodes in the directions of up, down, left and right. As for the 8-connectivity,

four extra nodes in the directions of upper left, upper right, lower left and lower right are taken into

consideration. Different channels and neighboring nodes form a bijection, ensuring the affinity weight

learning for different neighbors. In this paper, unless explicitly stated, we use the 4-connectivity (i.e., K

= 4) to define the context in our experiments.

To dynamically compute the affinity map A, we adopt a simple network consisting of two residual

blocks, a 1×1 convolution and a sigmoid activation function. The residual blocks provide the local cues

to identify the potential positions of inconsistency for robust context affinity estimation. The following

1×1 convolution outputs the correlations between each node and its adjacent nodes by mapping the

feature maps to K +1 channels. We then adopt the sigmoid function to scale the affinity weight into the

range of [0, 1]. As for the architecture of residual block, we employ the bottleneck architecture [31].

1) We do not differentiate node and pixel in the following since they have identical meaning in our case.
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Figure 3 (Color online) Visualization of the effect of FCM on the feature maps. The right column shows the learned

affinity weight map (K = 4) for the positions marked by red crisscross in input images. Parsing result on Fb exhibits

inconsistency on the marked positions. The proposed FCM tends to assign higher weights to correctly parsed context pixels

of the same semantics (e.g., up and down neighbors in the first row, and all four neighbors except the pixel itself in the

second row), alleviating the inconsistency problem.

Feature context aggregation. With the affinity map A generated by the context affinity estimation

part, feature context aggregation aims to enrich the input feature map Fb with the contextual information

parameterized by A. Concretely, for each spatial position p in the input feature map, the output feature

map Fc on p is given by

Fc(p) =

K+1∑

k=1

Ap(k)× Fb (Np(k)) , (1)

where Np is the set of adjacent nodes of p in the context, and Ap(k) is the learned affinity between p and

its k-th adjacent node Np(k). Recall that the cardinality of the set ‖Np(k)‖ = K+1, and the first element

in Np is the node p itself. For boundary pixels, zero-padding is applied so that each pixel possesses K

neighbors. Note that padded zeros do not contribute to Fc in the weighted sum process (Eq. (1)).

The design of our feature context module is similar to graph convolutional network. Each pixel in the

feature map can be analogized to a node in the graph, and the estimated affinity weight map can be

analogized to the adjacent matrix of the corresponding graph. The difference is that our affinity map is

dynamically estimated while the adjacent matrix is fixed for GCN [12]. By considering the correlation

with context, the feature context module provides a more robust image feature for parsing human body

and encourages highly-correlated nodes to exhibit similar features, thus alleviating the inconsistency issue

in human parsing.

Although each pixel is only correlated to local adjacent neighbors, distant pixels are also implicitly

connected by propagating through a chain of edges, which encode the human topology in this sense.

We present visualizations of learned feature maps and affinity maps in Figure 3. Compared with the

input backbone feature map Fb, the resulted feature map Fc possesses a clear delimitation between the

foreground person and the background, as well as smooth boundaries (better visualized by zooming in

the electronic version of Figure 3) of different body parts, demonstrating that FCM effectively explores

the context for understanding the topology of the human body. Besides, the learned affinity maps further

shed light on how FCM works. The context affinity estimation works as a gating mechanism assigning

high weight for closely correlated neighbors which are correctly classified and low weight for noising ones.

3.2 Stacking feature context

With a single feature context module, each node only incorporates the context from its four closest

adjacent nodes when K = 4. Considering a broader context may be more helpful for revealing the

topology of the human body. To this end, similar to classical deep CNNs which stack convolutional

layers with small convolutional kernels to enlarge the perceptive field [31], we also stack M feature

context modules to widen the context to be considered. With two FCMs, the correlation of each node
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with its surrounding 12 adjacent nodes is considered. We will discuss how the size of context region

influences the parsing performance in Subsection 4.8.

3.3 Training objective

In the human parsing task, the pixel-wise classification loss based on cross-entropy is widely-used, which

is formulated as

Lb = −
H×W∑

i=1

C∑

k=1

yik log ȳik, (2)

where C is the total number of classes, and ȳik denotes the learned probability of the i-th pixel classified

to the k-th category. yik is the label of the i-th pixel. If the i-th pixel belongs to the k-th category, then

yik = 1, otherwise 0.

In addition to the standard pixel-wise classification loss based on the backbone feature Fb, we employ

another supervision on the prediction from the contextual feature Fc given by FCMs. Similar to (2),

we can define the objective function Lc via the cross-entropy loss. The final training objective of the

proposed method is

L = λb × Lb + λc × Lc, (3)

where Lb and Lc represent losses corresponding to the prediction on the backbone feature map Fb and

the contextual feature map Fc, respectively. λb and λc are weight constants to balance the contribution

of the two losses.

4 Experiments

To validate the effectiveness of the proposed method, we conduct experiments on four widely-used datasets

for human parsing, including LIP, PASCAL-Person-Part, CIHP and PPSS. We compare the performances

with other state-of-the-art algorithms on the first three datasets and further assess the generalizability

on the PPSS dataset.

4.1 Datasets and evaluation metric

LIP [25] is a large-scale benchmark dataset for single-person semantic parsing, which consists of 30462

training images, 10000 validation, and 10000 testing images. All images are parsed into a background class

and 19 human parts: hat, hair, sunglasses, upper-clothes, dress, coat, socks, pants, gloves, scarf, skirt,

jumpsuits, face, right arm, left arm, right leg, left leg, right shoe, left shoe. LIP is quite challenging due

to the various poses and severe occlusions. Besides, many categories are semantically related (e.g., coat

and upper-clothes), making it more difficult.

PASCAL-Person-Part [32] is a relatively small multi-instance dataset with 2.2 persons per image in

average. It has 1716 training images and 1817 testing images annotated into 6 human parts: head, torso,

upper arms, lower arms, upper legs, lower legs, and one background class. Scarce image samples and

crowded persons in various scales pose challenges for human parsing on this dataset.

CIHP [10] is a recent large-scale multi-instance dataset, containing 28280 training images, 5000 valida-

tion and 5000 testing images. All images are annotated in the same way as the LIP dataset does. CIHP

is more challenging than LIP as many images therein have multiple crowded persons. This dataset has

3.4 instances per image in average.

PPSS [33] provides 3673 images annotated into seven human parts and a background class. The

images are collected from 171 surveillance videos of different scenes varied in background, occlusion, and

illumination. Hence, it can serve as a benchmark dataset to evaluate the generalization ability of human

parsing algorithms.

Metric. We employ intersection-over-union (IoU) as the evaluation metric, and report both mean

intersection-over-union (mIoU) and IoU for each class.
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4.2 Implementation details

Backbone networks. Three backbone networks are used, including (1) DeepLab-v2 [8] framework based

on ResNet-101 [31] pre-trained on the MS-COCO dataset [34], (2) MMAN [7] to test the complementarity

of FCMs with adversarial, and (3) PGN [10] to further validate the complementarity of FCMs to methods

utilizing extra guidance in a multi-task training manner. We remove the image pyramid scheme in the

original DeepLab-v2 by feeding only images at the original scale. For all these three backbone networks,

we plug two feature context modules before their prediction layers and take the parsing results based on

Fc as the output.

Training and testing details. In the implementation of FCM upon the backbone DeepLab-v2, we

first resize the training images to 572 × 572, and then sample an image patch of size 512 × 512 for data

augmentation. Random horizontal flip is also applied. We use SGD optimizer, set momentum to 0.9 and

weight decay to 0.0005, respectively. The initial learning rate is set to 0.01. We train the model on the

LIP and CIHP dataset for 30 epochs, and the learning rate is divided by 10 after 15 epochs. On the

PASCAL-Person-Part dataset, we train the model for 50 epochs, and the learning rate is divided by 10

after 25 epochs. During inference, multi-scale predictions by feeding the network with images at scales

of {0.8, 1.0, 1.2} are combined following [7].

In the implementation of FCM upon the backbone MMAN and PGN, we use the publicly released codes

of MMAN2) and PGN3), and follow their default training and testing settings. In all the experiments,

we set both λb and λc to 1.0 in (3).

4.3 Experiment on LIP

We first evaluate our method on the LIP dataset [25], which is a single-person semantic parsing bench-

mark. The quantitative comparison with other state-of-the-art methods is presented in Table 1 [4, 7–11,

25,35,36]. By inserting FCM to DeepLab-v2, we achieve mIoU 51.23%, outperforming the state-of-the-art

methods SSL [25] by 6.50%, MMAN [7] by 4.42%, PGN [10] by 2.72%, and MuLA [9] by 1.93%, respec-

tively. The performance improvement over MuLA is more valuable as MuLA makes use of extra joint

annotations while FCM does not. As PGN [10] is specifically designed for parsing multiple persons, the

authors did not report experimental results on the LIP dataset. The results of PGN are reproduced using

their released source codes. Compared with the baseline DeebLab-v2, FCM leads to an improvement of

mIoU 3.32%. We also evaluate the performance of plugging FCM into MMAN, PGN or CE2P [11] before

their final label prediction layers and observe a consistent performance improvement. Specifically, FCM

boosts the performance of MMAN by 1.03%, that of PGN by 2.54%, and that of CE2P by 1.26%, respec-

tively. Note that MMAN, PGN and CE2P have exploited other mechanisms to improve the performance.

Concretely, MMAN proposes to alleviate the inconsistency by using adversarial learning. PGN and CE2P

rely on an extra edge branch to refine the parsing result. Nevertheless, the performance improvement

still demonstrates that FCM is complementary to these methods in alleviating the inconsistency issue.

In Figure 4, we exhibit some qualitative results of DeepLab-v2 and DeepLab-v2+FCM. As can be seen

clearly, the inconsistency in a semantic part is alleviated with the aid of the proposed FCM. Furthermore,

the boundary between different semantic parts is more precise, which firmly demonstrates the efficacy of

FCM.

4.4 Experiment on PASCAL-Person-Part

We then evaluate the proposed FCM on the PASCAL-Person-Part dataset to assess the performance

in parsing multiple persons. Table 2 [7–10, 18, 25, 27, 36] shows the quantitative comparison of different

methods. Compared with the backbone DeepLab-V2, FCM achieves mIoU 67.05% with an improvement

of 3.19%. Meanwhile, when using the backbone PGN, FCM reports mIoU 69.54% with an improvement

of 1.14%. As PGN is particularly designed for parsing multiple-persons using contours between different

2) https://github.com/RoyalVane/MMAN.
3) https://github.com/Engineering-Course/CIHP PGN.

 https://github.com/RoyalVane/MMAN
https://github.com/Engineering-Course/CIHP_PGN
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Table 1 Quantitative comparison (IoU (%) for each class and mIoU (%)) with state-of-the-art methods on the LIP

validation seta)b)

Method Hat Hair Glov Sung Clot Dress Coat Sock Pant Suit

SegNet [35] 26.60 44.01 0.01 0.00 34.46 0.00 15.97 3.59 33.56 0.01

FCN-8s [4] 39.79 58.96 5.32 3.08 49.08 12.36 26.82 15.66 49.41 6.48

Attention [36] 58.87 66.78 23.32 19.48 63.20 29.63 49.70 35.23 66.04 24.73

SSL [25] 59.75 67.25 28.95 21.57 65.30 29.49 51.92 38.52 68.02 24.48

MuLA [9]c) – – – – – – – – – –

MMAN [7] 57.66 65.63 30.07 20.02 64.15 28.39 51.98 41.46 71.03 23.61

MMAN+FCM 60.58 68.98 30.78 25.00 65.01 29.40 51.57 43.09 70.19 21.77

PGN [10]d) 61.53 69.13 34.13 26.99 68.17 34.93 55.78 42.50 70.69 25.30

PGN+FCM 64.00 70.61 36.74 30.88 68.66 33.42 55.92 46.67 71.99 27.54

DeepLab [8] 59.46 67.54 32.62 25.49 65.78 31.94 55.43 39.80 70.45 24.70

DeepLab+FCM 65.70 71.32 37.96 33.37 68.26 33.74 54.96 47.79 72.58 28.43

CE2P [11] 65.29 72.54 39.09 32.73 69.46 32.52 56.28 49.67 74.11 27.23

CE2P+FCM 66.31 73.58 40.21 34.03 70.69 33.27 55.63 50.62 75.32 29.83

Method Scarf Skirt Face l-arm r-arm l-leg r-leg l-sh r-sh bkg mIoU

SegNet [35] 0.00 0.00 52.38 15.30 24.23 13.82 13.17 9.26 6.47 70.62 18.17

FCN-8s [4] 0.00 2.16 62.65 29.78 36.63 28.12 26.05 17.76 17.70 78.02 28.29

Attention [36] 12.84 20.41 70.58 50.17 54.03 38.35 37.70 26.20 27.09 84.00 42.92

SSL [25] 14.92 24.32 71.01 52.64 55.79 40.23 38.80 28.08 29.03 84.56 44.73

MuLA [9]c) – – – – – – – – – – 49.30

MMAN [7] 9.65 23.20 69.54 55.30 58.13 51.90 52.17 38.58 39.05 85.75 46.81

MMAN+FCM 10.63 20.41 72.56 58.02 60.75 52.13 51.61 39.25 39.80 85.28 47.84

PGN [10]d) 16.05 24.79 73.74 59.33 60.78 47.47 46.62 32.74 33.75 85.67 48.51

PGN+FCM 21.60 24.42 73.49 61.76 63.14 52.13 50.93 40.00 40.45 86.58 51.05

DeepLab [8] 15.51 28.13 70.53 55.76 58.56 48.99 49.49 36.76 36.79 85.49 47.91

DeepLab+FCM 23.53 26.16 74.38 60.11 62.71 50.01 49.46 38.41 38.90 86.77 51.23

CE2P [11] 14.19 22.51 75.50 65.14 66.59 60.10 58.59 46.63 46.12 87.67 53.10

CE2P+FCM 20.66 21.93 76.32 67.73 68.17 61.09 58.27 47.52 47.38 88.56 54.36

a) Glov, Sung, Clot, Sock, Pant, Suit, l-arm, r-arm, l-leg, r-leg, l-sh, r-sh, bkg represent gloves, sunglasses, clothes, socks,

pants, jumpsuits, left arm, right arm, left leg, right leg, left shoe, right shoe, background class, respectively.

b) Bold typeface indicates the best performance for each category.

c) Extra annotations are used.

d) The results are reproduced using the source code released by the authors.

instances, the improvement of FCM over PGN is less dramatic than that over DeepLab-v2, but it still

reveals that FCM is complementary to PGN in parsing multiple humans. It can be observed that MMAN

does not work well on this dataset in Table 2. A possible interpretation is that adversarial training cannot

effectively align multiple persons simultaneously. Therefore, we do not evaluate the performance of

combining FCM with MMAN. Moreover, compared with other state-of-the-art methods, FCM with PGN

outperforms SSL [25] by 10.18%, MMAN [7] by 9.63%, Graph LSTM [37] by 9.38%, structure-evolving

LSTM [27] by 5.97%, and MuLA [9] using extra joint annotations by 4.44%, respectively. Compared

with superpixel-based methods like Graph LSTM [37] and structure-evolving LSTM [27], FCM performs

directly on the pixels in the feature space with a convolutional manner, thus making it more efficient for

inference.

Some parsing results using DeepLab-v2+FCM are depicted in Figure 4. Qualitatively, the observations

on the LIP dataset also hold for the PASCAL-Person-Part dataset. By applying FCM, the inconsistency

problems are considerably mitigated in parsing multiple humans. Besides, the boundary between different

parts is more precise.

4.5 Experiment on CIHP

We then further evaluate the proposed method on a recent released multi-person dataset CIHP [10] con-
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Figure 4 (Color online) Some qualitative illustrations on LIP in the red box, PASCAL-Person-Part in the green box, and

CIHP in the blue box. For each example, from left to right: input image, groundtruth, result given by DeepLab-v2 baseline,

and result of DeepLab-v2+FCM. The red rectangle and oval markers refer to inconsistency regions containing scatters and

imprecise boundaries, respectively.

Table 2 Quantitative evaluation (IoU (%) for each class and mIoU (%)) on the PASCAL-Person-Part test seta)b)

Method Head Torso u-arm l-arm u-leg l-leg bkg mIoU

Attention [36] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39

SSL [25] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36

MMAN [7] 82.58 62.83 48.49 47.37 42.80 40.40 94.92 59.91

Structure-evolving LSTM [27] 82.89 67.15 51.42 48.72 51.72 45.91 97.18 63.57

DeepLab-ASPP [8] – – – – – – – 64.94

MuLA [9]c) – – – – – – – 65.10

PCNet [18] 86.81 69.06 55.35 55.27 50.21 48.54 96.07 65.90

DeepLab [8] 85.67 67.12 54.00 54.41 47.06 43.63 95.16 63.86

DeepLab+FCM 86.42 70.37 59.57 59.35 51.22 47.12 95.33 67.05

PGN [10] 90.89 75.12 55.83 64.61 55.42 41.57 95.33 68.40

PGN+FCM 91.16 76.45 57.77 66.23 56.58 43.21 95.41 69.54

a) u-arm, l-arm, u-leg, l-leg, bkg represent upper arms, lower arms, upper legs, lower legs, background class, respectively.

b) Bold typeface indicates the best performance for each category.

c) Extra annotations are used.

taining crowed persons, which is much more challenging for human parsing. The quantitative comparison

is given in Table 3 [8,10]. As it shows, consistent improvements have been achieved for both two baseline

methods, i.e., DeepLab-v2 and PGN. It should be mentioned that PGN is the baseline method proposed

along with the release of the dataset [10], which is customized to fit for the multi-instance case. They

employ an extra edge prediction branch to train together with the parsing branch. The edge informa-

tion provides the precise delimitations of different persons, which is helpful for distinguishing multiple

instances. Besides, PGN also combines feature maps from multiple layers. With those improvements,

PGN achieves superior performance on the CIHP dataset at the cost of significantly increasing the in-

ference time. Even so, FCM still yields a performance gain of 1.30% using PGN [10] as the backbone,
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Table 3 Quantitative evaluation (IoU (%) for each class and mIoU (%)) on the CIHP validation seta)b)c)

Method Hat Hair Glov Sung Clot Dress Coat Sock Pant Suit

DeepLab [8] 65.70 78.89 22.33 50.81 64.18 52.28 62.57 30.95 70.60 70.23

DeepLab+FCM 70.11 81.71 25.04 56.92 68.95 56.76 65.61 33.32 73.75 73.99

PGN [10] 68.78 78.61 23.07 47.14 67.42 55.11 63.97 26.68 72.16 71.56

PGN+FCM 65.41 79.04 30.57 54.19 67.16 54.36 63.72 30.74 73.04 71.93

Method Scarf Skirt Face l-arm r-arm l-leg r-leg l-sh r-sh bkg mIoU

DeepLab [8] 28.42 37.53 86.60 24.69 31.88 25.91 22.66 19.15 18.56 92.01 47.80

DeepLab+FCM 30.64 37.98 88.57 29.98 34.06 30.73 21.13 21.80 20.13 93.82 50.75

PGN [10] 29.55 38.56 86.54 67.88 68.94 54.21 54.62 38.60 38.74 93.21 57.27

PGN+FCM 33.41 37.74 86.86 68.20 69.19 55.75 56.07 40.00 40.66 93.37 58.57

a) Glov, Sung, Clot, Sock, Pant, Suit, l-arm, r-arm, l-leg, r-leg, l-sh, r-sh, bkg represent gloves, sunglasses, clothes, socks,

pants, jumpsuits, left arm, right arm, left leg, right leg, left shoe, right shoe, background class, respectively.

b) Bold typeface indicates the best performance for each category.

c) Results for PGN are evaluated with the model released by the authors.

Table 4 Analysis of inference time (s) on the LIP dataset

Backbone Inference time +FCM Increase time

MMAN [7] 0.048 0.051 ↑0.003

PGN [10] 0.231 0.243 ↑0.012

DeepLab [8] 0.021 0.025 ↑0.004

further demonstrating the complementarity of FCM to methods utilizing extra guidance for multi-task

training. Besides, FCM achieves a performance improvement of 2.95% in terms of mIoU compared with

the backbone DeepLab-v2.

Figure 4 depicts some qualitative parsing results based on DeepLab-v2. Similar to the observation

on LIP and PASCAL-Person-Part datasets, the proposed FCM alleviates the inconsistency problem and

results in more precise part delimitations for crowded human parsing.

4.6 Inference speed

As can be concluded above, FCM achieves consistent performance gain on three benchmark datasets for

human parsing using three different backbone networks. We demonstrate here that FCM is a rather

computational-cheap plug-in and requires a minor increase of inference time. As different image prepro-

cessing strategies lead to different inference speed, the evaluation is done using the images of the LIP

dataset [25] in the original size for fair comparison.

The analysis of average inference speed is presented in Table 4 [7, 8, 10]. The extra inference cost

brought by FCM is almost ignorable compared with that of the backbone networks. This suggests that

FCM can be used as a quite efficient module to further improve the performance of various human parsing

algorithms. Meanwhile, it is worth noting that DeepLab-v2+FCM is a good compromise between efficacy

and efficiency. It achieves superior performance in most experimental settings and can be executed in a

real-time manner.

4.7 Cross-dataset experiment on PPSS

We evaluate the generalization ability of our method by directly applying the model trained on the LIP

dataset to the PPSS testing dataset without any fine-tuning. Following [7], we merge semantically related

categories of the LIP dataset to ensure that it has the same category definition as the PPSS dataset.

The quantitative evaluation is given in Table 5 [7, 8, 10, 33, 38]. FCM significantly improves the gener-

alization ability of the trained model to unseen images. Specifically, FCM improves MMAN by 12.0%,

PGN by 6.1% and DeepLab-v2 by 4.3% in terms of mean accuracy, respectively. Several representative

parsing results are shown in Figure 5. Even without fine-tuning on the PPSS dataset, DeepLab-v2+FCM

correctly parses person images. Especially for those under heavy occlusion conditions, such as bikes and
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Table 5 Cross-dataset evaluation (IoU (%) for each class and mIoU (%)) on the PPSS test set using the model trained

on the LIP dataseta)b)

Method Hair Face u-c Arms l-c Legs bkg mIoU

DL [33] 22.0 29.1 57.3 10.6 46.1 12.9 68.6 35.2

DDN [33] 35.5 44.1 68.4 17.0 61.7 23.8 80.0 47.2

ASN [38] 51.7 51.0 65.9 29.5 52.8 20.3 83.8 50.7

MMAN [7] 53.1 50.2 69.0 29.4 55.9 21.4 85.7 52.1

MMAN+FCM 60.0 70.7 75.5 62.6 43.0 42.7 94.4 64.1

PGN [10] 55.5 62.4 70.3 56.3 29.3 24.4 97.9 56.6

PGN+FCM 62.0 67.4 74.0 64.3 39.2 35.1 96.8 62.7

DeepLab [8] 65.8 59.5 84.5 76.3 35.0 25.6 90.4 62.4

DeepLab+FCM 64.1 72.6 80.6 67.3 48.7 39.1 94.8 66.7

a) u-c, l-c and bkg represent upper-clothes, lower-clothes and background class, respectively.

b) Bold typeface indicates the best performance for each category.

(a) (b)

Hair

Upper clothes

Background

Face

Lower clothes
Arms
Legs
Shoes

Figure 5 (Color online) Examples of parsing results on the PPSS testing dataset of DeepLab-v2+FCM. The model is

trained on the LIP dataset without further finetuning. Severe occlusion is present for images in (b). (a) Normal cases;

(b) cases with severe occlusion.

Table 6 Ablation study on the LIP dataseta)

Method mIoU (%)

DeepLab 47.91

DeepLab + extra resblocks 48.07

DeepLab + CRF [22] 48.53

DeepLab + Non-local [29] 49.48

DeepLab + FCM (λb = 0) 50.76

DeepLab + FCM 51.23

DeepLab + FCM b) 51.65

a) Bold typeface indicates the best performance.

b) This method employs FCM in both the last and the penultimate stage of DeepLab-v2.

cars in Figure 5(b), DeepLab-v2+FCM still outputs clean segmentation maps. The qualitative and quan-

titative results consistently demonstrate that FCM is robust to complex backgrounds, occlusions, and

various illuminations, showing its potential capability of handling diverse real video surveillance scenes.

4.8 Ablation study

In this subsection, we present some ablation experiments of the proposed method. All experiments are

conducted on the LIP dataset with DeepLab-v2 as the backbone network. We first remove the auxiliary

loss by setting λb = 0 to show its affects, and then discuss how the size of contextual region for each node

influences the model performance. We also further explore the effectiveness of FCM in shallower layers of

the backbone network. Finally, we compare our method to other alternative methods, further validating

the superiority of FCM.

Auxiliary loss. As depicted in Table 6 [22, 29], setting λb to zero only leads to a minor performance

decrease of mIoU by 0.47%. This comparison suggests the main performance improvement with respect

to the baseline is brought by FCM.

Size of contextual region. The size of contextual region involves two hyper-parameters, i.e., the
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Table 7 Quantitative analysis of the contextual region incorporated for the parsing performance on the LIP dataseta)b)

M K Contextual region mIoU (%)

1 4 4 49.13

1 8 8 50.04

2 4 12 51.23

2 8 24 49.95

3 4 24 50.16

a) For networks with stride 8 (e.g., DeepLab-v2), each pixel in the feature map corresponds to an 8×8 patch of the

original image.

b) Bold typeface indicates the best performance.

number of stacked FCMs M and the number of nodes in the context K. We conduct experiments by

varyingM andK as shown in Table 7. It can be observed that the parsing performance achieves consistent

improvement by varying the contextual region size from 4 to 12. However, taking more adjacent nodes into

consideration cannot further bring performance gain. This is probably because incorporating too much

context for some relatively small human body parts might involve irrelevant information, thus harming

the performance. It should be noted that experiment settings with M = 2,K = 8 and M = 3,K = 4

share the same size of contextual region and achieve similar mIoU (49.95% vs. 50.16%), demonstrating

that size of contextual region plays the key role for FCM.

FCM in shallower layers. We conduct experiments by integrating FCM into the penultimate stage

of DeepLab-v2 (in addition to the last stage), and obtain a further improvement of 0.42% in mIoU (from

51.23% to 51.65%) on the LIP dataset as shown in Table 6. We also try to plug FCMs into shallower

layers but do not observe obvious performance gain. A possible reason is that shallow layers mainly

encode low-level cues which cannot provide semantic information for effectively exploring the correlation

of adjacent pixels.

Comparison to alternatives. It is known that adding a sequence of convolutional layers will give the

model a certain enhanced ability to use context information. To investigate the performance of such an

alternative, we add more residual blocks to DeepLab-v2 as a baseline model which shares approximately

the same parameter numbers as DeepLab-v2+FCM. From Table 6, adding more residual blocks only

yields a marginal gain of mIoU (0.16%). Compared to DeepLab-v2+FCM, this method is exceptionally

less effective. We then adopt CRF [22] as a post-procedure to refine the parsing results generated

by DeepLab-v2. Besides, we replace FCM with the non-local module [29] which can aggregate global

context information from all the positions. From the results presented in Table 6, FCM shows superior

performance compared to CRF (51.23% vs. 48.53%) and the non-local module (51.23% vs. 49.48%).

These results firmly demonstrate the superiority of FCM over other state-of-the-art methods in leveraging

context information in the human parsing task.

Boundary precision. As shown in Figure 4, qualitatively, FCM leads to more precise boundaries

between different semantic parts. We also propose a new metric named edge-masked mIoU to quantita-

tively measure the boundary precision. For that, we first generate edge labels for each image from its

semantic annotation following CE2P [11]. We then evaluate the edge-masked mIoU by only considering

pixels which fall on the edges and ignoring all others. The proposed method yields an improvement

of 2.42% (33.39% vs. 30.97%) in terms of edge-masked mIoU compared to DeepLab-v2. This further

demonstrates the effectiveness of FCM.

5 Conclusion

In this paper, we propose a feature context module to incorporate the context along the topology of the

human body to improve the performance of human parsing. The learned features effectively alleviate

the inconsistency issue and smooth the contour in human parsing. FCM is independent of the backbone

network architecture and only incurs a slight increase of the inference time. Experiments with three

different backbone networks demonstrate that FCM achieves consistent improvements over the backbone
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models and very competitive performances on three benchmark datasets. Furthermore, FCM also shows

the noteworthy generalization ability to unseen images collected from surveillance videos of multiple

different real scenes.
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