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Dear editor,
The modern process industry is evolving from the
production of basic materials in large quantities to
the production of many varieties of high-quality
professional products in small batches. Batch pro-
cess refers to the conversion of limited quanti-
ties of raw materials into specific product out-
puts in finite time and obtaining more products
through repeated processes. Owing to the flexibil-
ity and lower equipment investment, batch pro-
cesses are widely used in the process industry,
and they play an important role in the produc-
tion of low-volume, high-value products such as
semiconductors, pharmaceuticals, polymeric ma-
terials, and injection products. Batch processes
are characterized by high non-linearity and repe-
tition. Therefore, the control of batch processes
is more complicated than that of continuous pro-
cesses.

Because batch processes have the characteris-
tic of repetition, iterative learning control (ILC)
is an effective approach for the optimal control of
batch processes. In ILC, the current information is
revised by using previous control experience, and
the system output is made convergent as far as
possible toward the expected value. An optimal
ILC algorithm based on a linear-parameterized lin-
ear time-varying model for batch processes was
presented in [1]. Ref. [2] proposed an integrated
neuro-fuzzy model and a dynamic R-parameter
based quadratic criterion-iterative learning con-
trol. However, in the above-mentioned studies,

which were based on traditional ILC, only the
batch-to-batch optimization problem is taken into
account. Therefore, the tracking performance is
dependent only on the learning rate or weighted
parameters. In order to obtain better control per-
formance, traditional ILC is combined with other
control strategies like model predictive control
(MPC), which has found widespread application in
the field of control, such as shared control frame-
work [3] and gasoline airpath control [4]. In [5],
the combination of MPC strategy and ILC algo-
rithm was studied for the constrained multivari-
able control of batch processes. Ref. [6] proposed
an integrated scheme by combining batch-to-batch
P-type ILC and within-batch MPC. In the afore-
mentioned studies, the robust performance of pa-
rameter uncertainty systems is not analyzed theo-
retically. How to address these issues is the moti-
vation of the current study.

In order to improve the convergence speed of
systems with parameter uncertainty for batch pro-
cesses, we design an integrated control system and
propose a new robust control strategy for batch
processes. It realizes comprehensive control by
combining robust ILC and MPC for nonlinear pro-
cesses. As a result, the control law of the system
can be regulated during one batch, which leads to
good tracking performance and robustness against
uncertainties. We also provide the stability and
convergence analysis of the proposed integrated
system.

In order to obtain an accurate linearized model,
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we subtract the nominal trajectories from the
batch operation trajectories, thus removing a ma-
jority of the process nonlinearity. The nominal
control trajectory and its corresponding prod-
uct quality trajectory are defined as Us = [uT

s (1),
uT
s(2), . . . , u

T
s(N)]T, Ys=[yTs (1), y

T
s(2), . . . , y

T
s(N)]T,

where N is time duration of every batch. Then,
the linearized time-varying model can be writ-
ten as Y k = GUk, where Uk = [uT

k (1) − uT
s (1),

. . . , uT
k (N) − uT

s (N)]T is input variable, Y k =
[yTk (1)−yTs (1), . . . , y

T
k (N)−yTs (N)]T is output vari-

able, and k is batch index. Note that there exist
uncertainties in the system’s model. For ellipsoidal
uncertain systems, the uncertainty set Ω is defined
as Ω = {G = G0 + · · ·+ θpGp|(θ − θ)TW (θ − θ)},
where θ = [θ1 θ2 · · · θp]

T, θ is the center of an
ellipsoid set, and W = WT. That is to say, G

is an affine parameter model. In this study, the
uncertain perturbation model can be described as
Y k = (G0 + θG1)Uk, when p = 1. G0 represents a
nominal system and θG1 is an uncertain dynamic
matrix.

According to the process input-output data set,
the parameters G0 and G1 can be identified by
using the least-squares method [7]. Therefore,
we define the prediction perturbation model as

Ŷ k = ĜUk, where Ĝ = Ĝ0 + θĜ1, ∀θ ∈ Φ =
{θ|(θ − θ)TW (θ − θ) 6 ρ}. Ĝ0 and Ĝ1 are the
identification values of G0 and G1, respectively.

The structure of Ĝ0 and Ĝ1 are lower-block tri-
angular as follows:

Ĝi =









gi1,0 · · · 0
...

. . .
...

giN,0 · · · giN,N−1









, i = 0, 1. (1)

Let us define Fk(
t1
t2|t) = [fk(t1|t), . . . , fk(t2|t)]T,

F ∈ {Y, U}, f ∈ {y, u}.
The proposed integrated iterative learning con-

trol system is composed of a time-axis controller
and a batch-axis controller. The batch-axis con-
troller ensures the convergence of the system and
the time-axis controller improves the control per-
formance of the system. Y d = Yd − Ys is defined
as the desired perturbation product qualities and
uk(t) is the real-time control signal at time t in the
k-th cycle. Pt is the time-varying prediction hori-
zon of the MPC controller, and Ŷk(

t+1
N |t) depends

on the known input Uk(t− 1) and the future con-
trol sequence UMPC

k (
t
N−1|t). At time t, only the

first control action uMPC
k (t|t) is applied to the sys-

tem. Therefore, the predictive output Ŷk(
t+1
N |t)

is as close as possible to the reference trajectory
Yd(t+ 1).

As discussed above, the proposed integrated

learning optimization control action can be de-
scribed as uk = uILC

k + uMPC
k . The error-updating

model of the system can be derived as follows:

E
ILC

k = Ek−1 − Ĝ∆U
ILC

k , (2)

where Ek = Y d − ĜUk, E
ILC

k = Y d − ĜU
ILC

k , and

∆U
ILC

k = U
ILC

k − Uk−1.
ILC is suitable for controlled systems with

repetitive motion, and the control law is updated
by the mean of iteration. Therefore, the quadratic
objective function can be constructed as follows:

min
∆U

ILC

k

max
θ∈Φ

J1 =
∥

∥

∥
E

ILC

k

∥

∥

∥

2

Q
+
∥

∥

∥
∆U

ILC

k

∥

∥

∥

2

Rk

, (3)

where Q = q× I and Rk = rk × I. The constraint

of the control input is described as U
low

6 U
ILC

k 6

U
up
, and it can be rewritten as follows:

Π∆U
ILC

k > Pk, (4)

where

Π = [I − I]T, Pk =

[

U
low − Uk−1

−(U
up − Uk−1)

]

. (5)

Optimization problem (3) can be solved by solv-
ing the LMIs as follows:

min
∆U

ILC

k

λ













λ−H −τθ
T
W X(∆U

ILC

k )T Y (∆U
ILC

k )T

∗ τW Z(∆U
ILC

k )T 0

∗ ∗ I 0

∗ ∗ ∗ I













>0,

Π∆U
ILC

k > Pk, (6)

where X(∆U
ILC

k ) = Q1/2(Ĝ0∆U
ILC

k − Ek−1),

Y(∆U
ILC

k ) = R
1/2
k ∆U

ILC

k , Z(∆U
ILC

k ) =

Q1/2Ĝ1∆U
ILC

k , and H = τ(ρ− θ
T
Wθ).

The process of solving optimization problem (3)
is demonstrated in Appendix A.

In order to improve the control performance in
the direction of the time-axis, MPC is used to im-
prove the ability of tracking. The output predic-
tion is represented as

Ŷ k(
t+1
N |t) = Ŷ k(Uk(

t
N−1|t))

= GPt0
Uk(t− 1) +GPtN

(Uk(
t
N−1|t)), (7)

where GPt0
and GPtN

are parts of the matrix Ĝ

according to the time t:

GPt0
= G0

Pt0
+ θG1

Pt0

=







g0t+1,0+θg1t+1,0 · · · g0t+1,t−1+θg1t+1,t−1
...

. . .
...

g0N,0+θg1N,0 · · · g0N,t−1+θg1N,t−1






,
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GPtN
= G0

PtN
+ θG1

PtN

=









g0t+1,t+θg1t+1,t · · · 0
...

. . .
...

g0N,t+θg1N,t · · · g0N,N−1+θg1N,N−1









.

The nominal predictive output is defined as

Ŷ
0

k(
t+1
N |t) = G0

Pt0
Uk(t− 1) +G0

PtN

(

UMPC
k (

t
N−1|t)

+ U
ILC

k (
t
N−1|t)

)

. (8)

The objective function of MPC is constructed as

minJ2=

∥

∥

∥

∥

Y d−Ŷ
0

k(
t+1
N |t)

∥

∥

∥

∥

2

Q

+
∥

∥

∥
U

MPC

k (
t
N−1|t)

∥

∥

∥

2

R
(9)

s.t.
∥

∥

∥
Y d − Ŷ k(Uk(

t
N−1|t))

∥

∥

∥

2

Q

6

∥

∥

∥
Y d − Ŷ k

(

U
ILC

k (
t
N−1|t)

)∥

∥

∥

2

Q
, (10)

where R = r × I. Optimization problems (9) and
(10) can be solved via

min
UMPC

k
(t
N−1

|t)
λ







λ ζ−G0
PtN

UMPC
k (

t
N−1|t)T UMPC

k (
t
N−1|t)T

∗ Q−1 0

∗ ∗ R
−1






>0,







ηTη −H −ηTL− τθ
T
W ηT −MT

∗ LTL+ τW −NT

∗ ∗ I






>0, (11)

where

ζ = Y d −G0
Pt0

Uk(t− 1)−G0
PtN

U
ILC

k (tN−1|t),

η = Q1/2
(

Y d−G0
Pt0

Uk(t−1)−G0
PtN

U
ILC

k (
t
N−1|t)

)

,

M = Q1/2G0
PtN

UMPC
k (

t
N−1|t),

N = Q1/2
(

G1
PtN

U
ILC

k (tN−1|t) +G1
Pt0

Uk(t− 1)

+ G1
PtN

UMPC
k (

t
N−1|t)

)

,

L = Q1/2
(

G1
Pt0

Uk(t− 1) +G1
PtN

U
ILC

k (
t
N−1|t)

)

.

The process of solving optimization problems
(9) and (10) is demonstrated in Appendix B.

Now, let us show the convergence and stability
results of the proposed control strategy for batch
processes.

Theorem 1. Consider a batch process that is
controlled by the proposed strategy. The control
sequence will converge into a constant along the

batch cycle, that is, ∆U
ILC

k → 0 as k → ∞.

Theorem 2. The tracking error E(Uk) of the
proposed optimization problem described by (3)
and (9) can be bounded in a small region for ar-
bitrary initial control profiles with respect to the
batch number k, namely, E(Uk) ∈ Θe as k → ∞,
where Θe = {E(Uk)|E(Uk) 6 Mê +

√
ε}.

The proofs of Theorems 1 and 2 are provided in
Appendixes C and D, respectively. An illustrative
example is shown in Appendix E.

Conclusion. We have addressed the problem of
robust convergence for nonlinear processes. The
convergence speed and tracking performance were
improved by combining robust ILC and MPC. The
proposed control strategy converges faster than
traditional ILC and can retain convergence per-
formance even when there exist model parameter
perturbations.
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